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Abstract. The range space of dynamic textures spans spatiotemporal
phenomena that vary along three fundamental dimensions: spatial tex-
ture, spatial texture layout, and dynamics. By describing each dimension
with appropriate spatial or temporal features and by equipping it with a
suitable distance measure, elementary distances (one for each dimension)
between dynamic texture sequences can be computed. In this paper, we
address the problem of dynamic texture (DT) recognition by learning lin-
ear combinations of these elementary distances. By learning weights to
these distances, we shed light on how “salient” (in a discriminative man-
ner) each DT dimension is in representing classes of dynamic textures.
To do this, we propose an efficient maximum margin distance learning
(MMDL) method based on the Pegasos algorithm [1], for both class-
independent and class-dependent weight learning. In contrast to popular
MMDL methods, which enforce restrictive distance constraints and have
a computational complexity that is cubic in the number of training sam-
ples, we show that our method, called DL-PEGASOS, can handle more
general distance constraints with a computational complexity that can
be made linear. When class dependent weights are learned, we show
that, for certain classes of DTs , spatial texture features are dominantly
“salient”, while for other classes, this “saliency” lies in their tempo-
ral features. Furthermore, DL-PEGASOS outperforms state-of-the-art
recognition methods on the UCLA benchmark DT dataset. By learning
class independent weights, we show that this benchmark does not of-
fer much variety along the three DT dimensions, thus, motivating the
proposal of a new DT dataset, called DynTex++.

1 Introduction

A dynamic texture (DT) sequence captures a stochastic spatiotemporal phe-
nomenon. The randomness reflects in the spatial and temporal changes in the
image signal. This may be caused by a variety of physical processes, e.g., involv-
ing objects that are small (smoke particles) or large (snowflakes), or rigid (grass,
flag) or nonrigid (cloud, fire), moving in 2D or 3D, etc. Even though the overall
global motion of a DT may be perceived by humans as being simple and coher-
ent, the underlying local motion is governed by a complex stochastic model. For

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 223–236, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



224 B. Ghanem and N. Ahuja

example, a scene of “translating” clouds conveys visually identifiable global dy-
namics; however, the implosion and explosion of the cloud segments during the
motion result in very complicated local dynamics. Irrespective of the nature of
the physical phenomena, the usual objective of DT modeling in computer vision
and graphics is to capture the nondeterministic, spatial and temporal variation
in images. The study of DTs poses numerous challenges, especially for traditional
motion models that fail to capture their stochastic nature. These challenges arise
from the need to capture the large number of objects involved, their complex
motions, and their intricate interactions. A good model must accurately and ef-
ficiently capture both the appearance and global dynamics of a DT. Despite the
diverse types of DTs in nature, we see that they belong to a three dimensional
DT space. In this space, each dimension isolates a single aspect that describes the
variation of an individual DT. These dimensions are, therefore, broad categories
of variation for DTs, in general. However, they are not generally independent,
since for some cases of DT, it is not possible to fix two dimensions and vary the
third independently. This interdependence is attributed to the physical nature
of the phenomena being imaged. In what follows, we will describe each of these
dimensions and give their respective ranges. Then, we will designate the portion
of the DT space, where this paper operates. Note that the first two dimensions
describe the spatial variation and the spatial organization of a DT, while the
third describes its temporal variations.
1. Spatial Texture Element: This dimension describes the spatial variation

of a DT as observed from each frame independently. Texture elements (usu-
ally denoted as texels) are the spatially repetitive groups of pixels that share
statistically similar appearance and structural properties. The spectrum of
texture elements varies from the simplest form at the microscopic level (i.e.
particles) to the most complex at the macroscopic level (i.e. whole objects).
At one extreme, this spectrum has DTs that show clouds, smoke, or water
in motion, while at the other, there are DTs of birds, animals, or humans
moving. The majority of DT work has focused on pixel or subpixel objects
(i.e. microscopic), whereby the pixel is assumed to be the texture element
whose motion is to be modeled.

