
1Parallel Distributed Detection of FeatureTrajectories in Multiple Discontinuous MotionImage SequencesSrikanth Thirumalai, Narendra AhujaAbstract|This paper is concerned with three-dimensionalinterpretation of image sequences showing multiple objectsin motion. Each object exhibits smooth motion except atcertain time instants when a motion discontinuity may oc-cur. The objects are assumed to contain point featureswhich are detected as the images are acquired. Estimat-ing feature trajectories in the �rst two frames amounts tofeature matching. As more images are acquired, existingtrajectories are extended. Both initial detection and ex-tension of trajectories are done by enforcing pertinent con-straints from among the following : similarity of image planearrangement of neighboring features, smoothness of threedimensional motion and smoothness of image plane mo-tion. The constraints are incorporated into energy functionswhich are minimized using 2-D Hop�eld networks. Wrongmatches that result from convergence to local minima areeliminated using a 1-D Hop�eld like network. Experimentalresults on several image sequences are shown.Keywords|Feature correspondence, Trajectories, Motion,Structure, Hop�eld networks.I. IntroductionTHIS paper is concerned with three-dimensional inter-pretation of image sequences showing multiple objectsin motion. Each object exhibits smooth motion except atcertain time instants when a motion discontinuity may oc-cur. A common type of motion discontinuity is in motiondirection, e.g. when an object undergoes a collision. Be-tween such instants of temporal discontinuity each objectexhibits a smooth motion.The objects are assumed to contain point features whichare detected as images are acquired. Trajectory detectionbegins with the �rst two frames wherein it amounts to thestandard problem of feature matching. As more images areacquired, existing trajectories are extended. There is littleinformation available for the initial matching of features inthe two frames. So any matching constraints are poten-tially error prone and must be further con�rmed againstsubsequent frames. Such initial matching of features isdone based on the similarity of the image plane arrange-ments of their neighbors. Clearly, this only holds for thoseneighbors which are detected in both frames, and providedthe neighbors do not belong to another neighboring object.Once the �rst two frames are matched, the initial segmentof each feature trajectory is found. There is now moreinformation available for matching of the features in theSrikanth Thirumalai is with Cray Research Inc., Eagan, MN. E-mail: Srikanth.Thirumalai@cray.comNarendra Ahuja is with the Beckman Institute for Advanced Sci-ence and Technology, University of Illinois, Urbana, IL. E-mail:ahuja@stereo.csl.uiuc.edu

second frame with those in the third, i.e., for trajectoryextension. The extension of trajectories must be consis-tent with continuation of the three-dimensional motion ofthe object. However, this is only true when the objectis not undergoing a motion discontinuity. Further, thisconstraint can be applied only if features have been seg-mented into objects so that three-dimensional motion ofan object can be estimated. When the smoothness of thethree-dimensional motion cannot be enforced, trajectoriesare constrained to have only two-dimensional smoothnesswhich is possible once the initial trajectories are detected,i.e., beyond the second frame, and which is correct exceptacross temporal discontinuities in motion. Thus, severaldi�erent constraints are used to detect and extend trajec-tories, but each of these constraints must be used when itis applicable.As the images are acquired and trajectories are esti-mated, they are segmented into subsets each correspondingto a di�erent moving object. This is done by identifyingneighboring correspondences and breaking these neighborrelationships if they are found to be very dissimilar.The problem of detecting the feature trajectories is for-mulated as a series of cost minimization problems that aresolved using Hop�eld networks. The costs are de�ned interms of the constraints mentioned above, such that onlyappropriate constraints are used at any given image loca-tion at any given time. The process of detecting the featuretrajectories proceeds in an incremental fashion over timewith information from each frame being integrated as itbecomes available. At each time step in this process threeHop�eld networks are used sequentially, one to computethe geometrical cost associated with every match hypothe-sis, a second to perform the feature matching and a third toeliminate all the wrong matches. Although the structureof the Hop�eld networks (in terms of connectivity) doesnot change throughout the process of detecting the tra-jectories, it must be mentioned that some of the weightsassociated with the networks change with each time step.This is because these weights are calculated from the costsassociated with the various match hypotheses.The advantage of using Hop�eld networks is that theyo�er a simple and elegant framework for optimization prob-lems that can be suitably formulated. In addition, the reg-ular structure of the computation and communication in aHop�eld network allows easy implementation on scalableparallel computers. Tasks involving extensive communi-cation such as updating the network at each step may be



