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Abstract: We address the problem of estimating the struc- 
ture and motion of a smooth curved object from its silhou- 
ettes observed over time by a trinocular stereo rig under 
perspective projection. We first construct d model for the 
local structure along the silhouette for each frame an the 
temporal sequence. Successive local models are then inte- 
grated into a global surface description by estimating the 
motion between successive time instants. The algorithm 
tracks certain surface features (parubolic points) and image 
features (silhouette inflections and frontier points) which 
are used to bootstrap the motion estimation process. The 
entire silhouette along with the reconstructed loco1 struc- 
ture are then used to refine the initial motion estimate. 
We have implemented the proposed approach and report 
results on real images. 

1 Introduction 

An object’s silhouette and its deformations as the ob- 
ject moves with respect to the camera reflect its structure 
and motion characteristics. For objects with little or no 
surface detail such as texture, silhouettes serve as the most 
important cue for the estimation of object structure and 
motion. 

Several methods have been proposed for structure es- 
timation from silhouettes under known camera motion 
[l, 2, 5, 11, 12, 13, 141. These approaches have demon- 
strated that given a set of three or more nearby views of 
a smooth object, the structure of the object up to second 
order can be obtained along its silhouette. The recovery of 
structure and motion from a monocular sequence of silhou- 
ettes has been investigated by Giblin et al. [4]. For the case 
of a curved object rotating about a fixed axis with constant 
angular velocity, they have shown that: (1) given a com- 
plete set of orthographic silhouettes, the rotation axis and 
velocity can be recovered, along with the visible surface; 
and (2) given the silhouettes over a short time interval, 
the rotation axis can be recovered if the angular velocity 
is known. 

We addressed the problem of estimating structure and 
motion of a smooth object undergoing arbitrary unknown 
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motion under orthographic projection in [SI. The struc- 
ture and motion was estimated by tracking the silhouettes 
observed by a trinocular stereo rig over time. In this pa- 
per, we extend the approach to the case of perspective 
projection. The resulting structure and motion estimation 
algorithm will be useful in a situation where the viewer has 
no knowledge or control of the object’s motion. 

1.1 Problem Statement and Approach 

Consider a smooth curved object in motion viewed by 
an observer. The viewing cone grazes the object surface 
along the occluding contour and intersects the image plane 
along the silhouette. At each point on the occluding con- 
tour the surface normal is orthogonal to the viewing ray. 
This makes the 3D occluding contour and the 2D silhouette 
viewpoint-dependent. With the object moving relative to 
the viewer, the silhouettes in successive images are pro- 
jections of different 3D contours. This is in contrast with 
an image sequence containing only viewpoint-independent 
features. 

Here, we address the problem of estimating structure 
and motion of a smooth curved object from its silhouettes 
observed over time by a trinocular stereo rig under per- 
spective projection. To relate the silhouettes observed 
at successive time instants, we construct a model for the 
local structure along the silhouette at each time instant. 
We use trinocular imagery for our analysis since three im- 
ages taken from known relative positions are sufficient to 
recover the local structure (up to second order) along the 
silhouette (1, 2, 12, 131. 

Since successive silhouettes are projections of different 
3D contours, there is no true point-to-point correspon- 
dence between them. For the triplet of images observed 
at a given time by the three cameras, the epipolar geom- 
etry is known and we establish correspondences between 
distinct 3D points lying on a common epipolar curve and 
then estimate local structure parameters. 

However for the images taken by a camera at successive 
time instants, the epipolar geometry is unknown. Unless 
we know the correspondences we cannot estimate the mo- 
tion. To bootstrap the process of motion estimation, we 
use some detectable and trackable silhouette features (in- 
flections and frontier points [4]) to obtain an initial esti- 
mate of the unknown motion, which is then refined using 
the rest of the silhouette. 



The algorithm for structure estimation using trinocular 
imagery is described in Sect. 2. The algorithm for motion 
estimation from dynamic silhouettes is discussed in Sect. 3. 
We present experimental results on real images in both 
sections, and conclude with comments in Sect. 4. 

