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Stereo Matching Using Epipolar Distance Transform

Qingxiong Yang, Member, IEEE, and Narendra Ahuja, Fellow, IEEE

Abstract—1In this paper, we propose a simple but effective
image transform, called the epipolar distance transform, for
matching low-texture regions. It converts image intensity values
to a relative location inside a planar segment along the epipolar
line, such that pixels in the low-texture regions become distin-
guishable. We theoretically prove that the transform is affine
invariant, thus the transformed images can be directly used for
stereo matching. Any existing stereo algorithms can be directly
used with the transformed images to improve reconstruction
accuracy for low-texture regions. Results on real indoor and
outdoor images demonstrate the effectiveness of the proposed
transform for matching low-texture regions, keypoint detection,
and description for low-texture scenes. Our experimental results
on Middlebury images also demonstrate the robustness of our
transform for highly textured scenes. The proposed transform
has a great advantage, its low computational complexity. It was
tested on a MacBook Air laptop computer with a 1.8 GHz Core
i7 processor, with a speed of about 9 frames per second for a
video graphics array-sized image.

Index Terms— Epipolar, stereo matching, texture.

I. INTRODUCTION

OMPUTATIONAL  stereo  for  extraction  of

three-dimensional scene structure has traditionally
been, and continues to be an active area of intense research
interest [1], [2]. In the past decade, much of the community’s
effort has been focused on the specific problem of disparity
optimization, producing a number of excellent optimization
methods that have significantly advanced the state of the art.
The key objective of these optimization methods is to reduce
the matching ambiguities introduced by low-texture regions,
and they can be generally classified into three categories:
local methods, global methods, and hybrid methods.

The best local methods known today are either based on
edge-preserving filtering or image segmentation. Yoon and
Kweon [3] aggregate the matching cost with respect to both the
color similarity and geometric proximity, and Yang [4] is the
first to propose a non-local cost aggregation algorithm based
on a minimum spanning tree computed from the reference
camera image. Zitnick et. al. [5] aggregate the matching cost
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within each image segment and the obtained disparity maps
from different cameras located at different positions are then
fused to give coherent estimates.

The most popular global methods are based on belief
propagation [6], [7] or graph cuts [8]. Both methods are
formulated in an energy-minimization framework [9], where
the objective is to find a disparity solution that minimizes a
global energy function.

In low-texture regions, the lack of visual features makes
matching a challenging problem. Local methods, which
typically assume that the disparity values are the same
for pixels inside the support window, do not work well
on non-fronto-parallel surfaces which do not satisfy this
assumption. Assuming that only the neighboring pixels have
the same disparity value, global methods are more suitable
for non-fronto-parallel surfaces, but only when the size of
the low-texture regions is relatively small. Several hybrid
methods [10]-[13] have been proposed to take advantage of
both local and global optimization techniques. These methods
assume planar surfaces and alternate between assigning pixels
to 3D planes and refining the plane equations. A common
problem with these techniques is that they rely on having
accurate image segmentation, which may not always be
robust. Other optimization methods make more restricted
assumptions like Manhattan-world [14], [15], or only extracts
vertical facades [16], [17].

All of the above methods greatly advance the state of stereo
vision in the indicated ways, they are adversely affected by the
noisy nature of the matching cost as computed from the image
intensities while neglecting the image structure as a source of
obtaining robust matching invariants.

In this paper, we propose an image transform - epipolar
distance transform - which helps estimate planar 3D structure
at points in low-texture areas in terms of distances measured
along the epipolar lines. Specifically, we extract the boundaries
of a homogeneous (low-texture) region and locate its two
points of intersection with the epipolar line. We next compute
the distance between the two endpoints and the distance
between one endpoint and every pixel on the within-region
epipolar line segment. For planar surfaces, the ratio of the
distances is invariant to affine transformation, and thus can be
used as a matching invariant for stereo vision.

Unlike image intensity/color, our transform is robust
for matching low-texture regions. Note that our transform
is proposed to improve the robustness of existing stereo
algorithms in matching low-texture regions; we are not
claiming a new/better stereo algorithm. Our experiments with
both global stereo method (belief propagation: CSBP [18])
and local stereo method (sliding window) demonstrate the
effectiveness of our transform.