2. Spatial Texture Layout: This dimension describes the spatial layout of
the texture elements in a DT, as well as, their spatial layering. A DT’s spatial
layout determines how its texture elements are organized within each frame,
especially in terms of their spatial placement. In this sense, there are DTs
with homogenously placed/spaced texture elements, as well as, DTs where
the placement distribution is non-uniform. Moreover, the spatial layering of
a DT refers to the “density” (or translucency) of a DT. For simplicity, spatial
layering of a DT can be viewed as the alpha matte of the texture elements,
in each frame, when visualized infront of a background layer. The values of
this alpha matte take values in [0, 1]. For opaque DTs, spatial layering is not
an issue, since the background does not appear at all (i.e. the alpha matte is
either 0 or 1). For translucent DTs (e.g. clouds and smoke), this layering is
essential. The majority of DT work has focused on DTs with opaque texture
elements that cover the whole spatial extent of the video.
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3. Dynamics: This dimension describes the temporal variation of a DT as
observed by the frame-to-frame variation in its texture elements and their
layering/layout. DT dynamics represent temporal changes in features (e.g.
intensity values and linear transformations of these values) describing the
texture elements and their layout. Note that the dynamics of a DT is a
global motion representation that incorporates the dynamics of individual
texture elements and their spatiotemporal interactions. Being a DT means
that the dynamics of texture elements are statistically similar and temporally
stationary. In other words, texture elements in the same DT all “move” in a
similar fashion and their “motions” are not time dependent (i.e. statistically
stationary). As such, the models of DT dynamics either make use of physical
models (e.g. Navies-Stokes equations [2]) or assume a general parametric
model whose parameters are learned by fitting the model to the observed
DT frames (e.g. a linear dynamical system [3]). The majority of DT work
has concentrated on the latter form of models, where linear/nonlinear models
have been proposed to model variations in the intensity values of DTs.

In this paper, we cater to opaque DTs consisting of pixel-based texture elements,
whose dynamics can be represented by a linear parametric model [3]. We address
the problem of DT recognition, which is motivated by critical real-life applica-
tions, especially the detection of the onset of emergencies (e.g. fire). Recognition
is done by learning linear combinations of distances between DT sequences, so
that classes of DTs are maximally separated. These distances quantify how dif-
ferent two DT sequences are with respect to the three dimensions mentioned
above. By learning weights to these distances, we shed light on how “salient”
(in a discriminative fashion) each dimension (i.e. spatial and/or temporal) is in
representing a single DT class or a whole DT database.

2 Related Work

DT recognition involves the analysis of both image appearance and temporal
changes in appearance. For an overview of recent techniques developed for DT
recognition, we refer the reader to [4]. Numerous DT recognition methods have
stemmed from representing the global spatiotemporal variations of a DT as a
linear dynamical system (LDS) [3]. In [5], Doretto et al. use the LDS model
parameters and the Martin distance measure [6] to perform nearest neighbor
recognition. In [7], a kernel function between two LDS models was proposed and
used in a support vector machine (SVM) framework to perform DT recognition.
More recent work has addressed shift and view invariant DT recognition [8,9].
The latter work extends the use of the popular bag-of-features model to the
non-Euclidean space of LDS models.

Other recognition methods have used a multiplicity of spatiotemporal descrip-
tors to represent a DT sequence. In [10], Peteri et al. propose a DT recognition
algorithm based on six translation invariant features. Recent work by Zhao et
al. proposed using local binary patterns (LBP) [11] and volume local binary
patterns (VLBP) to recognize DT sequences [12,13]. The latter two methods are
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based on local descriptors, which do not incorporate the global dynamics that
characterize a DT.

Despite the merits of these methods, they all either focus on one dimension of
the DT space defined before or assume that these dimensions contribute equally
and in the same manner for all DT classes. These assumptions are quite restric-
tive and fail to characterize the discriminative properties of many DTs. To the
best of our knowledge, this paper is the first to address the problem of combin-
ing the discriminative properties of the three DT dimensions. Here, we provide
an intuitive example that motivates why this is important in DT recognition.
On one hand, the fire DT class is easily distinguished from other DT classes,
primarily due to its highly discriminative dynamics, as compared to its spatial
texture appearance. On the other hand, DTs such as moving leaves and grass
have a more “salient” spatial texture element.

