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Abstract— This paper is concerned with three-dimensional
interpretation of image sequences showing multiple objects
in motion. Each object exhibits smooth motion except at
certain time instants when a motion discontinuity may oc-
cur. The objects are assumed to contain point features
which are detected as the images are acquired. Estimat-
ing feature trajectories in the first two frames amounts to
feature matching. As more images are acquired, existing
trajectories are extended. Both initial detection and ex-
tension of trajectories are done by enforcing pertinent con-
straints from among the following : similarity of image plane
arrangement of neighboring features, smoothness of three
dimensional motion and smoothness of image plane mo-
tion. The constraints are incorporated into energy functions
which are minimized using 2-D Hopfield networks. Wrong
matches that result from convergence to local minima are
eliminated using a 1-D Hopfield like network. Experimental
results on several image sequences are shown.

Keywords— Feature correspondence, Trajectories, Motion,
Structure, Hopfield networks.

I. INTRODUCTION

HIS paper is concerned with three-dimensional inter-

pretation of image sequences showing multiple objects
in motion. Each object exhibits smooth motion except at
certain time instants when a motion discontinuity may oc-
cur. A common type of motion discontinuity is in motion
direction, e.g. when an object undergoes a collision. Be-
tween such instants of temporal discontinuity each object
exhibits a smooth motion.

The objects are assumed to contain point features which
are detected as images are acquired. Trajectory detection
begins with the first two frames wherein it amounts to the
standard problem of feature matching. As more images are
acquired, existing trajectories are extended. There is little
information available for the initial matching of features in
the two frames. So any matching constraints are poten-
tially error prone and must be further confirmed against
subsequent frames. Such initial matching of features is
done based on the similarity of the image plane arrange-
ments of their neighbors. Clearly, this only holds for those
neighbors which are detected in both frames, and provided
the neighbors do not belong to another neighboring object.
Once the first two frames are matched, the initial segment
of each feature trajectory is found. There is now more
information available for matching of the features in the
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second frame with those in the third, i.e., for trajectory
extension. The extension of trajectories must be consis-
tent with continuation of the three-dimensional motion of
the object. However, this is only true when the object
is not undergoing a motion discontinuity. Further, this
constraint can be applied only if features have been seg-
mented into objects so that three-dimensional motion of
an object can be estimated. When the smoothness of the
three-dimensional motion cannot be enforced, trajectories
are constrained to have only two-dimensional smoothness
which 1s possible once the initial trajectories are detected,
i.e., beyond the second frame, and which is correct except
across temporal discontinuities in motion. Thus, several
different constraints are used to detect and extend trajec-
tories, but each of these constraints must be used when it
is applicable.

As the 1mages are acquired and trajectories are esti-
mated, they are segmented into subsets each corresponding
to a different moving object. This is done by identifying
neighboring correspondences and breaking these neighbor
relationships if they are found to be very dissimilar.

The problem of detecting the feature trajectories is for-
mulated as a series of cost minimization problems that are
solved using Hopfield networks. The costs are defined in
terms of the constraints mentioned above, such that only
appropriate constraints are used at any given image loca-
tion at any given time. The process of detecting the feature
trajectories proceeds in an incremental fashion over time
with information from each frame being integrated as it
becomes available. At each time step in this process three
Hopfield networks are used sequentially, one to compute
the geometrical cost associated with every match hypothe-
sis, a second to perform the feature matching and a third to
eliminate all the wrong matches. Although the structure
of the Hopfield networks (in terms of connectivity) does
not change throughout the process of detecting the tra-
jectories, it must be mentioned that some of the weights
associated with the networks change with each time step.
This is because these weights are calculated from the costs
associated with the various match hypotheses.

The advantage of using Hopfield networks is that they
offer a simple and elegant framework for optimization prob-
lems that can be suitably formulated. In addition, the reg-
ular structure of the computation and communication in a
Hopfield network allows easy implementation on scalable
parallel computers. Tasks involving extensive communi-
cation such as updating the network at each step may be



performed asynchronously like in several iterative linear al-
gebra solvers. It is for these reasons that we have chosen
this computational framework for the optimization prob-
lem.

In the past there have been attempts by researchers [1],
[2], [3], [4] and [5] to use the Hopfield network to solve
the feature correspondence problem. There have been no
attempts though, to integrate cost measures from several
constraints, as discussed above, to solve more complex
scenes with multiple moving objects exhibiting temporal
discontinuities in their motion. Also, none of the previous
approaches offer any scheme to eliminate wrong matches
which result from settling down to a local minimum while
performing energy minimization. This makes the approach
more robust to variations in scene parameters such as inter-
frame motion of objects which can vary from 0 to 20 pixels.

Section II gives the details of the formulation of feature
matching and trajectory detection problems. Sections III
and IV describe the mapping of the problems of feature
correspondence and trajectory finding onto the Hopfield
network. Section V describes the algorithm to eliminate
wrong correspondences that result from descending to a
local energy minimum. Section VI describes a method to
segment the correspondences into groups representing rigid
objects. Finally, section VII contains results on several
image sequernces.