2 Structure Estimation Using Trinoc- 
ular Imagery 

2.1 Modeling the Local Structure 

The local structure (up to second order) at a surface 
point P is defined by the 3D location of P in the world 
coordinate frame (in our case, the coordinate frame of the 
central camera), the surface normal at P ,  the two princi- 
pal directions and the principal curvatures. At each point 
P ,  we define a local coordinate frame (Xi, x, 21) whose 
origin is at P ,  the XI-axis is aligned with the outward 
normal, and the x and 21-axes are aligned with the prin- 
cipal directions. The local surface up to second order is a 
paraboloid [3], given by the equation 

where nl and K Z  are the principal curvatures at P ,  Mt is 
a symmetric 4 x 4 matrix and Qi is the vector of homo- 
geneous coordinates of a point Q on the paraboloid at P.' 
The signs of nl and ~2 define the point type: if both are 
same (resp. opposite), P is an elliptic (resp. hyperbolic) 
point; if either ~l or ~2 is zero, P is a parabolic point; if 
both ~1 and IC:! are zero, P is a planar point. 

Let ( X ,  Y, 2) be the camera-centered coordinate frame, 
where the Z-axis coincides with the optical axis and the 
XY-plane is the image plane (Fig. 1). Let P ,  the origin of 
the local frame, be at (XO, YO, 20) in the camera-centered 
frame. We denote the angle made by the Xl-axis with 
the normal to the silhouette by <, the angle between the 
X-axis and the normal to the silhouette by 0 and the an- 
gle between the viewing direction and one of the principal 
directions (say the 21-axis) by y. 

To completely describe the object surface locally, 
we need to specify the rigid transformation parameters 
(e, 7, [, X O ,  YO, 20) defining the local coordinate frame at 
P with respect to the world coordinate frame, together 
with 6 1  and 6 2 ,  for each point P on the silhouette. The 
equation of the paraboloid in the camera-centered frame 
is: 

c = Q ~ M Q  = 0, (2) 
T 

where M = TC1 & Mi RO1 TLl. Here To is the 4 x 4 
matrix for a translation by (XO, YO, ZO), & is the 4 x 4 
matrix for the rotation between the two coordinate frames, 
and &I and Q are the homogeneous coordinate vectors of 
Q in the local and camera-centered frames respectively. 

'Notation: All boldface letters denote coordinate vectors or 
arrays. We use capital letters to  denote 3D points in the scene 
and small letters t o  denote their projections in the image. 

Figure 1: Projection geometry. 

By definition, the surface normal at the contour point 
P is orthogonal to the viewing direction: 

N p . V p = O ,  (3) 

where N p  = [E, E, ElT, and V P  = [XO,YO,ZO]~.  
Eliminating 2 between (2) and (3) gives the equation of 
the silhouette in the image coordinates, which is a conic 
section. 

The paraboloid model described in this section is used 
to model the structure at each point along the silhou- 
ette. From a single projection of the paraboloid, we can 
obtain five constraints on the eight structure parameters 
(8,ylC,Xo,Yo,Zo,K~, K Z ) :  the surface normal N p  at P 
can be computed as the cross product of V p  and the tan- 
gent t ,  to the silhouette at p .  This gives the angles e 
and C directly. The coordinates of p give two constraints 
on Xo,Yo and 20. The curvature of the silhouette at p 
gives a constraint on K I ,  K Z  and y. To complete the local 
structure model, we need to estimate the depth 20 and 
obtain two more constraints on ~ 1 ,  K Z ,  and y. We obtain 
these constraints using the matched points from the other 
two images of the trinocular imagery. The next section 
presents the method to find correspondences. 

2.2 Finding Correspondences 

When the relative motion between the object and the 
camera is known for a pair of images, say 11 and 12 taken by 
two cameras with optical centers C1 and C:! respectively, 
we can estimate the epipolar plane and the epipolar line 
for each point in each image. Similar to the conventional 
stereo case, we can match points lying on corresponding 
epipolar lines, e.g. points p l  and p2 in Fig. 2. The dif- 
ference here is that the two matched image points are not 
projections of the same 3D point. Similarly if we have a 
third camera C3, we can find the epipolar match point p3 
in image 13. Thus we have a triple of points matched in 
the three images using the epipolar geometry. 