We infer the contributions of the DT dimensions by using a multiplicity of
DT descriptors, each of which operates in a given dimension. We elaborate on
these descriptors and motivate their selection later. Since these descriptors are
of different dimensions and belong to different spaces, we model the distance be-
tween two DT sequences as a weighted sum of the elementary distances between
their respective descriptors. Learning these weights in a maximum margin set-
ting will determine the contributions of the DT dimensions, in such a way that
maximizes DT class discrimination. Learning weighted distance functions in a
maximum margin framework is not new, as it has been successfully applied to
image classification and retrieval [14,15] and more recently to region-based object
recognition [16]. These approaches impose the following distance constraint: an
image is closer to all other images in its class than to images of all other classes.
In feature space, this forces classes to be significantly compact, which tends not
to be the case for most real data. This “compactness” assumption is quite re-
strictive and does not generalize well to object classes that share properties (e.g.
cow vs. horse). Furthermore, this assumption produces a number of distance
constraints/variables that is cubic in the number of training images, since all
relevant distance triplets are used. Our method generalizes this “compactness”
assumption whereby each DT sequence is only closer to a representative set of
DTs within its class than to a comparative set of DTs outside this class. By
taking the representative set of a DT to include its k nearest neighbors within
its class and its comparative set to include all other DTs outside its class, we al-
low for less compact DT classes and much fewer distance constraints. To reduce
computational complexity, we solve the primal version of the maximum margin
problem in a way similar to the Pegasos algorithm [1].

Here, we note that distance weight learning finds some similarities with mul-
tiple kernel learning (MKL), which has been recently applied to object detection
[17,18]. In MKL, the kernels define similarities between elements and are, by
definition, symmetric and positive definite kernels. Although similarities can be
formed from certain distances (e.g. by parametric negative exponentiation), these
distances need not be symmetric and the parameters used to form the similarities
need to be set wisely. This method also suffers from a computational drawback,
since it requires expensive optimization techniques to learn the kernel mixing
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coefficients. Moreover, the MKL framework does not readily accommodate the
distance constraints required in maximum margin distance learning (MMDL).

Contributions: The contributions of this work are three fold. (1) We propose
to learn the individual contributions/weights of all three DT dimensions, in
regards to DT class discrimination. (2) To learn these weights, we propose an
efficient MMDL method based on the Pegasos algorithm, whose complexity can
be made linear in the number of training samples. (3) A new DT dataset, called
DynTex++, is compiled to replace the current UCLA benchmark dataset.

This paper is organized as follows. In Section 3, we give an overview of the
DT recognition problem, in an MMDL framework. Section 4 provides a detailed
description of our proposed solution and algorithm, while Section 5 shows exper-
imental validation of this algorithm, when applied to the UCLA and DynTex++
datasets.

3 Problem Overview

In this paper, we seek to learn how the different dimensions of the DT space can
be linearly combined to best discriminate between DT classes. Learning these
linear combinations for a given DT class or a group of DT classes sheds light on
the relative importance of each DT dimension. We choose a suitable descriptor to
represent each dimension, which is characterized by a corresponding elementary
distance. Since these descriptors need not belong to vector spaces, the elementary
distances are can be of different forms. In this framework, the distance between
two DT sequences is modeled as a positively weighted sum of their elementary
distances. These weights are learned in a maximum margin fashion, so that DT
classes are maximally separated. We consider the case of class independent and
class dependent weights.

We assume a set of M training DT sequences (from N classes) is given with
corresponding labels in {1, . . . , N}. Let �(.) denote the labeling function, whereby
�(vi) is the label of the DT sequence vi. The DT sequence vi has F different DT
descriptors1, which characterize the three different DT dimensions. We define the
f th elementary distance from vj to vi as df (vi → vj). Here, we note that these
elementary distances need not be symmetric. As such, the combined distance
from vj to vi is defined as Dw�(vi)

(vi → vj) =
∑F

f=1 wf
�(vi)

df (vi → vj). More
compactly, we can combine the elementary distances in vector format to obtain
Dw�(vi)

(vi → vj) = wT
�(vi)

d (vi → vj). Here, wf
�(vi)

is the weight that character-
izes the f th elementary distance for class �(vi). Here, we are considering class
dependent weights; however, class independent weights are similarly incorpo-
rated by dropping the class label from w�(vi).