1057-7149/$31.00 © 2012 IEEE
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A. Assumption and Justification

The epipolar distance transform proposed in this paper is
derived based on affine transforms. Thus it is theoretically
valid only for planar surfaces, an assumption actually used
in almost every state-of-the-art stereo algorithm [10]-[16].
This assumption is harmless in textured parts of an image
since texels are, by definition, small and many compared
to image size (see Fig. 9), and it is safe to assume that
small regions can be well-approximated as corresponding to
planar surfaces. The higher the curvature, i.e., the degree of
violation of planarity assumption, by a curved surface, low-
texture region, the higher will be the resulting reconstruction
error. For Lambertian surfaces, higher curvature also means
greater variation due to shading (larger variance of surface
normals). We can use the extent of this intensity variation
to select virtual endpoints (of a virtual line segment). The
endpoints are virtual in that they are not true ends of a line
segment corresponding to a planar region; rather, the intensity
variation within the line segment is acceptably close to that
which would be found if the surface was indeed planar. We
can estimate the probability that two given points are virtual
endpoints from the intensity/color variation across the segment
(see Eqn. 4). The larger the curvature, the more confident
will be the probability estimate. The virtual line segments
will partition the whole curved surface into a number of
small, low-curvature patches, corresponding to a polyhedral
approximation. The details are presented in Sec. II. The
experimental results in Fig. 6 demonstrate that due to such
automatic polyhedralization of a curved surface, the proposed
epipolar distance transform performs robustly for non-planar,
low-texture surfaces, although we do use planarity to derive
the basic theory.

II. APPROACH

Lack of texture leads to ambiguities/errors in matching
when the image intensity/color is used as the matching
invariant. On the other hand, the geometric properties of
the image segments, such as area, boundary shape, and
mutual distances, are more robust to the intensity variations.
Ahuja [19] proposed an image transform to capture multiscale
image structure by computing an attraction-force field over
the image. This transform can be used to extract a multi-scale
segmentation tree, which has been proven to be very efficient
for object categorization [20], [21]. However, the force values
constituting the image transform reflect strictly 2D structure.
Not being affine invariant, the force values at points within low
texture regions cannot be used as features for stereo matching.

A. Epipolar Distance Transform

In this section, we present a new image transform - epipolar
distance transform - to capture the image structure. This trans-
form is invariant to affine transform, and can be used as a
matching invariant for stereo vision. To define the transform,
let PQ in Fig. 1(a) be a straight line segment in Euclidean
3-space R3, and O be a point inside PQ, then their projections
on the left camera Cr, and right camera Cg have the following
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where Pz, Oz and Qr are the projections of P, O and Q on
camera Cr, and P, Og and Qg are projects on camera Cg.
We can establish Eqn. (1) because the ratios of lengths are
preserved under affine transform, and the mapping between
line P;Q; and PrQp is an affine transform as long as PQ is
a straight line segment according to the epipolar geometry.

To make the problem simpler, we can assume that the
camera motion is pure translation, or equally the camera
images are rectified such that the epipolar lines are scanlines,
and P;Q; and PrQpg are line segments along the epipolar
line on camera Cy, and Cg, respectively. To compute the ratio
of lengths at each pixel location Oz, we need to detect two
endpoints P; and Qy of the line segment P;Q passing
through Oy to measure the lengths || P, — Oy | and
| PL—Qg ||. In theory, we can segment the image into regions,
then compute the lengths as the sum of the pixels on each
region along each scanline. Let scanline width be w, x be
x-axis value of a pixel x along scanline, and x? be x-axis
value of pixel Op,

(1

o
XL
IPL—Op || = step(x, xp) )
x=0
w—1
IPL—QLll =D step(x,xp) 3)
x=0

where

0 1 x and Oy are in the same segment,
step (x,x;) = )
L 0 otherwise.

