The workhorses of CNNs are its filters, located at different layers and tuned to different features. Their responses are combined using weights obtained via network training. Training is aimed at optimal results for the entire training data, e.g., highest average classification accuracy. In this paper, we are interested in extending the current understanding of the roles played by the filters, their mutual interactions, and their relationship to classification accuracy.
Remove to Improve
Read More “Remove to Improve”