In order to best separate the DT classes, we assume that each DT of a given
class is closer to a representative set of DTs within this class than a compara-
tive set of DTs outside this class. Let R(vi) define the representative set corre-
sponding to DT vi and C(vi) define its comparative set. Under this assumption,

1 In this paper, F = 3, but the method generalizes to any number of descriptors.
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a set of distance constraints arises for each DT vi, defined as follows. For all
i �= j, �(vi) = �(vj) �= �(vk), vj ∈ R(vi), and vk ∈ C(vi) we have:

Dw�(vi)
(vi → vj) ≤ Dw�(vi)

(vi → vk) ⇔ wT
�(vi)

�d (vi, vj , vk) ≥ 0 (1)

where d (vi, vj , vk) = d (vi → vk) − d (vi → vj) is the distance difference corre-
sponding to the DT triplet vi, vj , and vk. The total number of these constraints
is

∑M
i |R(vi)||C(vi)|. Clearly, this number and thus the scale of the optimiza-

tion needed to learn w�(vi) depends on the nature of R(.) and C(.). In fact, it is
bounded by Θ(M3) from above and Θ(M) from below.

Let Ac ∈ R
L×F denote the matrix whose rows are composed of all the distance

difference vectors �d(vi, vj , vk) for all DTs vi where �(vi) = c. The distance con-
straints in Eq. (1) can be formalized as Acwc � 0. We embed these constraints in
a maximum margin framework, as shown in Eq. (2). In this framework, the cost
function includes two terms that work towards minimizing the classification bias
and variance. The second term is the average hinge loss cost of the L distance
constraints. This cost uses a margin of 1 instead of 0. Although using L1 regular-
ization is known to lead to sparser solutions, we choose an L2 regularization term
on wc instead, as it is more robust to noise and outliers and the number of feature
descriptors F is relatively too small to benefit from a sparse solution.

min
wc�0

λ

2
‖wc‖2

2 +
1
L

L∑

i=1

max
(
0, 1 − wT

c ac(i)
)

(2)

where ac(i) is the ith row in Ac. It is important to point out that when solving
for class independent weights the matrix of distance constraints becomes a con-
catenation of all Ac matrices with c ∈ {1, . . . , N}. Furthermore, note that class
information need not be provided so long as relative dissimilarities/rankings are.
In other words, even when class labels are not given, our method can still be ap-
plied, if pairwise distance inequalities are known. So, a statement like “dynamic
texture A looks more similar to dynamic texture B than C” can be directly
translated to a distance constraint.

The formulation in Eq. (2) is the same one used in the Pegasos algorithm
[1], except for the non-negativity constraint on wc. In the next section, we will
show how the original Pegasos method can be modified to efficiently solve for
wc, to incorporate different forms of R(.) and C(.), and to reduce the number of
distance constraints used in each Pegasos iteration. In fact, we choose to use this
formulation/method instead of the one used in [14,15,16], since the latter does
not lend itself suitable for variations in the representative and comparative sets
and it requires a custom solver to handle a large number of distance constraints.

After solving for wc of each class, a test DT sequence is classified as the class,
which satisfies the most (or violates the least) number of distance constraints
generated by the test DT. More specifically, for each class in the training set,
a logistic regression classifier2 is learned based on the combined distances of

2 For a test sequence vp, f(vp|c) =
(
1 + exp

(
α0 +

∑
vi:�(vi)=c αiDwc(vi → vp)

))−1

defines the logistic regression classifier of class c.
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training samples to samples within this class, as done in [16]. The test DT is
assigned to the class, whose regression classifier evaluates to the maximum value
among all classes. In the case of class independent weight learning, a simple
k-nearest neighbor (kNN) classifier can be employed to classify the test DT.

Elementary Distances

In what follows, we present and justify the set of feature descriptors (F = 3)
that we choose to represent the three DT dimensions of a DT sequence.