Fig. 2 presents a synthetic scene containing only white and
black pixels, and accurate segmentation is guaranteed. P7 and
Q1 are the intersections of the epipolar line passing pixel Op,
and the boundary of the white regions in Fig. 2 (a). The length
of line segment P; Q; (or P Op) is equal to the number of
white pixels between P; and Q; (or Pp and Op). Thus for
every pixel along on the same epipolar line, we need to check
whether it is a white pixel or not, and this is formulated as
the summation of a step function in Eqn. (3). The ratio of the
lengths computed using Eqn. (1) is presented in Fig. 2 (c)—(d).
However, it is impossible to separated a real image into only
white and black pixels, thus a step() function is not practical.

Besides, image segmentation is known to be non-robust.
For instance, the detected line segment P; Q7 on the left image
may be split into multiple line segments in the right image.
Such an example is shown in Fig. 3. The EDISON system
(Meanshift segmentation) [22] with default parameters is used
to segment the left and right images in Fig. 6(a) and (b), and
the results are presented in Fig. 3. The white boxes indicate
where the system obtains inconsistent segmentation results on
the left and right images.

In practice, we adopt a “soft segmentation” approach.
Specifically, we replace the step() function in Eqn. (2) and (3)
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Fig. 1. (a) PQ is a line segment in R3, and its projections on camera Cy,
and Cgr are P;Qy and PrQpg. The mapping between Py Qy and PrQpg
is an affine invariant. (b) Projections of a line segment PQ passing O can
be detected by drawing a straight line passing through projection of O,
and the intersections of this line and the region boundary are projections
of P and Q. (c) Projections of different line segments passing O can be
detected by drawing straight lines passing through projection of O in different
directions. Please zoom in to see the details if it is unclear.

© (d)

Fig. 2. Synthetic scene. (a) and (b) Left and right images and
(c) and (d) transformed images.

with a Gaussian function with standard deviation o7;:
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(b)

Fig. 3. Meanshift segmentation. The white boxes indicate where the system
obtains inconsistent segmentation results on the left and right images. (a) Left.
(b) Right.
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Fig. 4. Scanline of Fig. 2(a).

where I(x) and I(x9) are the intensity values of pixel x
and Op. g(I(x), 1 (xLé)) increases as the intensities of x and
O get closer. Unlike the step() function in Eqn. (2) and (3)
which gives a binary decision, g(I(x), [ (x?)) measures
the similarity of pixel x and Oy based on their intensity
similarity, and gives a values between zero and one. However,
g(I(x), I(x?)) will be the same as the step() function if
o7 = 0. o7 should be small enough to suppress contributions
of dissimilar pixels (from different regions). But to account
for sensor noise, we set oy to 7 for all 8-bit images used in
our experiments. Eqn. (4) is an approximation of the step()
function, but more robust for real images.

Unlike standard methods, we do not require the intensities
of the correspondences to be the same. Let xg and xg be the
x-axis values of the correct correspondences of pixel
x and Oy in camera Cg, respectively. As can be seen
from Eqn. (2), Eqn. (3) and Eqn. (4), we only require
g(I(xR), I(xg)) = g(I(x), I(x?)), that is the intensity
difference of xp and xg should be the same as the intensity
difference of x and x? to make sure that the ratio computed
from the summations in Eqn. (2) and Eqn. (3) is affine
invariant. As a result, our method is more robust to brightness
changes. The existence of noise in real images violates this
assumption, but our experiments show that this technique is
robust to noise when oy is sufficiently large, e.g., oy = 7 (for
8-bit images) in our experiments.

The discussion above shows that the matching invariant
computed at each pixel O is actually an intensity-weighted
summation of ones along the epipolar line (substitute Eqn. 4



YANG AND AHUJA: STEREO MATCHING USING EPIPOLAR DISTANCE TRANSFORM

(k)

Fig. 5.
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(m)

Fronto-parallel surfaces. (a) Measured disparity map, (b) and (c) input stereo images, and (d) and (e) images after transform. (f) and (g) Disparity

maps obtained by applying global stereo method (CSBP [18]) to (b) and (c), and (d) and (e), respectively. (h) and (i) Disparity error maps of (f) and (g),
respectively. The black pixels are bad pixels with an error larger than one disparity. The gray pixels are border-occluded, and are not considered in this paper.
Apparently, our transform performs much better than image intensity for matching low-texture wall surfaces using both global and local stereo methods.
(j)—(m) Results obtained using local sliding window stereo method. The quantitative comparison is summarized in Table I.

into Eqn. 2 and 3):
| PL—Op |

O =
FOU =5, =a.