For a continuous relative motion between a camera and 
an object, the points matched using the instantaneous 
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Figure 2: Epipolar geometry. 

epipolar geometry trace a 3D curve (called the epipolar 
curve) on the object such that at each point the curve is 
tangent to the view line [l]. At points where the surface 
normal is not parallel to the epipolar plane normal, the 
epipolar curve is a regular curve e.g. at point P I .  But at 
points where the surface normal is parallel to the epipolar 
plane normal, the epipolar curve degenerates into a point, 
e.g. point Q in Fig. 2. In such a case, the matched points 
q1 and q2 are projections of the same 3D point Q. Such 
points are the frontier points for the corresponding cam- 
era motion [4]. We make use of this fact in estimating the 
translation parameters as explained in Sect. 3. 

2.3 Structure Estimation 

Previous approaches to structure estimation under 
known camera motion [ l ,  2, 12, 131 have used the epipolar 
parameterization of the surface. Our technique is simi- 
lar to Szeliski’s and Weiss’ technique [12]; we choose the 
epipolar plane for the computation of one of the surface 
curvatures. 

Since the epipolar curve is tangent to the view line at 
every point, we can estimate its osculating circle by find- 
ing the circle that is tangent to the three view lines2. The 
point where this circle touches the central view line pro- 
vides an estimate of the depth of the 3D surface point. The 
curvature of the circle is an estimate of the curvature of 
the epipolar curve. This enables us to compute the normal 
curvature of the surface along the view line, which in turn 
gives a constraint on the surface curvatures nl ,n2 and an- 
gle 7. Once the depth of the points along the silhouette 
is computed, we can estimate the direction of the tangent 
to the 3D contour. This tangent gives one more constraint 

21f the three optical centers of the trinocular imagery are 
collinear, the two epipolar planes will be coplanar. But in gen- 
eral the optical centers will not be collinear, making the three 
view lines non-coplanar. In such a case the three view lines are 
projected onto a common plane, and a circle touching the pro- 
jected lines is estimated. Recently, Boyer and Berger [2] have 
presented a technique where the assumption of linear camera 
motion is not necessary. 

on nl, n2 and 7 since it is along a direction conjugate to 
the view line [lo]. This constraint, along with the con- 
straints given by the normal curvature and the curvature 
of the silhouette in the central image give us three equa- 
tions which are solved to obtain the values of the structural 
parameters, nl,  n2 and 7. See [7] for further details. 

2.4 Experimental Results 

We have applied the structure estimation algorithm to 
two real image sequences, each taken by a calibrated cam- 
era observing an object placed on a turntable. We sim- 
ulated the trinocular imagery by taking triple of images 
10 degrees apart in the sequence. Figure 3(a) shows one 
such image of one of the objects. Fig. 3(b) and (c) show 
the reconstructed 3D contour and the recovered Gaussian 
curvature along the contour respectively. The successive 
triples of images were taken with 5-degree rotations of the 
turntable. 

3 Motion Estimation 

With the results of the structure estimation algorithm 
presented in the previous section, we have the 3D contours 
on the object surface in the successive frames I l ( t )  and 
I l ( t  + 1) of the central camera. Let us assume that the 
object has undergone a rotation of an unknown angle a 
about an unknown axis C2 = [w., wy , w . ] ~  passing through 
the origin, followed by an unknown translation [ tz,ty,  t,jT 
from t to t + l .  Let R and T be the matrices corresponding 
to the unknown rotation and translation respectively. 

Motion estimation under orthographic projection was 
addressed in [6]. Silhouette inflections were tracked over 
time to get an initial estimate of the rotation parameters. 
Under orthographic projection the rotational parameters 
alone determine the epipolar line direction. Thus the esti- 
mated rotation was sufficient to identify the frontier points 
and in turn estimate the translational parameters. This 
initial motion estimate was then iteratively refined. 

In this section, we extend the approach to the more 
general case of perspective projection. In this case, we 
cannot separate the estimation of rotational and transla- 
tional parameters, since the direction of the epipolar line is 
determined by both rotational and translational parame- 
ters. Therefore we have to modify the orthographic motion 
estimation algorithm . 

The motion estimation is done in two steps. We first 
obtain an initial estimate of the rotation and translation 
parameters using the inflections and the frontier points. In 
the second step, the initial estimate is then refined using 
the rest of the silhouette. The next two sections describe 
these two steps in detail. 