2performed asynchronously like in several iterative linear al-gebra solvers. It is for these reasons that we have chosenthis computational framework for the optimization prob-lem.In the past there have been attempts by researchers [1],[2], [3], [4] and [5] to use the Hop�eld network to solvethe feature correspondence problem. There have been noattempts though, to integrate cost measures from severalconstraints, as discussed above, to solve more complexscenes with multiple moving objects exhibiting temporaldiscontinuities in their motion. Also, none of the previousapproaches o�er any scheme to eliminate wrong matcheswhich result from settling down to a local minimum whileperforming energy minimization. This makes the approachmore robust to variations in scene parameters such as inter-frame motion of objects which can vary from 0 to 20 pixels.Section II gives the details of the formulation of featurematching and trajectory detection problems. Sections IIIand IV describe the mapping of the problems of featurecorrespondence and trajectory �nding onto the Hop�eldnetwork. Section V describes the algorithm to eliminatewrong correspondences that result from descending to alocal energy minimum. Section VI describes a method tosegment the correspondences into groups representing rigidobjects. Finally, section VII contains results on severalimage sequences.II. Feature Matching and Trajectory DetectionA. Feature MatchingThe problem of feature correspondence deals with �nd-ing a match in the current frame, if it exists, for every pointin the previous frame. In order to �nd the correct match,constraints such as uniqueness and image plane similarityin the arrangement of neighbors around the points are im-posed. The uniqueness constraint implies that a point inthe previous frame can match at most one point in thecurrent frame and vice versa. The other constraint impliesthat the point in the current frame which is the correctmatch for a certain point in the previous frame should havea similar geometrical arrangement of neighbors around it.These constraints are then incorporated into an energyfunction in such a way that the energy function attainsa minimum when the points are either correctly matchedor not matched at all. This energy minimization is doneusing the gradient descent approach that is implementedusing a Hop�eld network.The �rst task is to apply a feature detector to a framewhen it becomes available. In this discussion, a featuredetector is de�ned as one that extracts features such as in-tensity maxima, minima and saddle points and sharp cor-ners of objects in the image. Let the �rst frame have N1points and the second frame N2 points. We have a matrixof N1 �N2 possible match hypotheses where element (i; j)indicates that the ith feature in the �rst frame matches thejth feature in the second frame. Only a subset of theseare correct and these represent the correct matches. Acost is associated with every hypothesis such that a lowcost is assigned to a correct hypothesis and a high cost is

assigned to a wrong hypothesis. Since the motion of thefeature points is bounded by a maximum possible motion,we compute the costs for only those hypotheses where thepoint in the second frame is within a circle of interest ofthe point in the �rst frame. All other hypotheses are as-signed a �xed high cost. The costs are computed based onthe image plane similarity in the arrangement of neighborsaround the two points constituting the hypothesis. Theneighbors discussed here are the Delaunay neighbors of thepoints which may be obtained from the Voronoi diagram[6] of the set of feature points in the image. To determinethe cost associated with a match hypothesis, we must tryto �nd a subset of neighbors of the point in the �rst framethat match a subset of neighbors of the point in the secondframe. The similarity in the image plane arrangement ofthese subsets is used to compute the cost associated withthe match. We look for similarity in the subsets ratherthan the entire set of neighbors because missing featurepoints and object boundaries cause distortions in the setof neighbors. This cost computation scheme is explainedin section IV-A.The costs associated with all the possible N1 � N2 hy-potheses are then incorporated into a cost function. Letus say that the process of minimizing the cost function hasresulted in N12 correct matches. There are N2�N12 pointsin the second frame that haven't been matched to points inthe �rst frame. When the third frame becomes available,the �rst task is to apply the feature detector. Assume thatthere are N3 points in the third frame. The correspon-dences between the N12 trajectories and the N3 points inthe third frame have to be established. Doing so results intrajectories of length three. In addition to this there existsthe problem of establishing the correspondences betweenthe N2 � N12 points discussed earlier and the N3 pointsin the third frame. The latter correspondence process re-sults in trajectories that start o� from the second frame.This problem is solved in exactly the same manner as theproblem of establishing the point correspondences betweenthe �rst two frames. The problem of extending the N12trajectories to the third frame is slightly more involved.B. Trajectory DetectionThe trajectory detection problem is just an extension ofthe feature correspondence problem where the trajectoriesobtained until the previous frame are to be matched tothe points in the current frame if such a match does exist.In addition to constraints such as uniqueness of a matchand image plane similarity in the arrangement of neighborsaround points corresponding to a correct match, other con-straints such as 2-D (image plane) continuity of trajectoriesand 3-D motion continuity can be imposed.Consider the problem of extending the N12 trajectoriesobtained thus far to the third frame. The problem can berestated as that of having to match the N12 trajectoriesto the N3 points in the third frame. In this situation, wehave a matrix ofN12�N3 hypotheses. Of these hypotheses,there will be a subset of hypotheses that represent matchesbetween trajectories and points in the third frame that lie