U@-169)?

x? 202
> o e I -1
x=max(0,x; —osW)
= RG] )
I(x)=1(xp)
Z:min(w—l,x?-i-asw) - 252 1

o ]
x=max(0,x; —ogw)

where og is a scalar controlling the size of the local regions
to be taken into account. Note that Eq. (5) is similar to a joint
bilateral filter kernel and maybe further accelerated using the
techniques proposed in [23], [24].

An example of computing the matching invariant using
Eq. (5) is presented in Fig. 4. The green dash line in Fig. 4
is a scanline extracted from Fig. 2(a). The horizontal axis
corresponds to the pixel locations (0 to 319), and the vertical
axis corresponds to the intensity values. As can be seen in
Fig. 4, | P —Or || =60and || PL—Qr | =260, thus the
ratio H = % is the ground-truth matching invariant at
pixel Or, according to Eq. (1). Let 5 = 400 and o7 = 7, the
matching invariant can be approximated using Eq. (5):

40 _(0-255)2 100 (255-255)2 l
Fon = (T4 3 ) /(2

x=0 x=41 x=0
_(0-255)2 300 (255-255)2 319 _ (0-255)2

e 272 e 2.72 + Z e 2.72

x=41 x=301
41.¢768352 460 60
(6)

T 609352 1 260 260"

TABLE I
QUANTITATIVE EVALUATION USING STEREO IMAGES PRESENTED IN
FIGS. 5(b) AND (c) AND 6(b) AND (c)

Method
Data set Local stereo CSBP [18]
Intensity | Ours | Intensity | Ours
Fig. 5(b)—(c) 68.1 3.02 68.1 2.39
Fig. 6(b)—(c) 375 10.56 34.2 3.76
Wall surface in Fig. 6 24.9 2.56 26.6 2.37

The numbers are the percentage of pixels with misestimated disparities.
The second and third columns are results from the local sliding window stereo
method and the fourth and fifth columns are results from the CSBP [18]
method. The second and fourth columns are results computed using image
intensity and the third and fifth columns are results computed using our
transform. The last row contains results for only the cylindrical wall surface
in Fig. 6(b). Our transform greatly reduces the percentage of bad pixels due to
lack of texture. The local stereo method results in a much larger percentage of
bad pixels (10.56%) using the data set presented in Fig. 6(b) and (c). This is
because local stereo method assumes fronto-parallel surfaces which is invalid
for this data set. Note that there is a floor surface in Fig. 6(b) and (c).

Note that the computation of F(0Oy) does not require
the detection of the exact endpoints of the line segment
(the location of pixel Py and Qp).

In this paper, we set og to a constant value (0.01) for real
images, and use Eqn. (5) to compute the matching invariant F
at each pixel location, which is essentially an image transform.
Our experiments (Sec. III) demonstrate that stereo matching
using the transformed images with constant o5 can perform
much better than standard intensity-based stereo matching
methods for low-texture regions. See Sec. III for details. Note
that in this case, the length of the line segment is assumed to
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Fig. 6. Cylindrical surfaces. (a) Measured disparity map, (b) and (c) input stereo images, and (d) and (e) images after transform. (f) and (g) Disparity maps
obtained by applying global stereo method (CSBP [18]) to (b) and (c) and (d) and (e), respectively. (h) and (i) Disparity error maps of (f) and (g), respectively.
The black pixels are bad pixels with an error larger than one disparity. The gray pixels are border-occluded, and are not considered in this paper. Apparently,
our transform performs much better than image intensity for matching low-texture wall surfaces using both global and local stereo methods. (j)—(m) Results
obtained using local sliding window stereo method. The quantitative comparison is summarized in Table I.

be always less than 2 x ogw+ 1, and the detection of the exact
endpoints of the line segment is avoid.