1. Spatial Texture Element: This DT dimension is described by a histogram
of Local Binary Patterns (LBP), which provides a simple yet powerful local
depiction of intensity variation. Each frame in a DT is described by an LBP
histogram. As such, the elementary distance between two DTs along this
dimension is the minimum distance between LBP histograms from these two
DTs. To compare histograms, we use the Earth Mover’s Distance (EMD) [19],
which though more computationally expensive than other distances (e.g. �2

norm or χ2), it provides a more accurate histogram distance. This spatial
texture descriptor has been successfully utilized in DT recognition [12] and
extended to video sequences in [20]. Recently, it has also proven to be useful
in improving human detection performance [21].

2. Spatial Texture Layout: This DT dimension is described by a Pyramid
of Histograms of Oriented Gradients (PHOG), which provide a powerful
depiction of local spatial layout. In building the PHOG of a DT frame, we
assume uniform weighting for each histogram at a given pyramid level and
we normalize with respect to the number of histograms at each pyramid
level. We only use two levels in the pyramid. Similar to the LBP descriptor,
we use EMD to compute distances between histograms. Prior work has used
this descriptor extensively in detecting objects, especially human detection
[22], as well as, image retrieval [23].

3. Dynamics: To describe the global temporal variations of a DT sequence,
we model it as a Linear Dynamical System (LDS) [3]. An LDS model is
parameterized by the matrix pair (A,C), which govern feature generation
and state transition. We assume a model size of 25, in our experiments. The
LDS model and its variants have been extensively applied to DT recognition,
most recently in [8,9]. The elementary distance between two LDS models is
the Martin distance between ARMA processes [6].

Since each elementary distance above spans a different range of values, proper
normalization is called for. After computing the elementary distances between
DT sequences in the training set, we normalize each distance type by its mean
(μ) offset by a multiple of its standard deviation (σ). In our experiments, we
normalize each elementary distance by its corresponding (μ + 3σ).

4 Learning Maximum Margin Weights

In this section, we give a detailed description of the learning algorithm used to
compute wc in Eq. (2). Algorithm 1 summarizes the learning process, which
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is a modified version of the original Pegasos algorithm [1]. DL-PEGASOS can
handle general definitions for R(.) and C(.), since they can be data-driven and/or
application specific. Furthermore, these definitions can even be dependent on wc,
which explains why R(vi) and C(vi) must be updated at each iteration of this
algorithm (refer to STEPS 2-3). In this case, Eq. (2) is no longer convex and
so DL-PEGASOS becomes a stochastic, projected3 subgradient descent method
that alternates between (i) performing a Pegasos iteration when the sets R(vi)
and C(vi) are fixed for all DT sequences vi and (ii) updating these sets for a
fixed Pegasos solution of wc. A study of convergence for DL-PEGASOS is kept
for future work; however, empirical analysis is very promising.

Algorithm 1. Distance Learning PEGASOS (DL-PEGASOS)
Input : R(.), C(.), {d (vi → vj) : �(vi) = c}, λ, T , m

Initialization: w
(0)
c ∈ B+

λ = {x : ‖x‖2 ≤ 1√
λ
, x � 0}1

for t = 0, . . . , T do2

• determine R(vi) and C(vi) ∀vi such that �(vi) = c (use w
(t)
c if needed)3

• determine Ac ∈ R
L×F

4

// original PEGASOS iteration5

• Randomly choose Ct ⊆ {1, . . . , L}, where |Ct| = m6

• Set C+
t = {i ∈ Ct : aT

c (i)w
(t)
c < 1} and ηt = 1

λt
7

• Compute subgradient: ∇t = λw
(t)
c − 1

|C+
t |

∑
i∈C+

t
ac(i)8

• Do subgradient descent step: w
(t+ 1

2 )
c = w

(t)
c − ηt∇t9

• Project onto B+
λ : w

(t+1)
c = min

⎧
⎪⎪⎨

⎪⎪⎩
1, 1/

√
λ∥

∥
∥
∥
∥
∥

[

w
(t+ 1

2 )
c

]