3.1 Obtaining the Initial Estimate 

Rotational Parameters: Silhouette inflections are pro- 
jections of parabolic points on the object surface [9, 131. 
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Figure 3: (a) sample image of the central camera; (b) recovered 3D contour; (c) recovered Gaussian curvature along the 
contour. 

On generic surfaces these points lie on continuous curves 
called parabolic curves. With relative motion between the 
object and the viewer, the inflections in successive images 
will be projections of neighbouring points on the parabolic 
curves. A parabolic point has a single asymptotic direc- 
tion and the surface is locally cylindrical. Consider the 
following lemma [7, 81: 
Lemma 1 At a parabolic point, i f  we move along the sur- 
face in any direction (hence in particular, along the di-  
rection tangent to the parabolic curve), the change in the 
surface normal is perpendicular to the asymptotic direc- 
tion. 

Consider an inflection point p which is the projection 
of a parabolic point P in the central image I l ( t ) .  If we 
track p in successive images, we will be moving along the 
parabolic curve at P. From Lemma 1, we can see that 
the change dN in the surface normal is orthogonal to the 
asymptotic direction, say A, at P. We can compute A 
from the local structure estimated at time t. Let p' be 
the tracked inflection in I l ( t  + 1); it is the projection of a 
neighbouring parabolic point P' with surface normal N'.  
Using Lemma 1 and the fact that A lies in the tangent 
plane giving A . N = 0, we have: 

A . ~ N  = A .  ( R - ~ N '  - N )  = A .  R-"' = 0. (4) 

We parameterize the rotation using the angle 4 made 
by C2 with the Z-axis, the angle + between its projection 
in the XY-plane and the X-axis, and the rotation angle CY. 

With n 2 3 inflections present in images 11 ( t )  and 11 (t + 
l), we use least-squares minimization with the objective 
function given by Cy=l [A, . (R-'N,')I2. 

The minimization is done over the angles +,+ and CY. 

Note that we have to first find a match between the sets of 
inflections on the silhouettes in the two images. We match 
the inflections such that (1) the ordering of the matched 
inflections along the silhouette is maintained, and (2) the 
angle between the normals at the matched inflections is 
small. 
Translational Parameters Under orthographic projec- 
tion, with an estimate of the rotation parameters the 

epipolar plane normal can be estimated and in turn fron- 
tier points can be detected and utilized for the estimation 
of the translational parameters [6]. However this is not 
the case under perspective projection, where the rotational 
parameters alone do not determine the epipolar plane nor- 
mal. The frontier points cannot be detected unless the 
translation parameters are estimated first. However our 
experience shows that the epipolar plane normal direction 
with the orthographic projection approximation is close to 
the corresponding epipolar plane normal direction for the 
perspective case. Given an estimate of the rotation pa- 
rameters, we estimate the epipolar plane normal with the 
orthographic projection approximation and use it to detect 
the frontier points. Needless to say the detected frontier 
points are an approximation of the true frontier points of 
the perspective projection, but this approximation gives 
a good initial estimate of translational parameters. This 
initial estimate is refined in the second step. 

Recall that the matched frontier points are projections 
of the same 3D point. Therefore if a frontier point F 
at time t matches the frontier point F' at time t + 1, 
then F' = R F + T .  Thus for a given rotation, estimating 
the translation becomes a linear problem once the frontier 
points are detected and matched. This serves as the initial 
estimate of the translation parameters for a given rotation 
parameters. 

3.2 Refining the Motion Estimate 

In the second step, we use the structure along the entire 
silhouette to refine the estimate of the motion parameters 
obtained in the first step. 

With an estimate of R and T ,  we can determine the 
epipolar plane for each point in image 11 ( t ) .  With an esti- 
mate of the structure parameters of the local paraboloids 
and the epipolar planes, we can estimate the curvature of 
the epipolar curve at each point. Consider a point qi on 
the silhouette in image I l ( t )  (Fig. 4). We can predict the 
match point "q; in frame I l ( t  + 1) as the projection of a 
point "Qi' such that "Qil lies on the estimated osculating 
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circle of the epipolar curve and the surface normal at PQ,l 
is orthogonal to the viewing direction. But we can also 
detect the epipolar match point dq: in image I l ( t  + 1) as 
the intersection point of the estimated epipolar line corre- 
sponding to q, with the silhouette at t + 1. 

euaarvrrvr-.art+1 

Figure 4: Predicted and detected epipolar matches. 