B. Other Transforms

In this section, we discuss the possibility of using the
ratio of lengths along directions other than the epipolar lines.
According to Eqn. (1), to compute the ratio of lengths at
a pixel location Oy on camera Cz, we need to detect the
two endpoints of a straight line passing through Op. This
can be done using image segmentation. Assume that after
segmentation, every pixel inside the black circle in Fig. 1(b)
belongs to the same segment. Then we simply need to draw a
straight line [e.g., the green dashed line in Fig. 1(b)] passing
through Op. The intersections of this line and the segment
boundary are at Py and Qz. We can draw lines in different
directions as shown in Fig. 1(c) [e.g., the red, purple and
green dashed lines in Fig. 1(c)], and then compute a ratio
of lengths (Eqn. 1) for every direction. For each pixel O,
we thus convert the intensity/color to a vector comprising of
the ratios of lengths computed from different directions as
depicted in Fig. 1(c).

However, a direction in the left image may not always
correspond to the same direction in the right image as can
be seen from Theorem 1 (the proof is provided in Appendix).
That is the detected line segment P, Q’, (computed using the
same direction as P; Q) in Cg in Fig. 1(c) may not be always
the correct correspondence of Py Qy. In this case, the ratio of
lengths computed from P}, Q’, won’t be the same as the ratio

of lengths computed from P;Qy, and cannot be used as a
matching invariant.

Theorem 1: Let PQ be a straight line segment in Euclidean
3-space R3, P; Q. be its projection on left camera Cy, and
PrQpr be its projection on right camera Cg, then line P7Qy,
has the same direction as PR Qg only when

1) PrQr and PrQpr are along the epipolar line,

2) or the disparity values of pixel Py, and Q. are the same.

Theorem 1 shows that for directions other than the epipolar
line, we require fronto-parallel surfaces which depends on the
structure of the scene to be captured and the camera
orientation. The epipolar line direction, however, is
independent of the scene structure and the camera orientation,
thus is adopted in this paper. That is, in practice, we only
use ratios of lengths computed from a single direction: along
epipolar line.

III. EXPERIMENTS

In this section, we present experiments on real images to
demonstrate the effectiveness and robustness of our method.
Sec. III-A numerically evaluate the performance of our image
transform for stereo matching using two real indoor data sets,
Sec. III-B presents visual evaluation on three outdoor data
sets, and Sec. III-C shows that our image transform is robust
to keypoint detection and description for low-texture scenes.
These images are captured by a commercial stereo vision
system: Point Gray Bumblebee XB3 stereo vision system [25].
Similar to the other systems, the lenses of Bumblebee XB3
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stereo vision system exhibit optical vignetting to some degree,
which cause problems for stereo matching especially for low-
texture regions. Finally, we show that our transform is also
robust for highly-textured scenes in Sec. III-D.

All the experiments conducted use the same parameters.
Specifically, we set o7 to 7 and og to 0.01, and use Eqn. 5 to
compute the transform. All the disparity maps presented in this
section are computed using either local sliding window stereo
method or Yang’s CSBP method [18].! CSBP is a very effi-
cient belief propagation algorithm with memory cost invariant
to the disparity search range, and is employed because our
laptop computer cannot afford the huge memory cost required
by standard BP algorithm for the high resolution stereo images
used in our experiments.

A. Numerical Evaluation Using Indoor Scenes

In this section, we numerically evaluate the performance
of our image transform for stereo matching using two real
indoor data sets with regions that are weakly textured. We
first evaluate our method with a low-texture wall as shown
in Fig. 5(b)-(c). We adjusted the camera to make sure that
the wall is fronto-parallel such that the z-depth values are
the same for every pixel and can be manually measured. The
measured disparity map is presented in Fig. 5(a). Fig. 5(d)
and (e) are the transformed images of (b) and (c). Fig. 5(f)
and (g) are the disparity maps obtained by applying global
stereo method (CSBP [18]) to (b)—(c) and (d)—(e), respectively,
and the corresponding disparity error maps are presented in (h)
and (i). As can be seen in Fig. 5(h), most of the pixels are
black which correspond to pixels with disparity error lager
than 1 (gray pixels are border-occluded.). These errors are
corrected using our transform as shown in Fig. 5(i) except
for the border occlusion (gray pixels) on the left which is
not considered in this paper. (j)—(m) are the results obtained
using local sliding window stereo method, and the quantitative
comparison is summarized in Table I.