+

∥
∥
∥
∥
∥
∥
2

⎫
⎪⎪⎬

⎪⎪⎭

[

w
(t+ 1

2 )
c

]

+

10

end11

return w
(T )
c12

In our MMDL formulation, the distance constraint matrix Ac is directly de-
pendent on the definition of R(.) and C(.). One popular definition is to equate
R(vi) to the set of all DTs within class c and C(vi) to the set of all DTs outside
class c (refer to Fig. 1(a)). This definition was used in [14,15,16]. This is quite
restrictive, since it assumes that classes in feature space must be significantly
compact (i.e. the minimum distance between any sample in class B to class A
is at least the maximum distance between any two samples in class A). This is
usually not the case for most real data. Based on this definition, the total num-
ber of distance constraints is L = Θ(M3), which quickly becomes intractable for
reasonably sized datasets. As a result, heuristic pruning measures were taken to

3 The projection onto B+
λ is necessary due to the non-negativity constraint on wc.

The [.]+ operator returns a vector whose negative coordinates are truncated to zero.
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reduce this number [15,14]; however, it remains Θ(M3). A major problem with
these measures is their immutability, since relevant constraints that are pruned
at the beginning can never be added back to the learning process. Therefore, a
need arises for another definition of R(.) and C(.) that is less restrictive (i.e. a
more general representation of real data) and less computationally demanding.

(a) (b)

Fig. 1. Shows examples of two definitions for R(vi) and their impact on the relative
positioning of classes in feature space. For illustration purposes, we assume an L2

distance is used between features. 1(a) is an example of the definition used in [14,15,16].
1(b) is an example of the definition used here. Note how the classes need to be more
separated (or equivalently more compact) in 1(a) than 1(b).

Although our MMDL method can handle a general structure for R(.) and
C(.), in this paper, we set R(vi) to the k nearest neighbors of vi within its
class. This is based on the intuition that a simple kNN classifier can be easily
employed to classify vi. In this case, STEPS 2-3 in Algorithm 1 are equivalent
to finding vi’s nearest neighbors according to w

(t)
c . Note that the value of k need

not be the same for every class c. A similar scheme can be applied to set C(vi);
however, since M 
 N and to avoid overhead computation, we do not compute
the nearest neighbors of vi outside class c. Instead, we simply let C(vi) be the set
of all DTs outside class c (refer to Fig. 1(b)). Since k � M , the total number of
distance constraints now is L = Θ(M2). However, only m out of L constraints
are actually used in a single iteration and m is usually much smaller than L. In
fact, we show empirical results where the total number of constraints per DL-
PEGASOS iteration can be reduced to m = Θ(M), without loss in recognition
performance. Since a random set of these relevant constraints is chosen every
iteration, the immutability problem facing previous methods is also alleviated.
Moreover, the computational complexity of DL-PEGASOS, with R(.) and C(.)
defined as above, is Θ

(
T (2F+k

N M + Fm)
)
, which includes computing and sorting

the combined distances Dwc
. While previous MMDL methods suffer from Θ(M3)

complexity, our method is at worst Θ(M2) and on average Θ(M).
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5 Experimental Results

In this section, we present experimental results that validate the DL-PEGASOS
algorithm4 in terms of DT recognition. We first learn class-independent and
class-dependent weights for the UCLA benchmark dataset [5]. Realizing that
recognition performance on this dataset has saturated and that it lacks DT
diversity, a new, easily accessible benchmark is essential. We organize the Dyn-
Tex++ dataset to be this next benchmark and evaluate our algorithm on it.

5.1 UCLA Dataset

The UCLA dynamic texture dataset contains 50 classes of gray-scale dynamic
texture, each of which is comprised of 4 DT sequences. Since these 50 classes
contain the same DTs at different viewpoints, they can be grouped together to
form 9 classes, as in [9]. Each DT sequence includes 75 frames of 160×110 pixels.
Here, the DT sequences are cropped to show the representative dynamics alone,
thus, leading to frames of 48 × 48 pixels.