3within their circles of interest. The costs to be associatedwith each of these hypotheses have to be determined. Allof the other hypotheses (those involving trajectories andpoints outside their circles of interest) will be assigned veryhigh costs. The costs associated with each hypothesis arerepresentative of the following three constraints,2-D arrangement of neighbors: Similarity between thearrangement of neighbors around the last point of thetrajectory and the point in the third frame. This isexactly the same as the constraint imposed on pointcorrespondences.Continuity of 3-D motion: Continuity of the 3{D mo-tion computed from the trajectories already known.Continuity of trajectories: 2{D continuity of the trajec-tories.The extent to which the hypotheses satisfy each of theabove constraints is determined separately. This resultsin three di�erent cost measures that need to be mergedbefore being incorporated into the energy function. Thesecond method is now explained. Having obtained the tra-jectories until the previous frame, any applicable motionand structure algorithm [7] can be used to estimate the 3-D motion and structure of the objects and these estimatescan be used to predict the positions of the feature points inthe current frame. Based on the predicted positions, a costcan be associated with every hypothesis that a trajectoryextending up to the previous frame matches a point in thecurrent frame. Before applying any motion model one hasto segment the trajectories into groups that correspond torigid objects. This cost computation scheme is describedin detail in section IV-B.The third method to compute the cost to be associatedwith a trajectory and a point in the third frame that lies inits circle of interest is based on the image plane continuityof the trajectory across the frames. This is done as follows.The time axis is collapsed so that the problem of �tting afunction to the trajectory becomes a one-dimensional prob-lem. A Lagrange interpolation is done between the pointsconstituting the trajectory and the slope at the last pointof the trajectory is computed. Then, the slope of the linesegment joining the last point of the trajectory and thepoint in the current frame that is competing for the matchis computed. The cost associated with the hypothesis isthen based on the similarity of the two slopes. This costcomputation scheme is described in detail in section IV-C.We thus have three di�erent cost measures that are as-sociated with each competing hypothesis. A method tomerge these three costs and associate a single cost measurewith each competing hypothesis is devised.C. Cost Merge AlgorithmThree cost computation schemes have been outlinedabove. Each method works well in some cases but failsin others. The 2-D geometrical cost computation methodmight not yield good results at points close to objectboundaries because of di�erences in the motions of the twoobjects. It could also happen that though a certain pointin the current frame is the correct match for a point in the

previous frame, there might be no subset of neighbors thatmatch for the two points. The cost computed using theassumption of 3-D motion continuity across frames yieldsbetter results than the 2-D method but again fails at ob-ject boundaries because the rigidity assumption is violatedacross boundaries. This method also fails when there is atemporal discontinuity in the motion of objects. Finally,the cost computation scheme based on the 2{D continuityof trajectories gives good results at object boundaries butfails when there is a temporal discontinuity of motion. Ina situation in which there is a temporal discontinuity inthe motion, only the cost based on the 2{D arrangementof neighbors can be used. Table I lists the cases in whichthe three methods fail or apply.TABLE IComparative analysis of the effectiveness of the three costcomputation schemes.Costcomputation Fails Worksscheme2-D arrangement When no subsets All otherof neighbors of neighbors timesmatchContinuity of At object All otherof 3-D motion boundaries timesand temporalmotiondiscontinuitiesContinuity of Temporal All othertrajectories motion timesdiscontinuitiesThis suggests that there is a need to merge these costsand determine a single cost measure for a certain matchthat does not fail at either object boundaries or motion dis-continuities. One could suggest many methods to achievethis. In this system we have taken the simple approach ofchoosing the least of the three costs. In our experimentswe have seen that this method works pretty well, and thereis no need for a more complex cost merge scheme. Oncethe merged cost associated with every hypothesis is com-puted, they are incorporated into an energy function alongwith the uniqueness constraints. This energy function isminimized using the Hop�eld network.III. Mapping the feature correspondence andtrajectory finding problems onto theHopfield NetworkIn this section we brie
y describe how the problems offeature correspondence and trajectory �nding are mappedonto the Hop�eld network.A. Mapping the feature matching problem onto the networkConsider the case in which there are two images of thescene taken at two di�erent time instants, t1 and t2. The



4feature detector is run on the two images and two sets offeature points are obtained. Let the �rst image have N1points and the second image have N2 points. The problemat hand is to �nd a subset of points, N12 in number, in the�rst frame that has matches in the second frame.The Hop�eld network [8] used for the above problemconsists of a two-dimensional array of processing elements(PEs) havingN1 rows corresponding to the N1 points in the�rst frame and N2 columns corresponding to the N2 pointsin the second frame. Each PE is essentially a nonlinearampli�er that produces an output vi which is related to itsinput ui by the equationvi = g(�ui) = 12(1 + tanh(�ui)) (1)where � is called the gain parameter. The input ui to theith PE is the weighted sum of the outputs of the PEs thatare connected to it. The processing element (i; j) repre-sents the hypothesis that the ith point in frame 1 matchesthe jth point in frame 2. Each processing element has apotential associated with it. This potential correspondsto the quantity v discussed previously and can take on acontinuum of values between 0 and 1. The value 1 repre-sents a sure match between the corresponding points in thetwo frames and the value 0 represents a nonmatch. Anyvalue between 0 and 1 signi�es the level of con�dence inthe match between the corresponding points.The connections between the processing elements andthe weights associated with them depend on the energyfunction that has to be minimized. The energy function(EF ) used in this problem has the formEF = �12 N1Xi=1 N2Xj=1 N1Xk=1 N2Xl=1 Tij;klvijvkl �N1Xi=1 N2Xj=1 Iijvij +1� N1Xi=1 N2Xj=1 1Rij Z vij0 g�1i (v)dv (2)where, vij represents the potential of the (i; j)th PE, Tij;klrepresents the weight of the link from the (k; l)th PE tothe (i; j)th PE, Iij represents the bias input to the (i; j)thelement and Rij represents the resistance seen at the inputof the (i; j)th PE. The last term in the above equation isthe gain function term.The energy function (EF ) can also be written, speci�-cally for the problem of feature correspondence, asEF = A2 N1Xi=1 N2Xj=1 N2Xk=1;k 6=j vijvik +B2 N2Xj=1 N1Xi=1 N1Xk=1;k 6=i vijvkj +C2 ( N1Xi=1 N2Xj=1 vij �N12)2 +

