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Abstract

ear dynamical system (LDS), we propose the problem
of fi nding a representation of the LDS which is sparse
in terms of a given dictionary of LDSs. Since LDSs do

tic framework and an effi cient MAP algorithm to learn
this sparse code. Since dynamic textures (DTs) can be

tation and DT recognition. In the case of occlusion, we

ventional DT recognition methods.

1. Introduction

A dynamic texture (DT) sequence captures a random

spatiotemporal phenomenon. The randomness refl ects

in the spatial and temporal changes in the image signal.

cal motion is governed by a complex stochastic model.

plosion and explosion of the cloud segments during the

usual objective of DT modeling in computer vision and

temporal variation in images. DT modeling is motivated

cesses.

The challenges of DT modeling arise from the need

Doretto et al. showed that the spatiotemporal variations

of a DT can be represented using a linear dynamical

wise intensities) and the white elements designate the

vation and the state variable at the same time instance.

is a time dependent pair of

learning

Figure 1.

parameters
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proposed and used in a support vector machine (SVM)

framework to perform DT recognition. More recent

work has addressed shift [9] and view invariant [6] DT

recognition. The latter work extends the use of the pop-

ular bag-of-features model to the non-Euclidean space

of LDS models.

Despite the merits of these methods, they are all

sensitive to input variations due to noise. This is es-

pecially the case when the noise results from occlu-

sion. To alleviate this drawback, we make use of the

developments in other recognition problems (e.g. face

recognition [10]) that utilize linear sparse coding of

data based on a predefined dictionary. Using only a

sparse set of training models to represent a test sample

is at the heart of popular model selection methods (e.g.

minimum description length) and classification meth-

ods (e.g. SVM). Using sparse representation and com-

pressed sensing theory [4], it was shown in [10] that a

high performance face classifier could outperform state-

of-the-art classifiers, especially when the test samples

were corrupted with noise (e.g. occlusion). Theoreti-

cal guarantees were also provided to bound the recog-

nition performance. However, there does not appear to

be a simple extension of traditional sparse coding for

DT recognition. Before this can be achieved, the prob-

lem of sparsely representing a DT using a predefined

set of LDS models needs to be solved. To the best of

our knowledge, this paper represents the first time such

a problem has been formulated and addressed.

In Section 2, we give a detailed presentation of this

new sparse coding problem and the probabilistic model

we use to solve it. This model is embedded in a MAP

framework and an efficient model learning algorithm is

described. In Section 3, we present experimental results

on the representation and recognition of real world DT

video sequences. These results validate the effective-

ness of our model and learning algorithm.

2. Proposed Model

In this paper, we model a DT as a LDS that is rep-

resented by a pair of matrices (C,A) [8]. Matrix C de-

scribes how the observed features (e.g. intensity values)

of a DT frame are produced from the hidden states. Ma-

trix A describes the transition between hidden states of

consecutive frames. The representation is given by the

following equations, where �ny and �nx are noise com-

ponents in the observation and state space, respectively,

and F is the number of DT frames:{
�yt = C�xt + �ny

�xt+1 = A�xt + �nx

∀t = 1, · · · , F

We are given a set of L DT sequences for train-

ing, from which we extract L LDS models (i.e. M =

{(Ci,Ai)}L
i=1). The LDS model parameters are

learned by the closed form method proposed in [8],

where Ci ∈ R
M×N and Ai ∈ R

N×N . M is the size

of the observed feature vector per frame and N is the

LDS model size. The task of learning a sparse code for

a target video sequence, which can be modeled as an

LDS, is equivalent to learning a sparse set of linear co-

efficients (�α ∈ R
L) that combines the LDS models of

M to best generate the frames of the target. Here, �α is

the sparse code of the target with respect to M. Given

M, we model the target DT as follows. F is the number

of frames in the target DT.

{
�yt =

∑L
i=1 αiCi�xt + �ny

�xt+1 =
∑L

i=1 αiAi�xt + �nx

∀t = 1, · · · , F (1)

For a given target DT, its sparse coding with respect

to M is equivalent to finding the sparsest �α and learn-

ing the hidden state variables {�xt}F
t=1 that best fit the

model of Eq. (1). Since �ny and �nx are i.i.d. Gaus-

sian random vectors, this sparse coding problem can be

viewed as a signal detection problem. As such, {�xt}F
t=1

and �α are learned by embedding them into a maximum

a posteriori (MAP) framework that fits the model in Eq.

(1) to the observed data.

To do this, we form the joint probability:

p
(
{�yt}F

t=1 , {�xt}F
t=1 , �α

)
= LPxPα. Here, L repre-

sents the likelihood of the observed data, Px represents

the prior of the state variables (i.e. Markovian prop-

erty), and Pα represents the prior of the sparse code.