50-class breakdown: In the case of the 50 DT classes, the state-of-the-art
recognition result (97.5%) was achieved by using kernel support vector machines
(SVM’s) [24]. Here, four cross-fold validation was performed, so the training
set included M = 150 DT sequences (i.e. 3 sequences for each class). Applying
DL-PEGASOS with m = 150 (i.e. Θ(M)) and T = 25 iterations, we obtain an
average recognition performance of 99% when both class dependent and class
independent weights were learned. The class independent weights for the LBP,
PHOG, and LDS descriptors are w1 = 1.95, w2 = 1.12, and w3 = 1.33 respec-
tively. This clearly indicates that the discrimination between DTs in this dataset
is dominated by their spatial texture features, whereby using these features alone
leads to a recognition rate of 90%. This reinforces the conclusion of [7], whose
authors also reported on the dominant discriminative power of static texture in
the UCLA DT dataset. In what follows, we will evaluate DL-PEGASOS on the
9-class breakdown of this dataset, since it poses a greater challenge.

9-class breakdown: In the case of the 9 DT classes, the state-of-the-art recog-
nition result (80%) was achieved by using a bag-of-words model on LDS features
[9]5, which lends itself useful to view-invariant recognition. For comparison, we
adopt the same experimental setup as in [9]. We train on 50% of the dataset
(i.e. M = 100) and test on the rest, with the recognition rates recorded as the
average rate over 20 trials (i.e. random bisection of the classes in the dataset).
First, we study the effect of the DL-PEGASOS free parameters (i.e. m and T )
on the average recognition performance. Fig. 2(a) plots the recognition rate of
class independent DL-PEGASOS when m is varied, while T is fixed to 25 itera-
tions. Since k = 1, the total number of distance constraints is about 7000, from
4 All experiments were executed using MATLAB 7.6 on a 2.4 GHz, 4GB RAM PC.

Some DL-PEGASOS parameters were kept constant: (i) k = 1 nearest neighbors
for R(.) and (ii) λ = 0.05.

5 In [9], only 8 classes were considered, since the “plants” class was removed.
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which m distance constraints are randomly chosen at each iteration. It is evident
that recognition rate very quickly stabilizes (∼ 95%), thus, indicating that most
distance constraints do not play a significant role in discriminating between DT
classes. This seems intuitive, since most constraints are easily satisfied for DTs
that are significantly different in DT feature space. We also conclude that m can
be reduced to Θ(M), without loss of performance. Similarly, Fig. 2(b) plots the
recognition rate as T is increased, while m is fixed to 100. Clearly, the stable
rate (∼ 95%) is reached in a very small number of iterations.

(a) (b)

Fig. 2. Plots the recognition performance of DL-PEGASOS versus m (the number of
distance constraints per iteration) and T (the maximum number of iterations) when
class dependent weights are learned. To obtain the recognition rates in 2(a), we use
T = 25. To obtain the recognition rates in 2(b), we use m = 100.

Fig. 3. Shows the confusion matrix for
the 9-class experiment

By setting m = 100 and T =
25, we obtain an average recognition
rate of 95.6%, which significantly outper-
forms the state-of-the-art (80%) on this
dataset. Fig. 3 shows the average con-
fusion matrix for this experiment. The
confused classes tend to have very sim-
ilar appearance and/or dynamics, espe-
cially “fire” + “smoke”, “flowers” +
“plants” and “fountains” + “waterfall”.
In regards to time complexity, each com-
plete trial ran in under 0.6 seconds.
This time does not include feature ex-
traction or pairwise elementary distance
computation.

Here, we mention that the recognition performance of class dependent DL-
PEGASOS (82%) is significantly less than the class independent performance
above. This is indicative of overfitting due to the small number of DTs per
class. However, it is worthwhile to examine the values of wc, since they shed
light on which DT dimension(s) are the most discriminative for a given class.
From the weights in Table 1, we notice that some of our intuitions about what
discriminates certain DTs are validated. For example, classes defined primarily
by their spatial texture appearance (e.g. “flowers”, “plants”, and “sea”) have
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Table 1. Class dependent weights for the 9-class recognition experiment

boiling water fire flowers fountains plants sea smoke water waterfall

w1 (LBP) 0.21 1.22 10.58 0.12 2.95 6.27 4.23 7.13 4.73
w2 (PHOG) 7.81 0.17 1.06 0.83 0.19 2.95 1.99 1.61 0.93
w3 (LDS) 7.31 7.07 1.45 10.18 0.14 1.08 5.93 4.70 7.12

dominant w1 values. Other classes that are primarily defined by their motion
have dominant w3 values (e.g. “fire” and “fountains”). Interestingly, the “boiling
water” class is the only class where w2 is the largest weight. This is due, in part,
because the spatial texture is irregular and highly varying over time, while the
overall layout remains stable. The other classes rely on a combination of these
dimensions for their discriminative power.