Fig. 6 presents the reconstruction results for a cylinder-like
lobby. The camera was placed in the center of the lobby and
the angle of the camera was adjusted such that the z-depth
values of the pixels in each column are the same and thus the
cylindrical wall surface can be measured. We then manually
segmented the reference image in Fig. 6(b), and applied plane
fitting to each segment using the keypoints detected and
matched using SIFT [26] except for the cylindrical wall
surfaces. The obtained disparity map is presented in Fig. 6(a).
The manual image segmentation result will not be used to
compute the proposed image transform. The disparity error
maps presented in Fig. 6(h)—(i) and (1)-(m) show that most of
the errors (black pixels) due to lack of texture are corrected
using our transform. The numerical comparison is presented
in Table I which shows that our image transform greatly
improve the reconstruction accuracy. The disparity values
of the non-cylindrical surfaces in Fig. 6(a) are estimated using
plane fitting, and thus not very precise. However, most of
reconstruction errors reside in the low-texture regions inside
the cylindrical wall surface, we thus also limited our evaluation

IWe use the source code published on the author’s website.
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(b)

Fig. 7. Visual evaluation using outdoor scenes. (a) Reference images.
(b) Transformed images. (c) Global stereo disparity maps obtained from (a).
(d) Global stereo disparity maps obtained from (b). (¢) Local stereo disparity
maps obtained from (a). (f) Local stereo disparity maps obtained from (b).
The white boxes indicate where intensity matching method fails due to lack
of texture.

on only the cylindrical wall surface where the accuracy is
guaranteed and present the results in the last row of Table I.

Note that the wall is not a planar surface, which violates the
assumption we made for deriving the basic theory. However,
as discussed in Sec. I-A, our transform computed from the
intensity-weighted summations (Eqn. 5) is robust to curved
surfaces. The disparity map in Fig. 6(g) experimentally verify
this claim.

B. Visual Evaluation Using Outdoor Scenes

Fig. 7 presents the experimental results on three outdoor
scenes. From top to bottom are the reference images (a),
transformed images (b), disparity maps obtained by applying
CSBP [18] to the input image pairs (c) and the transformed
images (d), and disparity maps obtained by applying local
sliding window stereo method to the input image pairs (e)
and the transformed images (f), respectively. The ground-
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(d)

Fig. 8. Camera tracking. (a) Selected frames of a low-texture wall, (b) transformed images, and (c) and (d) screenshots of the reconstructed 3-D model. Red
boxes in (a) and (b): feature points detected using SIFT keypoint detector. Red and blue pyramids in (c) and (d): the moving camera. The concave surfaces
in the 3-D model correspond to the doors on the wall. There are two doors in (a) but three doors in (c) and (d), because only six frames are selected in (a).

truth disparity maps are not available, but visual evaluation
shows that the reconstruction errors due to the lack of texture
(white boxes) in Fig. 7(c) and (e) are successfully removed
using our transform as shown in (d) and (f).

C. Camera Tracking

In this section, we show that our image transform can be
used to estimate the camera motion for low-texture scenes.
Our method differs from standard method in the first step
which locates and describes the feature points in each image.
Fig. 8(a) presents several frames (from the left lens of
Bumblebee XB3 stereo camera) of a low-texture wall and
the red boxes indicate the feature points detected using SIFT
keypoint detector [26].2 As can be seen in Fig. 8(a), no
feature point is detected due to the lack of texture in the
first few selected frames, it is thus impossible to estimate
the camera motion from these frames. Nevertheless, applying
SIFT detector to the transformed images in Fig. 8(b) shows
that many feature points can be detected [red boxes in
Fig. 8(b)]. In addition to the keypoint locations themselves,
SIFT provides a local descriptor [computed from the trans-
formed images in Fig. 8(b)] for each keypoint. Also, each
keypoint has a depth value computed from stereo matching
using the transformed images (from the left and right lens of
Bumblebee XB3 stereo camera). Next, for every neighboring
frame pair, we matched keypoint descriptors between them?,
and converted the matched keypoints into two 3D point clouds
using the depth values at each keypoint. We finally estimate
the best rotation and translation (in a Least Squares sense)
that transform these two 3D point clouds using the method
presented in [28]. Fig. 8(c) and (d) presents screenshots of the
3D model reconstructed using the estimated camera rotation
and translation parameters, which visually demonstrate that the
keypoint detection, description and the depth estimation using

2We use the demo program provided on the author’s website to detect and
match the keypoints.