D2 N1Xi=1 N2Xj=1 N2Xk=1;k 6=j(Cost(i; j) �Cost(i; k))vijvik +E2 N2Xj=1 N1Xi=1 N1Xk=1;k 6=i(Cost(i; j) � Cost(k; j))vijvkj +1� N1Xi=1 N2Xj=1 1Rij Z vij0 g�1i (v)dv (3)Each term in the above equation has a physical explana-tion that is outlined below. The �rst term deals with rowinhibition. This term ensures that when the network sta-bilizes, there is at most one PE in each row that has apotential of 1 whereas all of the other elements have value0. The constant A determines the relative importance thisterm is given w.r.t. the other terms. The second term dealswith column inhibition. This is the column analog of the�rst term. When the network stabilizes, at most one PEin each column has a potential of 1. Again the constantB decides the relative importance this term is given w.r.t.the other terms. The �rst two terms in the above equa-tion enforce the concept of uniqueness of a match, i.e., apoint in the �rst frame can match at most one point inthe second frame and vice versa. Since both of these termsare equivalent, we generally give them equal importance,i.e., we have A = B. The third term in the energy equa-tion deals with global inhibition. This term is minimum,i.e., 0, only when the total number of 10s in the array isN12. This term ensures that there are approximately N12matches obtained when the network stabilizes. At the en-ergy minimum, in most cases, we will not have exactly N12matches but some number that is close to it. In this prob-lem we set N12 to min(N1; N2). The fourth term dealswith cost based row inhibition. For a certain point in theleft frame, all of the points in the second frame compete fora match. If a certain point in the second frame has a lowercost associated with it than another point, then it tries toreduce the potential of the other hypothesis by issuing aninhibitory signal. This reduces the potential of the otherPE. In this term again D determines the relative weightthat this term has in the �nal expression. In this discus-sion, the cost associated with a particular match betweenpoint i in the �rst frame and point j in the second frame(given by Cost(i; j)) is obtained by selecting the minimumof the various costs discussed in section II-C. Analogously,the last term deals with cost based column inhibition. Ide-ally the last two terms should also be 0 when the networkstabilizes on a solution.Comparing Equations (2) and (3) we obtainTij;kl = �A�ik(1� �jl) �B�jl(1 � �ik)� C�D(Cost(i; j) �Cost(k; l))�ik(1� �jl)�E(Cost(i; j) � Cost(k; l))�jl(1� �ik) (4)where �mn = 1 if m = n and �mn = 0 if m 6= n. We alsoobtain Iij = CN12 (5)



5We use the gradient descent method to approach theenergy minima. The equation for gradient descent can bewritten as duijdt = �@(Energy)@vij (6)which yieldsduijdt = N1Xk=1 N2Xl=1 Tij;klvkl � uij�ij + Iij (7)where �ij = RijC, the time constant. In our formulation ofthe problem, we have assumed that the time constant is thesame for all processors. This does not a�ect the solutionbut only decides the rate of convergence.A digital simulation of this system requires that we inte-grate these equations numerically. For a su�ciently smallvalue of �t, we can write�uij = ( N1Xk=1 N2Xl=1 Tij;klvkl � uij� + Iij)�t (8)The values of uij can be iteratively updated according tothe following rule.uij(t + 1) = uij(t) + �uij (9)The �nal output potential of the PE is given byvij = g(uij) = 12(1 + tanh�uij) (10)If we substitute Equations (4) and (5) into (8) we obtainthe following result:�uij�t = �uij� �A N2Xk=1;k 6=j vik � B N1Xk=1;k 6=i vkj�C( N1Xk=1 N2Xl=1 vkl �N12)�D N2Xk=1;k 6=j(Cost(i; j) �Cost(i; k))vik�E N1Xk=1;k 6=i(Cost(i; j) � Cost(k; j))vkj (11)Equations (9) and (11) describe the dynamics of the net-work. Now only the initial values of the potentials of thePEs ( vij for the (i; j)th PE ) have to be speci�ed. Havingdone this the network could be allowed to evolve in timeuntil it attains a steady state, i.e., a stage where the out-puts of the PEs do not change. The output of each PE isinitialized to vij = 1:0�Cost(i; j). The initial output couldthen be viewed as the probability that the correspondinghypothesis is true. The network can then be allowed toevolve in time until it stabilizes. The advantages of thisinitialization scheme are that a fewer number of iterationsteps are needed and the solution obtained is better than