To conform to the model in Eq. (1), we

decompose these three terms further. Since

the DT observations are conditionally inde-

pendent of each other, we decompose L as:

L = p
(
{�yt}F

t=1 | {�xt}F
t=1 , �α

)
=

∏F
t=1 p (�yt | �xt, �α).

Due to the Markovian property governing the state vari-

ables, we decompose Px as: Px = p
(
{�xt}F

t=1 | �α
)

=

p (�x1)
∏F−1

t=1 p (�xt+1 | �xt, �α). Assuming conditional

independence between the sparse code elements, we

decompose Pα as: Pα = p (�α) =
∏L

i=1 p (αi).
To formalize this framework, we model each of the

above probabilities. Both the likelihood of an obser-

vation and the state prior probability are modeled as

Gaussian distributions, according to Eq. (1). In de-

tail, we have: p (�yt | �xt, �α) ∼ N
(∑L

i=1 αiCi�xt, σ
2
yI

)
and p (�xt+1 | �xt, �α) ∼ N

(∑L
i=1 αiAi�xt, σ

2
xI

)
. In or-

der to guarantee sparsity in �α, we model its prior as a

Laplacian distribution: p (αi) ∼ Laplace (0, λα).

MAP Formulation: After modeling the joint distribu-

tion, we proceed to maximize it by minimizing its neg-

992992988988988



ative log, as in Eq. (2). As we can see, there are three

main terms in this cost function: (1) a frame reconstruc-

tion term that evaluates how well the individual DT ob-

servations are reproduced, (2) a state prediction term

that evaluates how well the state variables are predicted,

and (3) a regularization term that ensures the sparsity of

�α. Note that these three terms are weighted differently,

according to σy , σx, and λα. More importantly, these

weights are data-driven, so there is no need for user-

defined constants. Next, we apply the method of Iter-

ated Conditional Modes (ICM) [1] to solve Eq. (2). In

this method, we perform blockwise coordinate descent

on the cost function. In each ICM iteration, we fix all

the variables except one and then minimize the function

with respect to that variable.

min
�α,{�xt}F

t=1

FM ln (σy) +
1

2σ2
y

F∑
t=1

‖�yt −
L∑

i=1

αiCi�xt‖2
2+

L lnλα +
‖�α‖1

λα
+

1
2σ2

x

F−1∑
t=1

‖�xt+1 −
L∑

i=1

αiAi�xt‖2
2+

(F − 1) N lnσx (2)

In the (k +1)th ICM iteration, we have the following

update rules for the sparse code, the state variables, and

the distribution parameters.

• Update �α: Fixing all variables except �α,

we obtain a convex quadratic program whose

global minimum can be obtained using gra-

dient descent. The update is: �α(k+1) =
arg min

�z∈RL

1

σ
2(k)
y

∑F
t=1 ‖�yt − ∑L

i=1 ziCi�x
(k)
t ‖2

2 +

1

σ
2(k)
x

∑F−1
t=1 ‖�x(k)

t+1 −
∑L

i=1 ziAi�x
(k)
t ‖2

2 + ‖�z‖1

λ
(k)
α

.

• Update �xt: Fixing all variables except �xt, we obtain a

convex quadratic program whose global minimum can

be obtained in closed form. The update is: �x(k+1)
t =

arg min
�z∈RN

1

σ
2(k)
y

‖�yt−
∑L

i=1 α
(k)
i Ci�z‖2

2+ I{t=F}
σ

2(k)
x

‖�x(k)
t+1−∑L

i=1 α
(k)
i Ai�z‖2

2 + I{t=1}
σ

2(k)
x

‖�z − ∑L
i=1 α

(k)
i Ai�x

(k)
t−1‖2

2.

Here, I{t=F} and I{t=1} are the indicator functions for

the first and last frames.

• Update σx, σy, λα: We update these parameters to

their ML estimates, as follows.

⎧⎪⎨
⎪⎩

σ
2(k+1)
y = 1

FM

∑F
t=1 ‖�yt −

∑L
i=1 α

(k)
i Ci�x

(k)
t ‖2

2

σ
2(k+1)
x = 1

(F−1)N

∑F−1
t=1 ‖�x(k)

t+1 −
∑L

i=1 α
(k)
i Ai�x

(k)
t ‖2

2

λ
(k+1)

α = ‖�α(k)‖1

L

• Initialization: Since ICM is an iterative method that

only guarantees a local minimum for Eq. (2), a good

initialization of the variables is essential. To initialize

the sparse code, we assume a sparsity of K (e.g. K =
10) for �α(0). We build a separate LDS model for the

target, as described in [8]. Then, we use this learned

target model to determine the K “closest” training LDS

models in M. This is done by using the Martin distance

[3,5]. The nonzero elements of �α(0) correspond to these

K “closest” training models and they are set to 1. To

initialize each state variable, we need to solve a separate

least-squares problem, whose closed form solution is:

�x(0)
t = C†

T �yt. Here, CT =
∑L

i=1 α
(0)
i Ci.

