Video Denoising
This work proposes a computationally fast scheme for denoising a video sequence. Temporal processing is done separately from spatial processing and the two are then combined to get the denoised frame. The temporal redundancy is exploited using a scalar state 1D Kalman filter. A novel way is proposed to estimate the variance of the state noise from the noisy frames. The spatial redundancy is exploited using an adaptive edge-preserving Wiener filter. These two estimates are then combined using simple averaging to get the final denoised frame. Simulation results for the foreman, trevor and susie sequences show an improvement of 6 to 8 dB in PSNR over the noisy frames at PSNR of 28 and 24 dB.
Related Publications:
- R. Dugad and N. Ahuja, Video Denoising by Combining Kalman and Wiener Estimates, International Conference on Image Processing, Kobe, Japan, Oct. 1999, IV-152-156.