that obtained using random initialization. After the net-work stabilizes, all of the PEs have outputs equal to either0 or 1. Those that have outputs 1 have been identi�edas the correct hypotheses while those that have outputs 0have been identi�ed as the wrong hypotheses.B. Mapping the trajectory detection problem onto the net-workThe problem of establishing the correspondence betweenthe trajectories computed until the previous frame and thepoints in the current frame, is similar, in formulation, tothe problem of feature correspondence between two frames.The only di�erence is the method in which the costs associ-ated with every competing hypothesis is calculated. In thecase of feature correspondence between two frames, we relyonly on the cost based on the image plane similarity in thearrangement of neighbors around the point pairs constitut-ing the hypotheses. In the case of correspondence betweenthe trajectories and points, there are three cost measuresbased on the image plane similarity in the arrangement ofneighbors around the last point of each trajectory and thepoint in the current frame that constitute each hypothe-sis, continuity of 3-D motion and continuity of trajectories.The details of the implementation of the three cost com-putation schemes are explained in section IV.Before proceeding with the discussion on the computa-tion of the costs associated with the match hypotheses, wediscuss the scheme used to select the various constants thatdetermine the weights, A, B, C, D and E, associated withthe Hop�eld network. The weights A and B are associatedwith the constraint that a match should be unique. Sincethis criterion is very important, one must choose large val-ues for both A and B. The parameter C dictates the totalnumber of matches obtained after the Hop�eld network sta-bilizes. Since the total number is not known ahead of time(some points in frame 1 may not have matches in frame2 and vice-versa), one must not choose a very high valuefor C since this would impose arti�cial constraints on theproblem. The parameters D and E determine the contri-bution of 2-D and 3-D motion constraints to the energyfunction. Since these are subject to problem noise, choos-ing a very high value for these constants is undesirable. Inkeeping with these guidelines and after some experimentson real images we have chosen the following values for theparameters - A = 1:0, B = 1:0, C = 0:2, D = 0:4 andE = 0:4. It was found that these values yield good resultsfor most feature correspondence problems.IV. Cost ComputationIn the previous section, the mapping of the feature corre-spondence and trajectory �nding processes onto the Hop-�eld network was discussed. The energy function that hadto be minimized was a function of the costs associatedwith every possible hypothesis. In addition, uniquenessconstraints were incorporated into the energy function. Inthis section, the details of the implementation of the threecosts are discussed.



6A. Two-Dimensional Geometrical Cost ComputationThe �rst step towards computing this cost is to deter-mine the neighbors of the points in both of the frames.This can be done by triangulating the point sets using De-launay triangulation [6]. For each point in either frame, aset of points that are Delaunay neighbors to it is obtained.To compute the cost associated with a certain match, somemethod to evaluate the similarity between the sets of neigh-bors of the two points being considered for the match isnecessary.Consider two points, i in the �rst frame and j in thesecond frame. Let the set of points that are neighbors toi be (a; b; c; d; e) and the set of points that are neigh-bors to j be (a0; b0; c0; d0). To compute the similarity ofthe 2{D arrangement of neighbors around the points i andj let us consider the sets of lines (ia; ib; ic; id; ie) and(ja0; jb0; jc0; jd0 ). A subset of lines belonging to the �rstset that have matches with lines belonging to the secondset has to be determined. This is done using another Hop-�eld network, which is again a two-dimensional networkwith each PE representing the hypothesis that a certainline in the �rst set matches another line in the second set.The formulation of this problem is exactly the same as thatdescribed above. The problem of computing the cost as-sociated with a match between pairs of lines still remains.This is a simple problem. To compute the cost associatedwith a match between a pair of lines, �rst, the similarity intheir positions, lengths and orientations is computed. Thesimilarity function used issimil = F ( C1 � C2 (shiftactual � SHIFT )2�C3 (�lengthactual ��LENGTH)�C4 (�orientationactual��ORIENTATION ) ) (12)where F () is a nonlinear function, C1; C2; C3 and C4 arepositive constants, �lengthactual is the absolute valueof the actual di�erence in the lengths of the lines and�orientationactual is the absolute value of the actualdi�erence in the orientations of the lines and SHIFT ,�LENGTH and �ORIENTATION are constants thathave to be provided a priori. From Equation (12) it can beseen that the argument of the similarity function is maxi-mum when shiftactual = SHIFT , �lengthactual = 0 and�orientation = 0, the maximum value of the argumentbeing C1+C3�LENGTH+C4�ORIENTATION . Thefunction F () is now de�ned to beF (x) = x; x � C5= C5; x < C5 (13)whereC5 = �(C1 +C3�LENGTH + C4�ORIENTATION )The values of the parameters SHIFT = 2 pixels,�LENGTH = 6 pixels, �ORIENTATION = 6 degrees,C1 = 1:0, C2 = 0:025, C3 = 0:16, C4 = 0:16 and C5 = 3:0were selected after several experiments on real images.