5.2 DynTex++ Dataset

As mentioned before, the UCLA dataset is currently the benchmark for DT
recognition, even though a much larger and more diverse datasets (the Dyn-
Tex dataset [25]) exists. The UCLA dataset remains the benchmark due to the
following reasons. (i) Its DT sequences have already been pre-processed from
their raw form, whereby each sequence is cropped to show its representative
dynamics in absence of any static or dynamic background. (ii) Only a single
DT is present in each DT sequence. (iii) In each DT sequence, no panning or
zooming is performed. (iv) Ground truth labels of the DT sequences are pro-
vided. Although some researchers have applied their recognition algorithms on
the DynTex dataset (e.g. [20]), it is difficult to manage/use because it lacks the
above four properties, in its present form. Therefore, we propose the compilation
of a new dataset, called DynTex++.

Compiling the DynTex++ Dataset: The goal here is to organize the raw
data in the DynTex dataset in order to provide a richer benchmark that is
publicly available (http://vision.ai.uiuc.edu/∼bghanem2/DynTex++.htm) for
future DT analysis, in the same way the UCLA dataset is currently. The origi-
nal dataset is already publicly available (∼ 2GB of data); however, only the raw
AVI videos are provided. We proceeded to filter, pre-process, and label these DT
sequences. While DynTex contains a total of 656 video sequences, DynTex++
uses only 345 of them. We eliminated sequences that contained more than one
DT, contained dynamic background, included panning/zooming, or did not de-
pict much motion. The remaining sequences were then hand labeled as one of
N = 36 classes (e.g. “flying birds”, “waterfall”, “vehicle traffic”). They were not
uniformly distributed among the N classes. We preprocessed them so each class
contained the same number of subsequences.

The preprocessing proceeded as follows: (i) Each sequence is spatially down-
sampled by a factor of 0.75 and converted to grayscale. (ii) Since it is infeasible
to manually crop these sequences, we randomly selected a large (1000) set of sub-
sequences of fixed size (50×50×50), each of which is attributed a relevance score
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Fig. 4. shows the confusion matrix for
DT recognition on DynTex++

that represents how much motion it en-
tails. This score is the average optical flow
[26] energy in the subsequence. By do-
ing this, static background subsequences
are eliminated from consideration and the
more relevant DT subsequences remain.
(iii) From each class, we selected 100
subsequences with the highest scores (uni-
formly chosen from the sequences con-
stituting this class), thus, resulting in a
dataset of M = 3600 subsequences. For
more details on DynTex++, refer to the
supplementary material.

DL-PEGASOS on DynTex++: We
apply our approach to the DynTex++
dataset, using an experimental setup similar to the one in the 9-class experi-
ment on the UCLA dataset. In this case, we set m = 2000 and T = 100. We
obtain an average recognition rate of 63.7%, with the average confusion matrix
shown in Fig. 4. Each trial took under 15 seconds to run to completion.

6 Conclusions and Acknowledgments

In this paper, we formulate DT recognition in a maximum margin distance learn-
ing framework, where the distance between two DTs is a linear combination of
three elementary distances representing DT space. These distance weights are
efficiently learned by our proposed DL-PEGASOS algorithm, whose computa-
tional complexity is linear in the number of training samples. We validated our
approach by outperforming the state-of-the-art on the UCLA benchmark, as well
as, applying it the newly compiled DynTex++ dataset. The support of the Of-
fice of Naval Research under grant N00014-09-1-0017 and the National Science
Foundation under grant IIS 08-12188 is gratefully acknowledged.
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