(2 ()

Fig. 9. Evaluation using highly textured Clothl data set [27]. (a) Ground-
truth disparity map and (b) and (c) reference camera image and its transform,
respectively. (d) and (g) Disparity maps obtained by applying CSBP [18]
to the original input stereo images and transformed images, respectively.
(e) and (f) Error maps of (d) by setting the error threshold to one and half a
disparity, respectively. (h) and (i) Error maps of (g) by setting error threshold
to one and half a disparity, respectively. The black pixels in (e), (), (h),
and (i) are bad pixels. The gray pixels are border-occluded which are not
considered in this paper. Note that the reconstruction accuracy obtained using
our transform is very close to the accuracy obtained using image intensities
for highly textured images captured under highly controlled environments.
The percentages of bad/black pixels in (e) and (h) are 1.68% and 1.21%,
respectively, and the percentages of bad/black pixels in (f) and (i) are 22.4%
and 18.7%, respectively. Our transform achieves higher subpixel accuracy as
it is more robust to low-texture regions. Note: The reader is urged to view
these images [especially for (c)] at full size on a video display, for details
may be lost in hard copy.

the transformed images are accurate. Also, from the recon-
structed 3D model, we can calculate the distance between the
camera centers of the first and last frame which is 15.5 meter.
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(d) (e)

Fig. 10. Evaluation using Cloth3 and Clothl data set [27]. (a) and (b) Reference camera images and their transforms, respectively. (c) Ground-truth disparity
map and (d) and (e) disparity maps obtained by applying CSBP [18] to the original input stereo images and transformed images, respectively.

For quantitative evaluation, we manually measured the
distance between the positions where the first frame and the
last frame were capture. The measured distance is 15.3 meter,
which is close to the one estimated from images.

D. Evaluation Using Highly-Textured Middlebury Images

We have shown that our transform is more robust for
matching low-texture scenes, and in this section, we will
demonstrate that our transform is also robust to highly-textured
scenes and can achieve similar performance as intensity-
based method. Fig. 9 tested our method using the Clothl
data set which has the most textures among all Middlebury
images [27]. The disparity error maps obtained with one
disparity error are presented in Fig. 9(e) and (h), which show
that the reconstruction accuracy obtained using our transform
is very close to the accuracy obtained using image intensities
for highly-textured images captured under highly-controlled
environments. The percentages of bad/black pixels computed
from (e) and (h) are 1.68% and 1.21%. The disparity error
maps obtained with half a disparity error are presented in
Fig. 9(f) and (i). The percentages of bad/black pixels computed
from (f) and (i) are 22.4% and 18.7 %. Our transform achieves
higher sub-pixel accuracy as it is more robust to low-texture
regions. Note that the proposed transform does not require
locating of edges thus it is robust for textured images with
discontinuous edges as shown in Fig. 10.

IV. DISCUSSION

We have presented a new image transform - epipolar
distance transform - in this paper. The transform captures the
local image structure by computing the ratios of distances
along the epipolar lines, which produce variances inside low-
texture regions based on the region geometry. We theoreti-
cally prove that it is invariant to affine transformation. The
transformed image can be directly used with any stereo
algorithms for depth estimation. Our experiments on real
images demonstrate that our transform is more reliable
for matching low-texture regions, and meanwhile, robust to
highly-textured regions.

One problem remaining is how to estimate the optimal
value of og at each pixel location. Although our experiments
(Sec. III) demonstrate that the use of transformed images
from constant og can achieve higher reconstruction accuracy
for low-texture regions, investigation into the optimal og is
required. Large og maybe not robust to occlusions while
small og is invalid for large low-texture regions. Ideally, we
should have large og for low-texture regions and small og for
high-textured regions. We do not have a very neat algorithm
for automatically computing the optimal og at every pixel
location, but a simple fusion scheme turns out to be a good
solution. See Fig. 11, we compute the transformed image pair
using constant og according to Eqn. (5), and let them be TLF
and T,f (Fig. 11(c) and (e)). The disparity map obtained from
these two transformed images are presented in Fig. 11(g).