The similarity measures for all pairs of lines in the twosets, i.e., for each line match hypothesis are computed.They are then normalized so that they take on values from0 to 1. The cost associated with each hypothesis is thencalculated using the following equationcost = 1:0� similnormalized (14)Having computed the cost associated with every linematch hypothesis, a Hop�eld network, similar to the onewe described earlier on in section III-A, is used. It is al-lowed to evolve in time until it stabilizes. Let us say thatafter stabilizing, the network produced the following solu-tion : line ia matches line ja0, line ib matches line jb0, andline ic matches line jd0, where a; b; c; a0; b0; d0 are thepoints taken from the example considered at the beginningof this section. This means that points d and e in the �rstset and point c0 in the second set did not have matches. Tocompute a cost to be associated with the hypothesis thatpoint i in the �rst frame matches point j in the secondframe, the following algorithm is used.1. For every matched line pair ( ia and ja0, for e.g. )compute the quantity1:0� dot product between the vectors ~ij and ~aa0.2. Take the minimum of the above quantity over all ofthe matched pairs. This is the cost.Once the cost for every point pair is calculated using theabove method, the Hop�eld network is initialized and al-lowed to evolve in time according to Equations (9) and (11).When the network stabilizes, all of the PEs that have po-tential values equal to 1 are those that represent correctmatches.B. Motion Model Based Cost ComputationLet us consider a situation wherein the third frame be-comes available to us. At this stage, a set of correspon-dences between the �rst two frames is available. Let us as-sume that there are N1 points in the �rst frame, N2 pointsin the second frame and N3 points in the third frame. Us-ing information about the 2-D arrangement of neighborsaround the points in the �rst two frames, a set of N12 cor-respondences can be obtained. These correspond to trajec-tories of length two. Knowing these correspondences, onecould compute the 3-Dmotion and structure of these pointsand predict their positions in the third frame. If one wantsto use a motion model that assumes rotation and transla-tion of the objects, then one must know the segmentationa priori to be able to compute the motion accurately. Wediscuss the segmentation technique in section VI. Let us atthis point assume that the segmentation of the trajectoriesuntil the previous frame is known. To estimate the 3-Dmotion and structure of objects comprising the image, onecan use any of the existing motion and structure algorithmsdescribed in [7]. These algorithms formulate the problemof obtaining the motion and structure as a least squaresproblem and require a minimum number of trajectories ofa certain length. The formulation of the motion modelbased cost computation problem does not change with thekind of motion model applied and hence it is not central to



7the feature correspondence problem. In this paper, we usethe translation model only because, to a �rst order, if thesampling in time is dense, the motion of the objects can beapproximated by a translational model. Having computedthe motion and structure for every segment, we could usethat to predict the position of the feature points in the cur-rent frame. With every trajectory there is a correspondingpoint which represents the predicted position of the featurepoint in the current frame. In order to compute the costassociated with a match between a trajectory and an actualpoint in the current frame, we could compute the similar-ity in the arrangement of neighbors around the predictedpoint associated with the trajectory and the actual point inthe third frame. This could be done as explained in sectionIV-A . As more information becomes available about thesegmentation and more trajectories accumulate over moreframes, one could use more complex motion models to pre-dict more accurately the positions of the feature points inthe current frame.C. Cost Based on the Continuity of TrajectoriesThe third method to compute the cost to be associatedwith a match between a trajectory and the points in thecurrent frame that lie within its circle of interest depends onthe the continuity of the trajectory. Consider a trajectoryof length n+1 extending from the �rst frame to the (n+1)thframe. Let the image plane coordinates of the points con-stituting the trajectory be (X0; Y0); (X1; Y1); :::; (Xn; Yn).A function has to be �t through these points. While tryingto �t a function to these points, one has to consider somespeci�c situations. If the point is stationary, then a func-tion cannot be �t to the point set. It is also important todetermine whether the abscissa or the ordinate is to be theindependent variable. We use Lagrange interpolation to �ta polynomial of degree three or four to the data because theerror with higher degree �ts is high. When the trajectoryhas a length greater than 4, only the last four points of thetrajectory are considered. The next step is to compute theslope of the trajectory at the last point of the trajectory.At any time instant, this is the point that belongs to theprevious frame. The slope of the lines joining the last pointof the trajectory and the points in the current frame thatlie within its circle of interest are computed. The cost as-sociated with a match is related to the dot product of thetwo slope vectors.In this section, the ways in which the cost associated withvarious hypotheses are calculated have been discussed. Inthe case in which the correspondence between trajectoriesand points in the current frame is sought, there are threedi�erent methods to evaluate the costs. As discussed insection II-C, the minimum of the three cost values is se-lected and associated with each hypothesis.Once the costs associated with every hypothesis are com-puted, the output potentials of the PEs of the Hop�eldnetwork can be initialized asvij = 1:0� Cost(i; j) (15)where the subscript ij denotes the hypothesis that the ith

point in the previous frame or the ith trajectory until theprevious frame matches with the jth point in the currentframe. Once the output potential of every PE is initialized,the network is allowed to evolve according to Equations (9)and (11). The output potential of some of the PEs will growto 1:0 while that of others will fall to 0:0. The PEs whoseoutput potentials converge to 1:0 are those that representthe correct hypotheses while those that have their outputpotentials converging to 0:0 represent wrong hypotheses.V. Eliminating wrong correspondencesAny energy minimization technique su�ers from theproblem of getting trapped in local minima. In our prob-lem, this results in wrong correspondences. One way toovercome this problem is to use simulated annealing. Thisis computationally very intensive and cannot guarantee aglobal minimum in �nite time. Another way to overcomethis problem is to use heuristic techniques to remove wrongcorrespondences. We propose another network that is verysimilar to the Hop�eld network described earlier to solvethis problem. The algorithm is outlined below.We assign one correspondence to a processing elementthat is exactly like the PEs of the Hop�eld network. Forevery correspondence obtained using the correspondencenetwork1. Compute its Voronoi neighbors. This is done by com-puting the Voronoi neighbors of the point in the �rstframe of every correspondence.2. Determine that neighbor that is most similar to it.The similarity measure used is based on the di�erencein the lengths and orientations of the correspondences.For the two correspondences, compute �length and�angle. Using this calculatelengthcost = 0:5[1:0+ tanh (1:5(�length� 2:0))]angcost = 0:5[1:0+ tanh (0:15(�angle� 20:0))]Finally, these costs are merged to get one similaritymeasure by the following equation,cost = 1:0�simil = (1:0�angcost)lengthcost+angcostThis formula has been used because there is evidence[9], [10] to believe that humans consider direction ofmotion continuity to be very important in all theirvisual tasks.3. Establish a connection between the correspondenceunder consideration and the most similar neighborwith a weight equal to the cost computed in the pre-vious step.4. Initialize the output of the PE associated with the cor-respondence to the similarity computed earlier. Thisis the probability that the correspondence is correct.5. Simulate every unit according to the equationsduidt = �ui + Ii + Ti;j(i)vj(i)vi = 0:5[1:0+ tanh (�ui)]



