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Abstract 
In this paper, we propose a novel segmentation- 

based denoising algorithm. Segmentation yields intrin- 
sically homogeneous and extrinsically heterogeneous 
regions. A denoising algorithm that uses Multiple 
Compaction Domains (MCD) is then applied on each 
of the resulting segments. Such a scheme retains im- 
portant perceptual information in the segment bound- 
aries while the denoising algorithm operates only on 
homogeneous segments. Further, the MCD algorithm 
is demonstrably superior to the classical denoising 
algorithms using transform domain thresholding [4]. 
Our algorithm yields better perceptual quality and su- 
perior PSNR as compared to MATLAB’s adaptive 
Wiener filter. 

1 Introduction 
Image acquisition and transmission may yield im- 

ages that are corrupted with additive noise. Such 
images can often be realistically modeled as a 2- 
dimensional signal corrupted with additive white gaus- 
sian noise (AWGN) with a known noise variance. If 
the image is modeled as a WSS signal, then the Weiner 
filter is provably optimal in minimizing the mean- 
square error. For most signals, such assumptions are 
valid locally and the adaptive realization of the Wiener 
filter 111 is often taken as a benchmark for all denoising 
algorithms. 

Recently, some denoising algorithms have been pro- 
posed that use thresholding in (linear unitary) trans- 
form domains where the signal has a sparse represen- 
tation [2]. The key idea here is that while the signal 
can be compacted into a few transform coefficients (in 
a suitably chosen transform domain), white noise can- 
not be thus compacted. Hence, small coefficients are 
more likely due to noise while large coefficients are due 
to the signal itself. Thus, thresholding in the trans- 
form domain is a reasonable approach. 

Such techniques, however, are not tailored to ex- 
plicitly preserve important structural information. It 
can be argued that the perceptual quality of the re- 
stored image depends significantly on the fidelity of 
the restoring algorithm in retaining the structure in 
the image. In this paper, the authors present two 
ideas for retaining such information. The first idea 
is segmentation based denoising. Segmentation ex- 
plicitly represents structure in the shape of the seg- 
ments. Thus, applying a denoising algorithms to seg- 
ments preserves the structure represented by segment 
boundaries. Such ideas were explored in [3]. 

The second idea makes use of multiple compaction 
domains for denoising. While this approach does not 
explicitly make use of image structure but it over- 
comes some of the shortcomings of the classical de- 
noising algorithms based on thresholding in the trans- 
form domain. The philosophy behind this approach is 
that while significant information can be captured in 
a transform domain, some information is lost due to 
thresholding. This information can be partially re- 
gained using another well-chosen transform domain 
which is complementary to the first transform domain. 
A number of such complementary transform domains 
where the signal is well compacted are chosen and a 
POCS-based technique is employed to iteratively re- 
store the noisy signal from representations in these 
domains. The details of this Multiple Compaction 
Domain (henceforth called MCD) denoising algorithm 
can be found in [4]. 

It is important to note that linear transforms do 
not compact edges too well and as a result, like noise, 
edge energies are scattered among a large number of 
transform coefficients. Thus, threshold based denois- 
ing in the transform domain degrades edges, produc- 
ing ringing artifacts. While MCD denoising method 
strives to reconstruct the information lost by thresh- 
olding in one domain by using a number of complemen- 
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tary  compaction domains, segmentation based denois- 
ing preserves some significant structure explicitly by 
representing them as segment boundaries. Thus, while 
MCD denoising method implicitly tries to preserve 
intra-segment information, segmentation preserves the 
segment boundaries. Applying segmentation before 
the MCD algorithm has an additional benefit: since 
segments are intrinsically homogeneous, they are bet- 
ter compacted in the transform domain making the 
threshold-based denoising work better. 

In Section 2, we present the outline of the segmen- 
tation based denoising algorithm. Subsection 2.1 de- 
scribes the segmentation algorithm used. For the seg- 
ments to be amenable to transform based denoising, it 
is necessary to extend them to rectangular supports. 
This is described in subsection 2.2. In subsection 2.3, 
the multiple compaction domain denoising algorithm 
is described. Results and conclusions are presented in 
Section 3. 

2 The Denoising Algorithm 
The denoising algorithm consists of three key steps. 

We discuss each of the steps in the following subsec- 
tions. 
2.1 Segmentation 

We use the multiscale segmentation scheme given 
by Ahuja [5]. This algorithm does a multiscale tree- 
structured segmentation of a given image. The algo- 
rithm is fairly robust to Gaussian noise i.e. the pres- 
ence of noise does not lead to much degradation in the 
segmentation scheme. This is because the segmenta- 
tion scheme involves pixel population analysis in order 
to find regions and the noise being i.i.d., does not su- 
perimpose significant structure on the image. 