In the refinement step, we iteratively minimize the 
sum of the squared distance between and dd for all 
silhouette points q,. The minimization is over the six- 
dimensional space of R and T parameters. We iterate 
over the rotation parameters and at each iteration step we 
perform non-linear least-squares minimization and deter- 
mine the best translation parameters that give the mini- 
mum sum of distances. In summary, the motion estimation 
algorithm can be given as follows. 

1. Obtain an initial estimate of the rotation parameters 
(ao, 40, $0)  using tracked inflections. Set a = ao, = 
40 and $ = $0. 

2. For the given rotation parameters a, 4, $ 

Detect and match the frontier points in the two 
central frames with the orthographic projection 
approximation and compute the initial estimate 
of translation parameters. 

Knowing the local structure at each point on 
the silhouette, refine the estimate of the trans- 
lation parameters to minimize the sum S = cy=, dist2 ("q:,d q j )  of the distances between 
the predicted and the detected epipolar match 
points for all the silhouette points q,. 

3. Minimize S by updating the values of the rotation 
parameters a, 4 and $J, and repeating Step 2. 

3.3 Implementation and Results 

We can potentially consider the entire silhouette for the 
computation of the sum S. But observing that the struc- 
ture estimation using epipolar matches gets less reliable 
as we approach the frontier points, we exclude the points 
close to the frontier points from the computation of S. 

Note that if R and T represent the relative motion from 
time t to t + 1, then RT and -RTT represent the relative 
motion from t + 1 to t. We can use the structural param- 
eters estimated at time t + 1 to predict the silhouette at 
time t,  making use of all the structural information avail- 
able. In practice, this has improved the performance of 
the motion estimation algorithm. 

We have applied the method to the sequences of a 
squash and a bottle mentioned in Sect. 2.4. The rotation 
axis of the turntable was not parallel to the image plane of 
the camera. Thus the three effective optical centers were 
not collinear and the effective motion of the object was a 
general one. 

Table 1 lists the recovered motion parameters after each 
step on a sample set of frames for the squash. For each 
step, we also list the angle between the true and estimated 
rotation axes and the error in the rotation angle. Both 
the steps of the motion estimation involve non-linear min- 
imization requiring a starting point for the search. The 
fust step of minimization using the tracked inflections was 
stable with respect to the starting point. The result of this 
step is used as the starting point for the refinement step. 

Figure 5(a-b) shows two views of the global structure 
of the squash after 30 frames. The detected 3D occluding 
contours are placed in a common coordinate frame after 
derotating them using the estimated motion. 

For the squash sequence, the instantaneous motions at  
successive time frames were estimated independently. To 
take advantage of the motion continuity, we modified the 
step of obtaining the initial motion estimate as follows. 
First, an initial estimate of the motion using the inflec- 
tion and frontier points at a given time t is computed. 
We then compare the value of the objective function S us- 
ing this motion estimage to the value of S using the final 
motion result of the previous time t - 1. We then select 
the motion that yields a smaller value of S among these 
two, and initiate the refinement step. This modification 
also avoids any errors in situations when the estimate of 
the rotation parameters based on inflections may be far off 
from the solution due to noise or because the number of 
inflections present is small. Table 1 presents sample results 
of the modified motion estimation algorithm when applied 
to the bottle sequence. Figure 5(c-d) shows two views of 
the global structure of the bottle after 25 frames. 

4 Discussion 

Although estimating motion from silhouettes is more 
difficult than using viewpoint-independent features, we 
have the advantage that we have more information about 
the surface even from a single silhouette - the surface nor- 
mal, the sign of the Gaussian curvature and a constraint 
on the principal curvatures at the surface point. We have 
used the relationship between certain silhouette features 
(inflections) and a model of the local surface structure to 
estimate both the motion and the global surface struc- 
ture from perspective views of the silhouettes of a moving 
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-0.11 0.939 0.324 

Table 1: Result of the motion estimation for the squash and the bottle (all angles are in degrees). 

Figure 5: (a-b)two views of the global structure of the squash after 30 frames; (c-d)two views of the global structure of 
the bottle after 25 frames. 

object. In estimating the motion we have also used an- 
other set of points on the silhouette: the frontier points. 
The results obtained on real images are encouraging and 
demonstrate the validity of the method. 
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