8 where j(i) is the unit that is most similar to the ithunit, I is the bias input chosen to be 50 in all ourexperiments and Ti;j(i) = �100 costi;j(i), and ui andvi are the input and output of the ith PE.The network is allowed to evolve until the outputs of allthe PEs stabilize. Those PEs that approach 1.0 are keptwhile the others are eliminated. With this reduced set ofcorrespondences, the entire process is repeated until noneof the correspondences are removed. This process resultsin eliminating the wrong correspondences.VI. Segmentation of trajectoriesOnce the correspondences between two frames are ob-tained, they must be grouped into segments representingrigid objects. The segmentation information available forevery two frames must then be merged to cover more framesas they become available so as to produce long trajectoriesbelonging to the di�erent rigid objects. This allows morecomplex motion and structure algorithms to be used toget better estimates of 3{D motion and relative structure.The underlying assumption made in the segmentation pro-cedure proposed in this paper is that the motion betweentwo frames is small due to dense sampling in time of thescene. The segmentation algorithm is outlined below.First, the correspondence network and the network usedto eliminate the wrong trajectories are applied and correctcorrespondences between two frames are obtained. For ev-ery correspondence, its Voronoi neighbors are found. Thelines linking every correspondence with its Voronoi neigh-bors are called edges. There are two types of edges ina scene { inter-object edges and within-the-object edges.For inter-object edges, the correspondences on either endof the edge vary in length and orientation to a large degree,whereas this variation is small for within-the-object edges.This is true because the scene is sampled densely in time.Given this premise, the steps of the algorithm are1. Each edge is assigned to a processing element withthe same input{output characteristics described pre-viously, i.e., vi = g(ui) = 0:5[1:0 + tanh (�̂ui)] where,ui and vi are the input and output of the ith PE and�̂ is the gain parameter.2. Construct an Energy function of the formE = #ofedgesXi=1 �(1:0� vi)costi + �vi + Z vi0 g�1(v)dvthat needs to be minimized to give the correct seg-mentation. The cost function is again calculated likein the trajectory correction algorithm. In this case thetwo correspondences involved are those on either endof the ith edge. In the above equation, vi is the prob-ability that the ith edge is an inter-object edge, and �and � are the constants weighing smoothness of mo-tion versus discontinuities of motion in space. If thecosti is high, then there is a tendency for vi to go to1, whereas if it is low then vi tends to 0 to reduce theenergy.

3. The energy is minimized using the gradient descentapproach whereduidt = �@E@vi = �ui + �costi � �4. After allowing the network to stabilize, those PEs thathave potentials going to 1 are discarded and only thewithin-the-object edges are retained.This method fails when the motion between frames is verylarge or when the motion between neighboring objects issimilar. The second case is very di�cult to handle, whereasthe �rst case can be handled by trying to �nd a motionmodel that �ts unions of available segments.VII. ResultsIn this section we demonstrate the performance of thealgorithms on a variety of images. The examples have beenchosen to demonstrate the ability of the system to dealwith multiple objects moving in the scene and temporaldiscontinuity in the motion of objects in the scene. Wealso demonstrate the performance of the algorithmon someimages taken from the set of images recommended for thegeneral use of participants in the IEEEWorkshop on VisualMotion 1991.
Fig. 1. First frame of a sequence in which 3 objects have translationalmotion.Fig. 1 shows the �rst frame of a sequence of 10 images ofa scene with 3 objects in translational motion. The motionof the 3 objects in this scene was between 4 and 10 pixelsper frame. A point feature detector that selected approxi-mately 200 of the strongest intensity maxima and minimawas applied on all the images. The feature points detectedin the �rst frame of the sequence with 3 moving objectsare indicated using bright or dark points as shown in Fig.1. Fig. 2 shows all the correct trajectories found betweenthe �rst and last frames. For every frame, after the tra-jectories extending up to the previous frame were matched
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Fig. 2. Correct trajectories detected for the sequence in which threeobjects have translational motion.
Fig. 3. Segmentationobtained for the sequence in which three objectshave translational motion.with the points in the current frame, the wrong extensionswere eliminated using the algorithm described in section V.Fig. 3 shows the results of the segmentation algorithm ap-plied to the correspondences between the �rst two framesof the sequence. There were 140 correspondences detectedbetween the �rst two frames. It can be seen that thesecorrespondences, indicated by their end points belongingto the �rst frame, have been grouped into four segmentsindicating the 3 rigid objects and the background. All thecorrespondences that belong to one object are connectedto their Voronoi neighbors belonging to the same object.To demonstrate the capability of the system to handle

