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Abstract 
This paper deals with the problem of determining motion and 

structure for a planar surface and the error estimation. Since the 
motion of a planar patch is a degenerate case for linear algorithms 
(algorithms that consist of solving mainly linear equations and give 
closed-form solution) for general surfaces, the motion of such a 
planar surface should be considered separately. First, a new algo- 
rithm is presented that gives a closed-form solution to motion 
parameters using monocular perspective images of the points on a 
planar surface. The algorithm is simpler and more reliable, in the 
precence of noise, than the existing ones. There are generally two 
solutions given two image frames. From three image frames the 
solution is generally unique. An approach is proposed to test 
whether the points are coplanar. 

Based on this algorithm, the errors in the motion parameters 
and surface structure can be estimated for each pair of images. 
Specifically, the standard deviation of the errors is calculated in 
terms of the variance of the errors in the image coordinates. The 
presented approach to estimating errors is applicable to least- 
squares, pseudo-inverse and eigenvalue eigenvector problems. 

1. INTRODUCTION 
If the object points are coplanar, i.e., they all lie in a plane in 

3D, the existing linear algorithms that gives closed-form solutions 
to motion and structure from two images fail to give unique solu- 
tion. An algorithm that is devoted to coplanar points is required to 
solve the problem. 

Tsai and Huang [Tsai83] develop a linear algorithm to solve 
the problem of motion of a planar patch using singular value 
decomposition. However their algorithm is primarily for the noise 
free images and solve for the exact solution. In the presence of 
noise, several problems have to be solved. First, A simple and 
stable algorithm is required in the presence of noise. Second, how 
can we check for the case of degeneracy or near-degeneracy? 
More generaly how can we assess the reliability of the solutions? 
Third, how can we test whether the points are coplanar, given the 
images of the points? In this paper, we address these problems. 

2. A TWO-VIEW MOTION ALGORITHM 
FOR A PLANAR PATCH 

Without loss of generality, we assume that the focal length is 
unity. Visible objects are always located in front of the image 
plane, i.e., z i l .  Geometry of the setup is shown in Fig. 1. 

We first introduce some notations. Matrices are denoted by 
capital italics. Vectors are denoted by bold fonts, either capital or 
small. A vector is sometimes regarded as a column matrix. Vector 
operations such as cross product ( x ) and matrix operations such 
as matrix multiplication are appled to three-dimensional vectors. 
Matrix operations precede vector operations. For a matrix A=[ai , ] ,  
IIA II denotes the Euclidean norm of the matrix. i.e., 

II[ai,]II= ca.. We deline a mapping [.I, from a three- 

Fig.1. Geometry of 

the camera model 

Consider a point P on the object which is visible at two time 
instants. The following notation is used for the spatial vectors and 
the image vectors (see Fig. 1). 

x = ( x ,  y ,  Z )  
x = ( U .  v ,  1) = (X, 1, 1) 

spatial vector of P at time t l  
image vector of P at time tl 

where (U, v )  are the image coordinates of of the point. The 
corresponding vectors at t 2  are primed. Let R and T be the rotation 
matrix and the translational vector, respectively. The spatial points 
at the two time instants are related by 

z z  

X I =  Rx+T (2.4) 

N'x=l (2.8) 

where N is the normal vector of the plane and the z component of 
N is always positive, since the plane is located at the space z>O. 
By this representation, we exclude the cases where the plane goes 
through the origin, since in that case the plane is invisible to the 
camera (the image of the plane is a straight line). 

Assume the plane that the points lie in at time t 1  is represented by 

Z' 

II T II ' 
We want to determine the relative depth 2 and - 

II T II 
Equivalently we determine the relative normals instead 

fi= II T II NI, (2.11) 

From the relative normal we can determine the relative depth. 
The magnitude of the translational vector ( II T II ) can not be 

determined by monocular vision and the dcpths of the object points 
( zi and z ) can only determined up to a scale factor II T 1I-l. 

Due to space limitation we shall just state the algorithm and 
results without presenting proofs. 
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Algorithm 
(i) Solve for intermediate parameter matrix E =R +TN' 

Let Xi=(ui,vi,l), Xi=(ui ,  v i .  1). i=1,2, ... ,n, be the 
corresponding image vectors of n (n24) points. Let A be a 2n by 
9 matrix such that 

, , I  

A =  

XI 0 -u;x; 

0 x; -v;x; 
x; 0 -u;x; 
0 x; -v;x; 
. . 

. .  

. .  

x: 0 -u;x: 
0 x,: -v,x: 

h l  h2 h3 

E, = h4 h5 h6 
h7 hx h9 

If 

(Ag.4) 

E t  -E. The summation in (Ag.7) is over several values of i 's to 
reduce the sensitivity to noise (usually three or four values of i 
will suffice). 
(ii) Solve for R , T and R from E 

We have 

H'E'EH = diag(yIIy2. 1, y31y2) 4 diag(hl, &, 13) (Ag.8) 
Case ( I ) .  hl<l<h3 (iff Tx(R N)#O): 

There exist two set of solutions that give the same images. 
Let 

The j r s t  set of solutions: Let 

VI = ahl+ph3, V2 = h2. (Ag. 10) 
Solve for R such that 

2 

i-1 
C IIRVi-EVi 1 1 2  = min, subject to: R is a rotation matrix, 

The solution of (Ag.11) is as follows: (Ag.11) 

Let Wi=EVi, i=1,2. Define a 4 by 4 matrix B by 

2 
B = CBfB; 

i=l 

(Ag.13) 

Let q=(qo, q l ,  q2. q3)  be the unit eigenvector of B associated with 
the smallest eigenvalue. The solution of rotation matrix R in 
(Ag.11) is 

where 

I 4 0' +4 ? -4 2' -4 3" 2(4 14 2-4 043) 2(4 143+4 0 4 2 )  

R = 2(q~41+4O43) q0'-q?+q2'-q? 2(q2q33f l l )  

2(4342+4 04 1) 4 0'-4 1-4 2' +4 3' 2(4 34 1-4 04 2) 

IQ = VIXV2. ( ~ g . 1 5 )  

T = ER-RR (Ag. 16) 

(Ag. 17) 
T=- T 

= IITIIR. (Ag. 18) 

i 
Let 

If the third components of A is negative, A+ -A. Let 

ILT II 

The second set of solutions: Change the sign of the p we got in 
(Ag.9) (i.e. P t  -p) and keep the a unchanged. (Ag.10)-(Ag.18) 
give the second set of solutions. 
Care (2). h,=l<h3 (iff TIIR N and 2R N.T > - II T II II N II ') : 

and p=O. 
Case (3). h1<l=h3 (iff TIIR N and 2RN.T < - II T II II N II ') : 

and p=1. 

(Ag.9)-(Ag.18) give the unique solution. In this case -1 

(Ag.9)-(Ag.18) give the unique solution. In this case CG=O 

Case (4). h,=l=h3 (iff TURN and 2R N.T = - II T II * II N II ') : 
If det(E)>O, report T=O. R=E. 
det(E)<O happens only if the back side of the plane faces the 

camera after motion. This can not happen for a opaque plane in 
reality. If the plane is transparent and the points on the plane are 
visible on both sides, this case can happen. If so, the solutions are 
infinitely many. For any unit &', the following is a solution 

can not be determined. 

R'E (13-2R-p) ( ~ g . 1 9 )  
T = -2RN. (Ag.20) 

(Ag.17) and (Ag.18) give t and N, respectively. 
Note: The necessary and sufficient conditions for each case in 

step (ii) to occur are for the noise-free images. With noise, gen- 
eraly only Case (1) could happen. following way. Without noise, 
if the rank of A in (Ag.1) is more than 8 the points are not 
coplanar. In the presence of noise, if 

hl > E, (Ag.22) 
b 

where epsilon is a threshold based on the error analysis of h, dis- 
cussed in Section 3, the points are not coplanar. 

We now present some uniqueness results. 
We can determine h (and consequently E )  up to a scale fac- 

tor from (Ag. 3) if and only if rank(A)=8. 
Theorem 1. rank(A)=8 if and only if there exist a set of four 

points such that the images of any three points in this set do not lie 

U in a straight line either at time t I  or t 2  
Corollary. rank(A )=8 if and only if 
1) there exist a set of four points in the object plane such that any 

three points in this set do not lie in any straight line in the object 
plane and 
2) if the object plane is extended, it does not go through the focal 
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0 point of the camera either at time t l  or time t,. 
Theorem 2. Let the eigenvalues of E ' E  be hl, &, h3, with 

hl<L+& Then 
1) E'E has multiple eigenvalues iff TIIR N 
2 )  hl=l<h3 iff TIIR N and 2R N.T>- II T II II N II 
3) hl<l=hg iff T//RN and 2R N.T<- 11 T I1 II N 11' 

0 4 )  hl=l=h3 iff TIIR N and 2R N.T=- II T 1 1 2  II N II '. 
Theorem 3. Assume the eigenvalues of E'E are distinct, there 

are exactly two sets of solutions for R , 

R +"%'=E (2.40) 

with the constraints that R is a rotation matrix and 9 is a unit vec- 

0 
tor. 

In fact, generally there exist two planes (under different 
motions) that give the same images at the two time instants. 
Theorem 4. If 

and R in the equation 

Ra+?,R; = Rb+?bRi 

and r?r;X > 0, Rr,X > 0 ho? for all the image vectors X ,  then 
there exist two planes with N, and Rb as normals, respectively, 
and there exist points in the plane with positive z components at 
time t l  such that if they undergo the two motions corresponding 
to R, , qa and Rb , T b ,  respectively, they produce the same images 

0 at the two time instants. 
Fortunately, if we have three image frames taken at three 

different time instants, in general we can uniquely determine the 
motion parameters and the relative normal of the object plane. 
Assume we have three image frames taken at time t l ,  t 2  and t3, 
respectively. Consider the two motions: one from t 2  to t 1  and the 
other from t ,  to t3. The true solution sets for the two motions 
should have the same answer for the unit normal fi of the object 
plane at time t,. By the following theorem, the false solutions 
generally do not have the same answer for the unit normal of the 
object plane. 
Theorem 5. Let E and E' correspond to two motions and 

assume there exist rotation matrices R, and Rb , unit vectors A, 
and &b such that 

E = Ra+TaRi = R b + T b f i L  

Let H be an orthonormal matrix with det(H)=l such that 

H'E'EH = diag(hl, 1, &) 
with hl<l<h3. 

tions of the unit normal are the same for E and E': 
Then, the necessary and sufficient condition for the two solu- 

E' = R,+T',(%,)' = R>+Ti(#b)' 

is that the ambiguity condition is satisfied, i .e. ,  there exist an ortho- 
normal matrix Q and positive number k such that 

E'=Q d i a g ( d m ,  1, d m ) H '  

with l-k(l-hl)>O or 

E '=Q diag ( d m ,  1, d-)H' 

0 
with l-k(h3-1)20. 

For checking the condition that all the object points are 
coplanar, we have the following theorem. 
Theorem 6. The necessary and sufficient condition for the rank of 

A in (Ag.1) to be less than 9 is that there exists a 3 by 3 nonzero 
matrix F such that all the points lie in the intersection of two qua- 
dratic surfaces before motion: 

(X-O?xF x 

where 0'= -R'T. 0 
In summary, we have presented close-form solutions of the 

problem. Given 4 or more point correspondences, the algorithm 
first solves for the intermediate parameters E .  Then the motion 
parameters and the relative normal of the plane are obtained from 
E .  The algorithm uses weighted least-squares to combat noise. 

3. ERROR ESTIMATION 
Formally, let the image coordinates of all the points be 

represented by I ,  and the errors in the image coordinates of these 
points be represented by a random variable E. The error e in the 
estimated motion parameters is > function of I and E. Denoting this 
function by f , informally we can write: 

e = f ( I . ,  E) (3.1) 
Our goal is to estimate the error e given the images I .  However 
we don't know E .  If we can estimate the standard deviation of e 
(with E as a random variable) given the noise-corrupted image I ,  
we can use it to estimate the errors of the estimates. The images I 
corresponding to a degenerate or nearly degenerate spatial 
configuration should give large estimates of e and that correspond- 
ing to a stable configuration should give small estimates. 

We assume the noises in the image coordinates have zero 
mean, known variance and are pairwise uncomlated. 

For the sake of conciseness, we use the following notation: 
The perturbation matrix of A is denoted by A A .  The noise- 
corrupted version of A is denoted by A (E). Thus we have 

A(E) = A +AA. (3.2) 
Similarly for vectors, we use 6 with corresponding subscript to 
denote the noise vectors: 

X(E)  = X+6,. (3.3) 
with the Corresponding subscript is used to denote the auto 

covariance matrix of the noise vector (if only the first order errors 
are considered, the means of the errors are zero): 

r, = E(6,6;) (3.4) 
where E denotes expectation. A matrix A = [ A l  A,  ... A,,] is asso- 
ciated with a corresponding vector A with 

A = ( A i ,  A:, ... AA)' (3.5) 
Similarly rA denotes the corresponding covariance matrix of the 
vector A associated with matrix A. 6, denotes the perturbation 
vector associated with the perturbation matrix AA.  

Assuming two variables a and b with small errors: 

a(&) =a+&,, b(E) = b+6b, (3.6) 

we have a(E)b(E) = ab+Sab+a6b+S,6b aab+S, ,  (3.7) 
The errors in a (E)b ( E )  is 

6,b = 6,b+U6b+6,6b G 6,b+a6b.  (3.8) 
In the last approximation we keep the linear terms (first order per- 
turbation) of the error and ignore the higher order terms. Later in 
this paper we use the sign for the equations that are equal in the 
linear terms (= for the approximate equality in the usual sense). 

The algorithm presented involves computation of the eigen- 
vectors of a symmetrical matrix. With small perturbation in the 
matrix, we need to known the corresponding perturbation in its 
eigenvalues and eigenvectors. We have the following theorem. 
Theorem 7. Let A =[ai, I be an n by n symmetrical matrix and 14 
be an orthonormal matrix such that 
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H-'AH = diag(hl, h2, ... , h,) (3.9) 

Let the eigenvalues be ordered according to increasing magnitudes. 
Without loss of generality, consider the eigenvalue hi. Assuming 
hi is a simple eigenvalue. 

hi < h* S h3 5 '.' S h,. (3.10) 

Let 

H = [hi h2 ''' h,] (3.11) 

and X be an eigenvector of A associated with hi. X is then a vec- 
tor in span(hl) (the linear space spanned by hi). Let X(E) be the 
eigenvector of the perturbed matrix A (&)=A +AA associated with the 
perturbed eigenvalue hi(&). X(E) can be written as 

X(E) =X+& (3.12) 

with &,E span(h2, h3, '.. , hn). Letting E be the maximum abso- 
lute value of the entries in AA=[8ajj], we have 

AAA= EB (3.13) 

where B=[bij], with bi,=6 /E. Therefore Ibi, ISl, 1SiSn.lSjSn. 
Then for sufficiently small E, the perturbation of hi can be 
expressed by a convergent series in E: 

8h, XI(&) - hl=p l&+p2E2+p3E3+ "' (3.14) 

and the perturbation vector 6, can be expressed by a convergent 
vector series in the space span(hz, h3, ... , h,). In other words, 
letting H2=[h2, h3, ... , h,], then for sufficiently small positive E, 
there exist (n-1)-dimensional vectors g,, g2, g3, ..' such that 

6, = EH2gl+&2H2g2+~3H2g3+ .'. (3.15) 

a,, 

The liner term (in E) in (3.14) is given by 

p 1& = hiAA hi (3.16) 

The linear term (in E) in (3.15) is given'by 

where 
E H , ~ ,  = H m 1 A A X  (3.17) 

A = diag(0, (hi-hz)-l, ... , (hl-h,)-') (3.18) 

That is, suppressing the second and higher order terms (i.e., con- 
sidering first order perturbation ), for the eigenvalue :e have 

81, E hiAA hi  (3.19) 

and for the eigenvector: 

6, E HAH'A, ,~  (3.20) 
0 

A similar result holds for other simple eigenvalues and eigen- 
vectors. 

From the theorem if the perturbation matrix AA can be 
estimated, the corresponding perturbation in the eigenvalue and the 
eigenvectors of A can be estimated (by first order perturbation). 
The steps (i), and (ii) in the algorithm are to find the eigenvalues 
and the eigenvectors of the corresponding matrices. The problem 
now is to estimate the perturbation of the corresponding matrices 
from the perturbation in the image coordinates. Again we use the 
first order approximation to estimate these perturbations in the 
matrices. We will not include detailed derivations here because of 
space limitation. Based on (3.8) and the algorithm, it is not 
difficult to derive the first order perturbation of A'A : AA,A. From 
rheorem 7, we have the first order perturbation of h: 

6, HAH'AA,,,h 

(3.28) 

We can relate Finally we get the perturbation 
vector of E ,  6,. For the perturbation vectors of R I  T and N we 
will get the linear expression in terms of SE.  The corresponding 
covariance matrix then is obtained. For example, if we get D+ 
such that we have then the covariance matrix 
r+)+rEDk. Similarly, the covariance matrix of q then R ,  N are 
derived using the results of Theorem 7. 

We can estimate the Euclidean norm of the perturbation vec- 
tor and the perturbation matrix by 

in (3.28) to 

Similarly we can estimate perturbations of relative normal r?r. 
4. SIMULATIONS 

In the simulation the object feature points are generated ran- 
domly. The image coordinates of the points are quantized accord- 
ing to the resolution of the camera. These quantization errors result 
in the errors in the motion parameters and the relative depths calcu- 
lated by the algorithm. Other additional random emrS such as 
comer detection e m r s  can be simulated by a reduced image resolu- 
tion. All the e m r s  of the estimated R ,  and r?r shown in the 
figures are the relative errors defined by the Euclidean norm of the 
error vector (or matrix) divided by the Euclidean norm of the origi- 
nal vector (or matrix). Since no confusion may arise, we may call 
relative errors simply errors. 

Different motion parameters with different image resolutions 
are simulated. The error is reduced roughly by a factor of two 
when the image resolution is doubled. Fig2 shows the results of a 
typical sequence of trials with 5 point correspondences. The image 
resolution is 512 by 512. The results in here use an object normal 
(0, 0, 1) at time f l .  which is a typical unstable case (not discussed 
here), to show the performance of the motion estimation algorithm. 
Rotation is about axis (1, 1, 1) by 2.86'. The translation is 
(-0.176, 0.176, -1.995). In Fig.2, 20 random trials (randomly 
generated sets of points on the plane) are shown in the order of 
their generation. As can be seen from the figure, the estimated 
errors (dashed lines) are strongly correlated with the actual errors 
(solid lines). The estimated errors are especially important to 
detect a relatively unreliable configuration (trial No. 7 in Fig. 2(a)). 

The average performance of the error estimation as well as 
that of the motion estimation algorithm is presented in Fig. 3. The 
solid lines show the relative errors observed over 20 random trials 
(randomly generated sets of points, with the same motion). The 
dot-dashed lines indicate the mean deviation (average of the abso- 
lute difference between the estimated error and the actual emr) .  
The dashed lines give the bias (difference between the mean of the 
estimated errors and the mean of the actual errors) over these 20 
trials. 

5. CONCLUSIONS 
A new algorithm has been presented which gives a closed- 

form solution for the motion parameters and the relative normal of 
the plane. It uses least-squares techniques to give a stable solution 
in the presence of noise. For more robust estimation, a two step 
approach proposed by Weng, Huang and Ahuja [Weng88] can be 
used. Namely, the solution of this algorithm can be used as an ini- 
tial guess for the iterative method that improves the solution based 
on optimal estimation. All the cases of the solution have been 
investigated and uniqueness has been proved. An approach is 
presented that test whether the points are coplanar. The necessary 
and sufficient condition for such a test to fail has been derived. 

The error estimation algorithm is based on first order pertur- 
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bation. Thc simulation results show a strong correlation bctwcen 
the estimated and the actual errors. 
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Fig.2. Actual Relative Error (solid lines) and 
Estimated Relative Error (dashed lines) of (a): 
E ;  (b): R ; (c): T (d): N. The horizontal index 
is the order of trials 

Fig.3. Mean Actual Relative Errors (solid 
lines), Deviation of Error Estimation (dot- 
dashed lines) and Bias of Error Estimation 
(dashed lines) for 20 trials versus Number of 
Point Correspondences. (a): E ,  (b): R ,  (c): T, 
(d): N 
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