3. Experimental Results

In this section, we will evaluate the performance of

our sparse LDS coding method when applied to two DT

applications: (I) DT representation and (II) DT recog-

nition. In both applications, the sparse code (�α) of a

sample DT sequence is computed for a set of L LDS

models (M), as in Section 2. In application (I), �α is

used to reconstruct the sample DT, while in applica-

tion (II), it is used to recognize the class of the sample

DT as one of the DT classes in M. We use the bench-

mark UCLA DT dataset [8] for both applications. This

dataset contains 50 classes of gray-scale DT, each of

which is comprised of 4 DT sequences. Each sequence

has F = 75 frames with M = 48 × 48 pixels. In all

our experiments, we use pixelwise intensities of the DT

frames as the observed feature vectors.

(I) DT Representation: For a given DT sequence in

the dataset, we first compute its sparse code and state

variables, where all other DTs are used as the set of

training LDS models M. Given the code and state vari-

ables, we can reconstruct the DT sequence, according

to Eq. (1). Figure 2 shows the learned sparse code �α
for a sample DT sequence, at the first and last ICM it-

erations. The Peak-Signal-to-Noise-Ratio (PSNR) be-

tween the reconstructed DT sequence and the original

one is 24dB, which demonstrates faithful DT recon-

struction. Note that the code at the last ICM iteration

is much sparser than the initial code (K = 10) and that

the highest α values occur for the LDS models from M
corresponding to the class to which the sample DT se-

quence belongs. This latter observation motivates why

our LDS sparse code method is suitable for DT recog-

nition, to be addressed in the next section.

(II) DT Recognition: The UCLA dataset contains 50
gray-scale DT classes, each of which is comprised of 4
DT sequences. Four-fold cross validation is performed

on this dataset and average recognition performance is

reported. Using sparse LDS coding, we perform recog-

nition according to sparse representation-based classifi-
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Figure 2. Example of DT sparse representation

cation (SRC) proposed in [10]. In SRC, the class of a

test sequence is determined by the single class of train-

ing LDS models, which leads to the smallest reconstruc-

tion error among all classes. More formally, we define

the reconstruction error with a certain sparse code �α as

e (�α) =
∑F

t=1 ‖�yt −
∑L

i=1 αiCi�xt‖2
2. If �αk defines

the sparse code of class k (i.e. all the α values are

set to zero if they do not correspond to class k), then

the recognized SRC class of a given test sequence is

cT = arg mink e
(
�αk

)
. As a benchmark comparison,

we perform recognition using a NN classifier (as in [8]),

where the distance used is the Martin distance. In Table

1, we report the average recognition rates, where the

maximum rate is achieved at N = 25 for both meth-

ods. Our SRC method clearly outperforms the bench-

mark method.

N=10 N=25 N=40 N=55 N=70

SRC(%) 89.0 95.5 93.0 91.5 89.0

NN (%) 87.0 92.5 90.5 88.0 86.0

Table 1. DT recognition rates vs. N

Next, we evaluate the performance of our SRC

method under varying conditions of structured occlu-

sion. To do this, we occlude a varying percentage of

each frame of the test sample before recognition is per-

formed. Within each test frame, we use a single, ran-

domly positioned square, whose intensity values are

uniformly distributed in [0, 255], to occlude the image.

We fix N = 25 for this experiment. As before, we

use the NN classifier based on Martin distance for com-

parison. Figure 3 plots the average recognition rate as

a function of the percentage of occlusion. The perfor-

mance of our SRC method decreases much more grad-

ually with occlusion, as compared to the NN classifier.

This is primarily due to the fact that our method ex-

plicitly incorporates noise in the proposed model. On

the other hand, the NN classifier builds a separate LDS

(global) model for the test sample, thus, rendering it

more prone to occlusion.

Figure 3. DT Recognition with occlusion

4. Conclusion

This paper proposes the novel problem of sparse cod-

ing for LDS models and applies it to the problem of

DT recognition. Since LDS parameters lie in a non-

Euclidean space, we learn the sparse code in a prob-

abilistic framework. We present experiments showing

that this method outperforms benchmark recognition

methods, especially with occlusion. In this paper, we

used a predefined dictionary of LDS models. In the fu-

ture, we aim to extend this coding approach to learn

dictionaries of LDS models.
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