In the final step of our algorithm, as described later, 
we perform thresholding in multiple transform do- 
mains. This thresholding operation is optimal only 
asymptotically under mild conditions on the signal 
statistics. In order to satisfy these conditions, we 
would like our regions to be have a minimum “sta- 
tistically reliable” size. Let Xi be the pixels in the 
segment. Then, under the assumption that the noise 
is zero mean, the following criterion is specified for an 
accepted level of the validity of the asymptotic results 
E(I C y = l ( X i / n ) 1 2 )  < 1 131. With Gaussian noise of 
standard deviation U ,  we need the number of pixels in 
the region to be atleast U’. 

In order to have segments of acceptable size, we 
start with the finest scale of segmentation. For any 
region with size below the threshold, we iteratively 
find nearest parent node along the path to the root of 
the tree which is larger than the specified threshold. 
If such a parent region exists, we use that and replace 

the subregions at all smaller scales. Else, we merge the 
region at  the coarsest scale with the neighboring region 
which has minimum disparity in mean gray value from 
the current region. 

Figure l (b)  shows the noisy Lena image and seg- 
mentation results before and after post-processing of 
the segments are shown in Figures l(c) and l(d) re- 
spectively. 
2.2 Region Extension 

Segmentation produces regions that may have ar- 
bitrary shapes. Linear Transforms, including wavelet 
transforms, are traditionally defined over square rect- 
angular supports. The usual practice is to enclose 
the region in a rectangle and to apply zero padding. 
Defining transforms over regions extended by zero 
padding yields appreciable ringing artifacts because of 
the prominent edge at  the region boundary. We pro- 
pose to extend the region into the bounding rectangle 
so that most of the energy of the extended segment is 
compacted into low frequency transform coefficients. 

Let C, be the set of all signals defined in the bound- 
ing rectangle that have the same value as the original 
region over the region support. Let Cb be the set of all 
functions with transform coefficients at (some prede- 
fined set of) high frequencies/fine scales having value 
zero. In wavelet domain, for one level decomposition, 
it is equivalent to taking the low-low subimage while 
zeroing out the other subimages. Both these sets are 
closed and convex. We define our extended region as 
the one that lies in the intersection of these sets. We 
use POCS to find one such region in the intersection 
of these sets [6].  
2.3 Multiple Domain Segment Denoising 

Once we get the extended segments, we denoise 
each segment independently of the others. The de- 
noising algorithm that we use is the Multiple Com- 
paction Domain (MCD) algorithm [4]. We use two 
wavelet domains for complementary processing. In 
each domain we define a confidence tube of radius 
6 as the set of signals with transform coefficients si 
satisfying Isi - dil 5 hi, where di are the transform 
coefficients of the noisy signal and 6i = 6 > 0 if 
ldil < X = UJ- and Si = 0 otherwise. By 
defining 6i = 0 for large coefficients, we force the esti- 
mates to agree with “reliable” component of the data. 
The confidence tube in each domain is both closed and 
convex. We use POCS to get the image that lies in 
the intersection of both convex sets. 

POCS converges to a solution in the intersection of 
the two convex sets (if the intersection is non-empty) 
[6]. A reasonable choice for the initial point is the 
hard-thresholded signal estimate in any domain. An 
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equivalent choice is the zero signal. The details of the 
MCD denoising algorithm can be found in [4]. 

3 Results 
We carried out simulations on 512 x 512 Lena (Fig- 

ure 1). The original Lena image (Figure l(a)) is cor- 
rupted by AWGN with mean 0 and U = 15. For re- 
gion extension, we use a 2-level decomposition in DB3 
where DBn represents Daubechies filter with n van- 
ishing moments. DB3 and DB4 are the two wavelet 
domains used for segment denoising using MCD al- 
gorithm. Result for the MATLAB’s 3 x 3 Adaptive 
Weiner Filter is shown in Figure l(e). The result of 
our algorithm is given in Figure l(f). One can see 
that our reconstruction preserves features better spe- 
cially in Lena’s hat and hair. The edges are better 
preserved and ringing artifacts are reduced along the 
region boundaries. Also, though not obvious in these 
images, perceptual quality of our reconstruction looks 
better on the computer monitors. Further, the Adap- 
tive Weiner Filter gives a PSNR of 31.24dB while our 
method gives a PSNR of 31.3dB. 

The results show that our algorithm is superior to 
MATLAB’s 3 x 3 adaptive Wiener filter both in terms 
of PSNR as well as the perceptual quality. 
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Figure 1: (a) Original Lena image (b) Lena corrupted by AWGN, s.d. 15 (c) Segmentation at  the finest scale (d) 
Segmentation after post processing using multiscale segmentation data (e) MATLAB’s spatial Wiener filter (3 x3 
window) (f) Reconstructed Lena using segmentation based MCD algorithm 
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