We then compute another transformed image pair using
the image segmentation result according to Eqn. (1), and let
them be 77 and T3 (Fig. 11(d) and (f)). In this paper, we
use the real-time segmentation method presented in [29]. The
segmentation method does not need to be very stable because
only large segments will be used and unreliable segments will
be detected and removed. The disparity map obtained from
these two transformed images are presented in Fig. 11(h).
As can be seen from Fig. 11(g) and (h), the two ways of
computing the image transform are complementary: TLF and
T}; are invalid for large low-textured regions (o is too small
to cover the whole region), while TLS and Tl*g are non-robust
on small regions.

Our goal is fusing TLF and TLS (TIIQc and T;f) for a more
reliable transform T; (Tg). The basic idea for fusion is that
for large and correct segments, 7y, = Tlf , otherwise 7, = TLF .
In this paper, a correct segment on the left image mean that
99% of the pixels inside this segment can be correctly mapped
to a single segment on the right image using the disparity map
computed from TLS and T1§ , S0 is its corresponding segment
on the right image. We set the threshold to 99% to make sure
that only very reliable segments will be used. We do not set
it to 100% because we want to make sure that it is robust to
noises around the edge of the segment. Also, fusion is only
required for large regions as color segmentation is non-robust
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(k)

Fig. 11. (a)—(1) Optimal og parameter.

for small regions. In this paper, we only consider segments at
least 1% of the image size. The fused transform is presented
in Fig. 11(1)—(j), and the disparity map obtained from these
transform images is presented in Fig. 11(k). Visual comparison
between Fig. 11(g), (h) and (k) shows that this simple fusion

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 10, OCTOBER 2012

scheme is a good substitution when the optimal o values are
hard to obtain at each pixel location.

Comparing with the other transforms, the proposed method
has two main advantages:

1) it works for untextured regions. Other transforms are
invalid for untextured regions like the black board in
Fig. 11 (a). Fig. 11 (1) is the disparity map obtained
using Census transform [30]. As can be seen, Census
transform fails because it measures the relative intensity
values (either one or zero) which are unfortunately all
zero for untextured regions.

2) its computational complexity is invariant to the disparity
searching range thus is very efficient for stereo matching.
Specifically, the speed of computing the transformed
image of a VGA-sized RGB image (640 x 480 x 3)
is about 9 frame per second on a MacBook Air laptop
computer with a 1.8GHz Core i7 processor.

However, same as the other transforms, the proposed transform
is invalid for occluded untextured regions.

APPENDIX
PROOF OF THEOREM 1 IN SECTION II-B

Proof : Let Pand Q be two endpoints of a straight line in R3,
and P; = [x{,y{], Q. = [x?, y?] be their projections on
camera C; and P = [xll:, yg], Qr = [x,?, yg] be their
projections on camera Cg as shown in Fig. 1(a). Assume that
the two cameras are calibrated and the captured stereo images
are rectified such that the epipolar lines are scanlines, and the
disparity values of pixel Py and Qp be D(Pr) and D(Qr),
respectively, then

v =Hr, @)
W=y ®)
xb =xP —D@Pp), 9)

xQ=x2- D@Qy). (10)

The angles of the straight lines P;Q; and PrQpg can then
be represented as

Q P
“fyL —Y
Op,q, = tan”' | S5 ). (an
Xp AL
Q P
_1f Yr —Y
T R (12)
AR T AR
Substitute Eqn. (7), (8), (9), (10) into Eqn. (12), we obtain
Q_ .p
O e = tan ™! [ — YLl (13)

xp —xP+ (D®PL) — D(Qr))

As can be seen from Eqn. (11) and (13), line P7Qy, has the
same direction as PRQpg only when
1) P;Qr and PrQpr are along the epipolar line:
P_ .
2) or the disparity values of pixel Py and Q, are the same:
D(Pr) - DQr) =0.
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