Fig. 4. First frame of a sequence in which the object undergoes achange in the direction of motion.
Fig. 5. Correct trajectories detected for the sequence in which theobject undergoes a change in the direction of motion.situations where the objects in the scene have temporalmotion discontinuities, a sequence of 10 images of a scenewith one object was taken. Fig. 4 shows the �rst frameof the sequence. The object shown in the �gure moved tothe left for the �rst 5 frames and then changed directionto move towards the upper right corner of the image. Hereagain, the motion of the object was of the order of 6 to8 pixels. In every frame around 200 feature points wereselected. The set of correct trajectories obtained betweenthe �rst and last frames is shown in Fig. 5. The algorithmwas able to handle this situation because of the way wede�ne the cost function in this approach. When the object



10changes its motion, the continuity of 3-D motion and the2-D continuity of trajectories are lost and the costs com-puted using these two methods are high. In this case thealgorithm uses the cost computed on the basis of geometri-cal similarity in the 2-D arrangement of neighbors aroundthe feature points. Between the �fth and the sixth frame(when the object changed its direction of motion) the al-gorithm was able to detect around 130 correspondences.
Fig. 6. Second frame of a sequence taken by a camera mounted ona rotating robot arm.The next two sets of experiments demonstrate the fea-ture correspondence algorithm applied to two successiveframes of image sequences taken from the set of images rec-ommended for the general use of participants in the IEEEWorkshop on Visual Motion 1991. Fig. 6 shows the secondframe of one of the sequences. The camera was mountedon on a PUMA robot arm which was made to rotate, caus-ing the entire scene to rotate about the optical axis of thecamera. The motion of the feature points depends on theirdistance from the center of the image. This motion variesfrom 0 to 18 pixels. The feature detector detected around190 feature points in the second and third frame of thesequence. The feature correspondence algorithm was usedon the the two frames. The algorithm described in sectionV was used to eliminate the wrong correspondences. Fig.7 shows the correct correspondences that were determined.In spite of the large variation in feature point motion, thesystem was able to detect 99 feature correspondences.Fig. 8 shows the fourth frame of a sequence of 6 framesof an outdoor scene. The camera was made to move alongthe pathway seen in the �gure. In this sequence, the fea-ture points detected had a motion of around 10-15 pixels.Around 190 feature points were used in the fourth and �fthframes to �nd the correspondences. After eliminating thewrong correspondences, the correct matches are shown inFig. 9 Again, in spite of the large motion of feature points,79 matches were detected. The reason for such a low per-

Fig. 7. Correct correspondences detected between the second andthird frames of the sequence taken by a camera mounted on arotating robot arm.centage of matches is that the feature detector failed todetect robust features in some areas of the image.References[1] A. L. Yuille, \Energy functions for early vision and analog net-works", Biological Cybernetics, vol. 61, pp. 115{123, 1989.[2] N. M. Grzywacz and A. L. Yuille, \Motion correspondenceand analog networks", Proceedings of the American Instituteof Physics Conference on Neural Network Computing, vol. 151,pp. 200{205, 1986.[3] Y. T. Zhou and R. Chellappa, \Neural network algorithms formotion stereo", in Proceedings of the International Joint Con-ference on Neural Networks, 1989, pp. II{251 { II{258.[4] Y. T. Zhou and R. Chellappa, \A network for motion percep-tion", in Proceedings of the International Joint Conference onNeural Networks, 1990, pp. II{875 { II{884.[5] P. Y. Zhu, T. Kasvand, and A. Krzyzak, \Motion estimationbased on point correspondence using neural network", in Pro-ceedings of the International Joint Conference on Neural Net-works, 1990, pp. II{869 { II{874.[6] F. P. Preparata and M. I. Shamos, Computational Geometry:An Introduction, Springer-Verlag.[7] J. Weng, T. S. Huang, and N. Ahuja, \3-D motion estimation,understanding and prediction from moving image sequences",IEEE Transactions on Pattern Analysis and Machine Intelli-gence, vol. PAMI-9, no. 3, pp. 370{389, 1987.[8] J. J. Hop�eld and D. W. Tank, \Neural computation in opti-mizationproblems",Biological Cybernetics, vol. 52, pp. 141{152,1985.[9] O. J. Braddick, \Low- and high- level processes in apparentmotion", Philosophical Transactions of the Royal Society ofLondon, vol. B 290, pp. 137{151, 1979.[10] B. Julesz, Foundations of Cyclopean Perception, University ofChicago Press, 1971.
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Fig. 8. Fourth frame of an outdoor sequence taken by a cameramounted on a robot traveling along the pathway.

Fig. 9. Correct correspondences detected between the fourth and�fth frames of the outdoor sequence taken by a camera mountedon a robot traveling along the pathway.