II. FEATURE MATCHING AND TRAJECTORY DETECTION
A. Feature Matching

The problem of feature correspondence deals with find-
ing a match in the current frame, if it exists, for every point
in the previous frame. In order to find the correct match,
constraints such as uniqueness and image plane similarity
in the arrangement of neighbors around the points are im-
posed. The uniqueness constraint implies that a point in
the previous frame can match at most one point in the
current frame and vice versa. The other constraint implies
that the point in the current frame which is the correct
match for a certain point in the previous frame should have
a similar geometrical arrangement of neighbors around it.
These constraints are then incorporated into an energy
function in such a way that the energy function attains
a minimum when the points are either correctly matched
or not matched at all. This energy minimization is done
using the gradient descent approach that is implemented
using a Hopfield network.

The first task is to apply a feature detector to a frame
when it becomes available. In this discussion, a feature
detector is defined as one that extracts features such as in-
tensity maxima, minima and saddle points and sharp cor-
ners of objects in the image. Let the first frame have N;
points and the second frame N» points. We have a matrix
of Ny x N3 possible match hypotheses where element (¢, j)
indicates that the i'? feature in the first frame matches the
jt feature in the second frame. Only a subset of these
are correct and these represent the correct matches. A
cost 1s associated with every hypothesis such that a low
cost 1s assigned to a correct hypothesis and a high cost is

assigned to a wrong hypothesis. Since the motion of the
feature points 1s bounded by a maximum possible motion,
we compute the costs for only those hypotheses where the
point in the second frame is within a circle of interest of
the point in the first frame. All other hypotheses are as-
signed a fixed high cost. The costs are computed based on
the image plane similarity in the arrangement of neighbors
around the two points constituting the hypothesis. The
neighbors discussed here are the Delaunay neighbors of the
points which may be obtained from the Voronoi diagram
[6] of the set of feature points in the image. To determine
the cost associated with a match hypothesis, we must try
to find a subset of neighbors of the point in the first frame
that match a subset of neighbors of the point in the second
frame. The similarity in the image plane arrangement of
these subsets is used to compute the cost associated with
the match. We look for similarity in the subsets rather
than the entire set of neighbors because missing feature
points and object boundaries cause distortions in the set
of neighbors. This cost computation scheme is explained
in section IV-A.

The costs associated with all the possible Ni x Ny hy-
potheses are then incorporated into a cost function. Let
us say that the process of minimizing the cost function has
resulted in Njo correct matches. There are Ny — Nyg points
in the second frame that haven’t been matched to points in
the first frame. When the third frame becomes available,
the first task is to apply the feature detector. Assume that
there are N3 points in the third frame. The correspon-
dences between the N5 trajectories and the N3 points in
the third frame have to be established. Doing so results in
trajectories of length three. In addition to this there exists
the problem of establishing the correspondences between
the Ny — Njps points discussed earlier and the N3 points
in the third frame. The latter correspondence process re-
sults in trajectories that start off from the second frame.
This problem is solved in exactly the same manner as the
problem of establishing the point correspondences between
the first two frames. The problem of extending the Ni,
trajectories to the third frame is slightly more involved.

B. Trajectory Detection

The trajectory detection problem is just an extension of
the feature correspondence problem where the trajectories
obtained until the previous frame are to be matched to
the points in the current frame if such a match does exist.
In addition to constraints such as uniqueness of a match
and image plane similarity in the arrangement of neighbors
around points corresponding to a correct match, other con-
straints such as 2-D (image plane) continuity of trajectories
and 3-D motion continuity can be imposed.

Consider the problem of extending the N5 trajectories
obtained thus far to the third frame. The problem can be
restated as that of having to match the Njo trajectories
to the N3 points in the third frame. In this situation, we
have a matrix of N1 X N3 hypotheses. Of these hypotheses,
there will be a subset of hypotheses that represent matches
between trajectories and points in the third frame that lie



within their circles of interest. The costs to be associated
with each of these hypotheses have to be determined. All
of the other hypotheses (those involving trajectories and
points outside their circles of interest) will be assigned very
high costs. The costs associated with each hypothesis are
representative of the following three constraints,

2-D arrangement of neighbors: Similarity between the
arrangement of neighbors around the last point of the
trajectory and the point in the third frame. This is
exactly the same as the constraint imposed on point
correspondences.

Continuity of 3-D motion: Continuity of the 3—-D mo-
tion computed from the trajectories already known.

Continuity of trajectories: 2-D continuity of the trajec-
tories.

The extent to which the hypotheses satisfy each of the
above constraints is determined separately. This results
in three different cost measures that need to be merged
before being incorporated into the energy function. The
second method is now explained. Having obtained the tra-
jectories until the previous frame, any applicable motion
and structure algorithm [7] can be used to estimate the 3-
D motion and structure of the objects and these estimates
can be used to predict the positions of the feature points in
the current frame. Based on the predicted positions, a cost
can be associated with every hypothesis that a trajectory
extending up to the previous frame matches a point in the
current frame. