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Abstract 
This paper first p m t s  an image matching algorithm that 

uses multiple anributes associated with a pixel to yield a generally 
overdetermined system of constraints, taking into account possible 
structural discontinuities and occlusions. Both topdown and 
bottom-up data flows are used in multi-resolution computational 
structure. The matching algorithm computes dense displacement 
fields and the associated occlusion maps. The motion and structure 
parameters are estimated through optimal estimation (e.g., maximal 
liielihood) using the solution of a linear algorithm as an initial 
guess. To investigate the intrinsic stability of the problem in the 
presence of noise, a theoretical lower bound on e m r  variance of 
the estimates, Cramtr-Rao bound, is determined for motion param- 
eters. Experiments showed that the performance of our algorithm 
has essentially reached the bound. In addition, the bounds show 
that, intrinsically, motion estimation from two perspective views is 
a fairly stable problem if the image disparities are rclatively large, 
but is unstable if the disparities are very small (as required by opti- 
cal flow approaches). 

1 INTRODUCTION 
Estimating motion and structure parameters from image 

sequences has been a very active research topic in computer vision. 
Difficulties have been persistent in two basic problems: (1) Reli- 
able image matching - establishing correspondences between 
images, in the form of discrete feature (or feature set) matches, dis- 
placement fields or optical flows. The matching algorithms have to 
deal with a wide range of real world scenes with both textured and 
uniform surfaces, depth discontinuities and occlusions. (2) Reliable 
computation of motion and structure parameters from the 
correspondences. (No approaches have been proposed so far that 
truly do not need any correspondences.) Since the early linear 
algorithms ([Long81], [Tsai84] from point correspondences and 
[Zhua84] from optical flow), the stability of estimating motion 
from image sequences has been controversial. 

This paper reports our recent advances in attacking these two 
problems. We will first present our approach to image matching. 
To be applicable to complex real world scenes, the matching algo- 
rithm is designed to deal with: (1) both textured and uniform sur- 
faces, (2) both small and large image disparities, (3) discontinuities 
in depth and the displacement fields and (4) occlusions. Bottom-up 
data flow is used in addition to topdown data flow in multi- 
resolution structure to improve the accuracy of the results. Then, 
we briefly discuss an algorithm that computes the motion parame- 
ters from the computed point correspondences, assuming the scene 
is a rigid. Finally, we determine the theoretical e m r  bounds for the 
motion parameters. which enable us to evaluate the performane of 
the algorithm and the intrinsic stability of the problem. The 

bounds also show the intrinsic limitation of optical flow based 
approaches. 

The next section presents our matching algorithm. Section 3 
deals with estimating motion and structure from the computed point 
correspondences. Section 4 discusses the theoretical performance 
bounds. The experimental results are presented in Section 5.  Sec- 
tion 6 presents concluding remarks. 

2 IMAGE MATCHING 

2.1 A Framework of Image Matching 

A monochrome digital image consists of a two-dimensional 
array of intensity values. What we perceive from such an image is 
not just individual intensity values, but more importantiy, the spa- 
tial mangement or pattems of those values. Intensity, edgeness and 
comemess are. examples of the attributes that describe the local 
intensity pattem around a pixel. As we will see, the criteria that the 
matched points should have the similar attributes generally provide 
overdetermination in matching process. Such an overdetermination 
is very important for reliably matching complicated real world 
scenes. 

Regions with uniform intensity often result from the same 
continuous surface. This suggests that a uniform region will have 
a uniform displacement field. We call this intra-regional smoth- 
ness crirerion. The objective of this criterion is to till in displace- 
ment information in those areas where no significant intensity vari- 
ation occurs. We cannot generally assume smoothness across 
different regions. 

Occlusion occurs when a pan of scene visible in one image is 
occluded in the other by the scene itself, or a part of the scene near 
the image boundary moves out of field of view in the other image. 
If occlusion regions are not detected, they may be incorrectly 
matched b nearby regions, interfering with the correct matching of 
these regions. To identify occlusion regions, we define two occlu- 
sion maps, occlusion map 1 showing parts of image 1 not visible 
in image 2. and similarly occlusion map 2 for image 2 (in Figure 
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Figure 1. Determining occlusion maps (see text). 
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1. black areas denote occlusion regions). We first determine the 
displacement field from image 2 to image 1, without occlusion 
information. The objective of this matching process is to compute 
occlusion map 1. This matching may “jam” the occluded parts 
of image 2 (e.g., the right-most section) into parts of image 1 (e.g., 
the right-most section). This generally will not affect the computa- 
tion of occlusion map 1. Those areas in image 1 that have not been 
matched (in Figure 1, no m w s  pointing to them) are occluded in 
image 2 and are marked in occlusion map 1. Once occlusion map 1 
is obtained, we then compute the displacement field from image 1 
to image 2 except for the occluded regions of image 1. The results 
of this step determine occlusion map 2. 

Large disparities are crucial for stability of motion and struc- 
ture estimation. However, to find matches with large disparities 
requires that we know approximate locations of the matches, since 
otherwise multiple matches may be found. One solution to this 
problem is image blumng to lilter out high spatial frequency com- 
ponents. Because blurred intensity image has very few features left, 
and their locations are unreliable, we blur the original edgeness and 
comemess images (called attribute images here) Since the comer- 
ness measure has a sign, nearby positive and negative comers may 
be blurred to give almost zero values, which is the same as the 
result of blurring an area without comers. We therefore separate 
positive and negative comers into two attribute images. Blumng is 
done for positive and negative images separately. Such blurred 
edgeness and comemess images are not directly related to the 
blurred intensity images. They are related to the strength and fre- 
quency of occurrence of the corresponding features, or to the tex- 
ture content of the original images. While texture is lost in inten- 
sity images at coarse levels, the blurred edgeness and comemess 
images retain a representation of texture, which is used for coarse 
matching. The intraregional smoothness constraint at coarse levels 
applys to blurred uniform texture regions (with averaged intensity). 
When the computation proceeds to finer levels, the sharper edge- 
ness and comemess measures lead to more accurate matching. 
Therefore, in general the algorithm applys to both textured or non- 
textured surfaces. 

At a coarse resolution, the displacement field only needs to be 
computed along a coarse grid, since the displacement computed at 
a coarse resolution is not accurate, a low sampling rate suffices. In 
the approach described in this paper, the coarse displacement field 
is projected to the next finer level (copied to the four correspond- 
ing grid points) where it is refined. Such a refinement continues 
down to finer levels successively until we get the final results at 
the original resolution. The computational structure and data flow 
used in this process are shown in Figure 2. 

2.2 Matching Algorithm 

Now, we present the matching algorithm we have developed 
to implement the approach outlined in the previous section. Let the 
position of a point in an image be denoted by u=(u, v ) .  Let the 
intensity of the first image be denoted by i(u) and that of the 
second image by i’(u). The objective of the algorithm is to com- 
pute displacement field d(u) such that i(u) and i’(u+d) are the pro- 
jections of the same scene point in the two images. 

In our implementation, edgeness at a point is defined by mag- 
nitude of the gradient at the point. For comemess, we consider 
positive and negative comemess separately. Roughly speaking, the 
comemess at a point U measures the changes of the direction of 
gradient at two nearby points. weighted by the gradient at the 
point. The closer the change of angle is to x/2, the higher the posi- 
tive comemess measure. For more detailed discussion of the 
comemess, see [Weng88b]. 
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Figure 2. Computational structure and data flow 

We separately consider the smoothness of the orientation of 
displacement vectors to emphasize its role in matching. The reason 
is that (1) the orientation of the displacement vectors projected 
from a c o m e  level is generally more reliable than their magnitude, 
and (2) at a fine level, the local attribute gradient perpendicular to 
the displacement vector can easily lead the displacement vector in a 
wrong direction if orientational smoothness is not emphasized. 

Clearly. smoothness constraint should be enforced only over 
points whose displacements are related, e.g., over adjacent points 
from the same surface. To selectively apply the smoothness con- 
straint to two points, we use the similarity of intensities and the 
similarity of available displacement vector estimates at the two 
points. Wcrepresent the displacement vector filed in the vicinity 
of a point d(h) by a vector d ( U .  It is intended to approximate 
the displacement filed within the region that q, belongs to. In the 
implementation, 4 is computed as: 

C, 
O C I ! W o l l U  

w (i (uFi (U. d(u)-d(uo)) d(u) 

where OcIIu-u~Ilu denotes a region around uo, an& w(., .) 
denotes the weight assigned to the displacement vector at a neigh- 
boring point U. In digital implementation, (U) are adjacent grid 
points (8annectivity). The weight is a function of intensity 
difference i (U)-i (a, and displacement vector difference II wo II . 
Let qi=l i(u)-i(q,)l and ?pd(u)-d(uo). A definition of weight is 
as follows: 

where E is a small positive number to reduce the effects of noise in 
intensity and prevent denominator from becamhg 0, and c is a 
normalization constant which makes the sum of weights equal to 1: 



E 
c k l l ~ n e  

w (i (44 (Ur d(u)-d(uo)&l 

h (2.1). the tern llqdllZ shwld be replaced by ZecO for the first 
half number of iterations at each level, since the displacement vec- 
tors are not reliable when they are projected from a coarser level. 
Another definition of the weighs is 

If qi and I q d  I are large (determined dynamically at different lev- 
els), w(qi,q,,) is equal to zero. The goal is to reduce the weight if 
the intensity difference is large (across different regions) and dis- 
placement vectors are quite different (field discontinuity occurs). 

Thus, the weight is automatically determined based on inten- 
sity difference and displacement difference. The smoothness con- 
straint imposes similarity of d(uo) and a(u0). The larger the 
difference in intensity, the more easily the fields for two adjacent 
regions can differ. If two regions get different displacements after 
some iterations, the quadratic term llqd112 results in very small 
weight to reduce their interactions. On the other hand, the dis- 
placement vectors in the same region will be similar since the 
corresponding weight is large. Since intensity difference is usually 
much larger than the magnitude of displacement difference, I qi I is 
not squared in (2.1) (unlike qd), otherwise the weight will be too 
sensitive to small changes in intensity. The weights, thus, implicitly 
take into account discontinuities. The registered value &U,) allows 
us to perform matching using uniform numerical optimization 
despite the presence of discontinuities. "his is discused below. 

Any given displacement vector field leads to measures of 
similarity, or residual errors, between the attributes of estimated 
corresponding points. The residuals for various attributes are: 

(1). Residual of intensity: 

r, (U, d)=i '(u+d)-i(u) 

(2). Residual of edgeness: 

re (U, d)=e '(u+d)-e (U) 

(3) Residual of positive comemess: 

rp (U, d)=p'(u+d)-p (U) 

(4) Residual of negative comemess: 

r,, (U, d)=n '(u+d)-n (U) 

( 5 )  Residual of orientation smoothness: 

r, (U, d)= II d(u)xa(u) II / II&) II 

(6) Residual of displacement smoothness: 

rd (U, d)= 11 d(u)--(u) 11 

We want to minimize the weighted some of squares of residuals: 

C{r,?u. d)+h, rz(u, d)+h,r;(u, d) 

+h,, r,'(u, d)+h, r:(u, d)+h,r:(u, d)) = min (2.2) 
where k,. k,,. h,,, h, and h d  are weighting parameters that are 
dynamically adjusted at different resolutions. Let 

r i! ( r , .  r e ,  r,,. r,,, r,, rdT 
With previous estimate of the displacement vector d (initially d is a 
zero vector at the highest level), we need to find increment sd. 
Expanding rb. d+sd) at s,=O, we have (suppressing variable U for 

d 

conciseness): 

where 

where (&, &f=& the partial derivative - ai ' denotes the p d a l  

derivative of i ' (u ,  v) with respect to U at point U+& and so on. 
Let 

au 

We want to find 6, such that the sum of squared residuals in (2.2) 
at the point is minimized. Neglecting high order terms and minim- 
izing II A(r+A s,,) II , from (2.3) we get the formula for updating d: 

The partial derivatives in the entries of A are computed by a 
finite difference method. Let s denote the distance between two 
adjacent points on a grid, along which finite deference of the attri- 
butes is be computed, assuming a unit spacing between adjacent 
pixels. Then s should vary with the resolution. In addition, s 
should also also vary with successive iterations within a resolution 
level. A large spacing is necessary for a rough displacement esti- 
mate when iterations start at a level. As iterations progress, the 
accuracy of the displacement field increases and s should be 
reduced to measure local structure more accurately. The spacing s 
of a 3 by 3 difference mask at level 1 is equal to 2' for the first 
one-half number of iterations at level I ,  and is reduced by a factor 
of 2 for the second half, except for 1 d. At the original resolution 
( I d ) ,  the spacing is always equal to 1, since no smaller spacing is 
available on pixel grid. 

The blurring of level 1+1 is done using the Corresponding 
attribute image at level I :  For each pixel at level 1+1, its value is 
equal to the sum of the value of four pixels at level 1 divided by 
m ( m 4  for intensity, m=3 for edgeness and m=2 for comemess). 
The locations of these four pixels are such that each is centered at 
a quadrant of a square of s xs . s is equal to 2' at level I .  There- 
fore, the blurred intensity image at level 1 is equal to the average 
over all pixels in a square of size SXT. To enhance sparse edges 
and comers, m is smaller than 4 for edgeness and comemess. So, 
the results can be larger than 255. If this occurs, the resulting 
value is limited to 255. This multilevel recursive normalization is 
useful for the algorithm to adapt to different scenes. Some details 
of the matching algorithm that are not covered here were presented 
in [WengBBb]. 

2.3 Bottom-Up and Top-Down Refinements 

The computational structure illustrated in Figure 2 can be 
extended further to improve the displacement field. The data flow 
characterized by the projections shown in Figure 2 is of a top- 
down fashion in the sense that the displacement fields are com- 
puted from high levels (coarser resolution) down to low levels. At 
high levels, coarse estimates of the field are computed to scale 
down the possible matching area. At low levels, details of the dis- 
placement fields are computed. However, at a coarse level, 
different initial estimates may result in different results. The more 
accurate the initial estimate is, generally the more accurate the final 
result will be. Since the result of a lower level is generally more 
accurate than that of a higher level, the result of a lower level can 
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be used as an initial estimate for a higher level. We may also 
observe the problem in a slightly different way: The result of a 
coarse level needs to be verified and refined at low level when 
more detailed image is available. Such refined local field needs to 
be propagated to wider areas. One computationally efficient way 
to do this is to go up to the higher levels where a coarse grid is 
available. These considerations motivate the bottom-up scheme - 
the result of a lower level is projected up to a higher level as an 
initial estimate. The upward projection is done as follows: The ini- 
tial value of the grid point at a higher level is the average of the 
values of the corresponding grid points at the lower level. Then 
another pass of computation is performed from the higher level to 
the lower level, at which a refined field is obtained. A multiple of 
such a bottom-up and topdown structure can be embedded in the 
entire algorithm. Figure 3 shows an example of the computational 
structure which we implemented. Upward projections cross two 
levels to make significant refinement. The initial estimate of each 
level (levels 5, 4, 3, 2 in Figure 3) is refined by the next two lower 
levels until a level (level 2) is reached whose refinement needs a 
level below the lowest level (0 in Figure 3). Such a refinement of 
initial estimate results in visible improvements for most scenes. 

3 Optimal Motion and Structure Estimation 
from Point Correspondences 

In reality, given the computed point correspondences (or dis- 
placement field) between two images, the observed 2-D image 
coordinate vectors ui of image 1 and of image 2 are noise cor- 
rupted versions of the hue image vectors. Therefore (ui, U:) is the 
observed value of a pair of random vectors (Ui, U’i). With n 
point correspondences over two time instants. we add subscripts i 
to denote the i-th point and the subscript-free letters denote the 
general collection of vectors: 

Let the conditional density of U conditioned on M==m and X=x be 
p UIM, x(u I m, x). The maximum likelihood estimates of motion 
parameters, m*, and scene structure x* are such that the condi- 
tional density p u , ~ ,  ~ ( u l  m, x) reaches the maximum. To find a 
maximum likelihood estimate, we need to know the conditional 
density p U I M  x(u I m, x). Gaussian distribution is commonly used 
for modeling noise. We assume that the conditional distributions, 
given motion parameters and scene structure, are independent 
between different points: 

level 5 

level 4 

level 3 

level 2 

level 1 

level 0 

Figure 3 Bot”-up and topdown refinement 

n 

I =1 
pUIM.X(uIm,x)= pi(uiIm,x)p’l(u’lIm,x) (3.1) 

where ui is the observed projection of the 3-D feature point i in 
the first image, is that of i in the second image, pi is the 
Gaussian density with mean equal to the exact projected location of 
the given feature point, hi(m,x), in the first image. p’i is the 
Gaussian density for the second images. The maximum likelihood 
estimator leads to minimizing 

n 

i=l  
x( IIui-hi(m,x)ii2+IIu’i-h’i(m,x)IIZ ) (3.2) 

We define the standard image plane error, or simply Image e‘rrcrr 
as 

(3.3) [ ( II ui-hi (m,x) II ’+ II di-h: (m,x) l12)/2n ] 1/2 
i= l  

Or, let the computed projections be denoted by a vector h: 

h(m) P (h(m);, Ollm),>T, h(m)I, 01lm)d’. ... , h(m):. ( h W ,  yf 
where we omitted x in h(m, x) since projection h can be deter- 
mined from m only, with x computed from m ([Weng88a]). Then, 
for white Gaussian noise, we want to find m such that IIh(m)-uII 
is minimized. 

In practice, the distribution of noise is usually unknown. 
However, it can be proved that minimizing (3.2) leads to a linear 
minimum variance estimator for a locally linearized system. In gen- 
eral, the objective function of (3.2) gives very good performance 
for general noise (a series of related results will appear in a forth- 
coming paper). 

The optimization equation (3.2) is nonlinear in terms of unk- 
nown parameters. To deal with local minima problem and improve 
computational efficiency, the result of a linear algorithm is used as 
an initial guess for nonlinear optimization. The computational 
aspects of optimization was presented in ([Weng88a]). 

4 Performance Bounds 
We need to estimate the parameter vector m from the noise 

corrupted version of observation vector x. Due to the random 
noise in the observation, we cannot determine the parameter vector 
m exactly. In other words, we do not have the information to 
determine the exact solution. The estimates we obtained always 
have errors. A fundamental question to ask is that what kind the 
best accuracy one can possibly achieve from the noise corrupted 
data, independent of the methods used. Since the errors are ran- 
dom, such accuracy is meaningful only in the sense of statistics. 
Two commonly used measurements of the quality of an estimator 
are bias and error variance. For error vectors, the corresponding 
measurements are the bias vector and the covariance matrix of the 
error vectors. There exist theoretical bounds for the covariance 
matrix of any estimator. Cram&-Rao bound is one of them. 

Cram&-Rao bound [Cram461 [Rao73]. Suppose m is a parame- 
ter of probability density p ( z ,  m). 191 is an estimator of m based 
on measurement z with E&=b(m) (E denotes expectation). Let 

F =E& (4.1) 

matrix F is called Fisher information matrix. Denote 

B = Y  

Then 

(4.2) 
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E(rf+b(m))(+b(m)f 2 BFtB’ (4.3) 

where the inequality for matrices means that the difference of two 
sides is positive semidefinite, and Ft is the pseudo-inverse of F . 
The equality holds if and only if 

almost everywhere. 

and [Zack71]. 
The proof of the Cram&-Rao bound can be found in pa0731 

0 

The Cramer-Rao bound provides a lower bound for the vari- 
ance of the estimator. However, we are often interested in the 
expected errors instead of variance. We know 

E(&m)(fi-mf 2 ~ ( r f + ~ f i ) ( & ~ f i f  (4.4) 
Therefore. Cramer-Rao bound also provides a lower bound for the 
expected errors. However, the bias vector b(m) is often unknown 
for many real world problems. The same is true for the nonlinear 
problem invested here. Letting b(m)=O @ = I ) .  Cramtr-Rao bound 
provides a lower bound for the expected errors of any unbiased 
estimator. Therefore, we can compare the expected errors with 
that of a “best possible” unbiased estimator using CramCr-Rao 
bound. 

The evaluation of Cramer-Rao bound requires noise distribu- 
tion. Suppose that the noise is Gaussian (i.e., f=h(m)-u is zero 
mean white Gaussian vector). With parameters m (the best x can 
be computed from m [Weng88a]) and observation U, equation (3.1) 
gives 

(4.5) 

We get the expression of the Fisher information matrix: 
-I * 

= ~ ~ ~ ‘ ( ~ f ( m ) f ( m f ) ~  = O“J’(O’~ )J = 0 - 2 ~ ’ ~  (4.7) 
Then, for the unbiased estimator Ifi with independent, uniform vari- 
ance Gaussian noise, the Cram&-Rao bound gives 

r, 9 F-’ = $(J~J) - ’  (4.8) 

assuming J’J has a full rank. Notice that J in (4.8) is evaluated 
with the tme m. More generally, if the zero mean Gaussian vector 
f(m) are not independent and has a covariance matrix 
CiEf(m)f(m,’, then it is easy to show that the Fisher information 
matrix is given by F d’Ci ’J .  

When the minimum attainable variance is larger than the 
Cram&-Rao bound, other tighter bounds can be derived. For 
example, Bhattacharyya bound gives another bound on covariance 
[Zack71]. In fact, the Cramer-Rao bound is a special case of the 
Bhattacharyya bound. Since Bhattacharyya bound involves higher 
order derivatives of probability density, the computation is more 
involved. If the actual errors are close to the Cramer-Rao bound 
(this is true in the experiments we performed), the more general 
Bhattacharyya bound is obviously very close to Cramtr-Rao bound. 

In Section 5, simulations show that for the optimized solu- 
tion, the actual bias is small and the actual errors are very close to 
the Cram&-Rao bound for unbiased estimators. In other words, 
the e m r s  are very close to those that would result from the “best 
possible” unbiased estimator. 

5 EXPERIMENTAL RESULTS 
First we show the results of simulations where we can control 

the noise and assess the performance of the algorithm quantita- 
tively. For the simulations, the focal length is one unit. The image 
is a sxs square. The field of view is then determined by the 
image size s and the unit focal length. Unless stated otherwise, 
s 4 . 7 0  (the corresponding field of view is roughly equivalent to a 
5 0 ”  normal lens of a 35mm camera) and 12 point comspon- 
dences are used. The object points are generated randomly 
between depth 6 and 11. Only those points that are visible before 
and after motion are used. Random noise is added to the image 
coordinates of the points. All emrs  shown in this section are rela- 
tive. Relative error of a matrix, or vector, is defined by the 
Euclidean norm of the e m r  matrix, or vector, divided by the 
Euclidean norm of the correct matrix, or vector, respectively. 

5.1 Essential Reach of Cramer-Rao Bound 

The results of the liiear algorithm presented in [Weng87] is 
employed as an initial guess and the nonliiear optimization in Sec- 
tion 3 (see [Weng88a] for details) is performed to improve the ini- 
tial guess. Figure 4. shows the comparison between the actual rela- 
tive errors of the final results and the corresponding Cramtr-Rao 
bound for the Gaussian noise. Two types of noise are simulated, 
Gaussian and uniform (with same variance). The variance of the 
uniform noise is equivalent to that of digitization noise of a 
256x256 image. (Experiments on real images show that the error 
variance of the points given by the matching algorithm are gen- 
erally not Iarger than the quantization noise of a 256x256 image). 
As shown in Figure 4, the actual relative errors are very close to 
the Cramtr-Rao bound for the Gaussian noise. In other words, the 
errors of the algorithm are very close to that of a best possible 
unbiased estimator with Gaussian noise. Figure 4(b) and Figure 
4(c) show that the e m r s  are similar for the two types of noise: 
Gaussian and uniform. This implies that the distribution of noise 
does not significantly influence the actual e m r s  as long as the vari- 
ance is kept the same. Figure 4 also shows the relative absolute 
bias of the estimates (the norm of the bias matrix, or vector, 
divided by the norm of the true matrix, or vector). The bias is 
small relative to the actual emrs. 

Since the performance of the algorithm virtually reach the 
theoretical lower bounds, there exists no algorithms that can give 
considerably more accurate estimates from the given data. On the 
other hand, these results give our fundamental insight into the 
effects of the amount of errors that may seem negligible at first 
sight. such as digitization errors. From Figure 4 we know that to 
give an estimated translation direction of 2.0% error or lower, on 
average, by the given setup with 12 points, the variance of errors 
in the points locations cannot be larger than those of digitization 
noise of a 256x256 image. 

5.2 Intrinsic Limitation of Motion from Optical Flow 

The discrete approaches are applicable to both small or large 
inter-frame motions, while the continuous approaches are applica- 
ble to only small motions. The restriction of small motion for con- 
tinuous approaches arises primarily from two facts: (1) Optical 
flow, by definition, is the projection of 3-D velocity onto image 
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plane. Therefore, the formulation of computing optical flow is in 
terms of velocity. (2) The mathematical formulation of computing 
motion parameters from optical flow is in terms of motion velocity. 
However, what actually observed is the displacements between 
images. Only in the case of small motion, can velocity be 
estimated by displacement. 

Although the restriction of smali inter-frame motion simplifies 
both computing image matching (optical flow as a result) arld com- 
puting motion parameters (motion velocity as a result) h m  optical 
flow, the reliability of computed motion parameters in the presence 
of noise is intrinsically limited. The small amount of motion is 
easily ovemdden by the emrs  in the estimated optical flow, even 
if the optical flow can be estimated in subpixel accuracy. In other 
words, the signal to noise ratio in the estimated optical flow is low. 
Many researchers have been trying to compute motion parameters 
from optical flow. But so far, no satisfactory numerical results 
have been reported under realistic setups. There may be a lot one 
can do to improve the existing algorithms to compute motion 
parameters and structure from optical flow. However, the theoreti- 
cal lower e m r  bound using optical flow may be large. We need to 
investigate the intrinsic limit of motion from optical flow. 

As shown in Figure 4, the algorithm (discrete approach) has 
essentially reached the theoretical e m r  bound. With a relatively 
large inter-frame motion, the e m r  bound is small (e.g., about 2% 
in the direction of translation in Figure 4(b)). What about the 
small motion typically used by optical flow? We consider a setup: 
The image has 512x512 pixels in a unit square (the field of view is 
roughly equivalent to that of a f=35mm wide angle lens of a 35mm 
camera). We asslune that the image positions of the points are cor- 
rupted by additive white Gaussian noise with a variance equal to 
that of the uniform distribution in the range of f l  pixel. The 
configuration of the random points is the same as mentioned in the 
beginning of the Chapter. The magnitudes of translation are such 
that the maximum disparities caused by translation in *he image 
plane are 2, 4, 8 and 16 pixels, respectively. The Cram&-Rao 
hounds of the relative error in the estimated translation, averaging 
over 10 random point sets, are shown in Figure 5.  It can be seen 
that, under a small motion with 2-pixel maximum disparity (aver- 
age disparity is roughly equal to 1 pixel), the emrs  in translation 
are bounded below by 60% even using a large number of points 
(70). A small motion with 4-pixel maximum disparity still causes 
a large error bound (about 38% with 70 points). Recall that the 
bound here is for exact algorithms (discrete approaches) and does 
not include any approximations that a continuous approach may 
use. In other words, these bounds apply to any algorithms. There- 
fore, it is intrinsically very unreliable trying to recover motion 
parameters from small motion with a disparity of a few pixels. 
The data shown here quantitatively predict the intrinsic unstability 
for estimating motion and structure from small motions (e.g., by 
optical flow approaches). 

5.3 Real World Images 

Experiments have been performed for a variety of real world 
scenes. A CCD monochrome video camera with roughly 500x480 
pixels is used as image sensor. The focal length of the camera is 
calibrated but no corrections are made for camera nonlinearity. 
The camera takes two images at different positions for each scene. 
The number of resolution levels used is equal to 7. 20 iterations 
are performed at each level. 

We present the results for the pair of images shown in Figure 
6, which is called Office scene. Significant depth discontinuities 
occur in the scene. A sample of dense displacement field at level 1 
is shown in Figure 7. Examing by flickering between two images 

on a Sun workstation, 95 percent of the vectors shown in Fipre 7 
appear to have no visible errors. 

The parameters of the motion of the scene relative to the 
camera are shown in Table 1. The translation direction and rota- 
tion axis are represented by three components, (up, right, forwardj. 
The 3-D surface is plotted as the value of l /(z),  where z is the 
depth, in Figure 8. The occlusion map 1 is shown in Figdre 9. The 
occlusion maps are to detect relatively large occluded regions 
(more than one pixel wide) and not to show occlusion bundaries 
which can be easily detected by analyzing discontinuities in the 
constructed depth maps. Since no anempt is made to obtdin 
ground truth, we do not know the accuracy of those motion pawn- 
eters. However, we can measure the discrepancies between tke 
projection of the recovered 3-D position of the points and the 
observed projection (with rigid motion for the inferred strxture). 
As shown in Table 1, the maximum image error, 

m F [  llui-hi(m,x)ll, llu’i-h’,(m,x)ll 1 

which indicates the maxinun discrepancy between the observcd 
projection and inferred projections, is about a third of the width of 
a pixel. Thus, the performance of the algorithm for motion and 
structure estimation is very good, and the image matching algo- 
rithm at least does not make large errors that violate rigidity con- 
straint of underlying 3-D motion. 

I 

6 SUMMARY 
An approach is presented for computing displacement fields 

between two images of a scene taken from different view points. 
The approach employs multiple attributes of the images to yield an 
overdetermined system of matching constraints. The algorithm 
does not require extensively textured images. It allows discon- 
tinuities and occlusions in the scene. From the matches obtained, 
dense 3-D depths and occlusion maps are computed for real world 
scenes, assuming the scene is rigid. The maximum discrepancy 
between the projection of the computed 3-D points and the 
matched image plane points (maximum image emr)  is about one 
third of the pixel width. 

The investigation of theoretical bounds enables us to evaluate 
the intrinsic stability of motion estimation and the intrinsic limita- 
tion of optical flow based approaches. The conclusion is that with a 
relatively large disparity, the motion estimation problem is intrinsi- 
cally fairly stable using the current popular video cameras. With 
Gaussian noise, our motion estimation algorithm has essentially 
reached the theoretical bound of the perfomiance of any unbiased 
estimator. Simulations showed that the type of noise distribution 
does not significantly affect the performance of the algorithm and 
therefore, the objective of minimizing image emrs  can be used 
generally. 
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t Data and Results for the Office Scene 
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Rotation axis 
Rotation angle 

Maximum image e m r  
pixel width 

0.942139 -0.137486 0.305733 
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0.000938 
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Figure 4. Actual mrs. Cram&-Rm bound for Gaussian noise, 
and the absolute bias of the estimator vs. number of point 
correspondences. Comparison for R: (a) Gaussian noise ad- 
ded, @) uniform noise added. Comparison for T (c) Gaussian 
noise added, (d) uniform noise added. Rotation axis: 
(1, 0.9, 0.8). Rotation angle: 5'. Translation: 
(0.5, -0.5, -3.0). 40 random trials. 
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NUMBER OF POINT CORRESPONDENCES 
Figure 5. Cram&Rao bound for relative errors in transktion 
under small motions. 10 random trials. Translation: 
(k, k ,  0). The value of k is such that the maximum disparity 
caused by translation is d-pixels, d=2,4,8,16. Rotation axis: 
(1, 0.9, 0.8). Rotation angle: 5". (Other simulations showed 
that the amount of rotation virtually does not affect the bounds Figure 8. Perspective plot of l/z (depth z )  for the Office 

scene (from the viewpoint u ~ e d  for image 1). 

Figure 6. Two views of an office scene (Office scene) 

Figure 7. Samples of the computed displacement field at level 
1 for the Office scene, superimposed on the blurred extended 
intensity image. 

I 

Fizure 9. Computed occlusion map 1 for the Office scene. - 
Black areas in occlusion map 1 indicate that the corresponding 
areas in image 1 (the first image in Figure 6) are not visible in 
image 2 (the second image in Figure 6). 
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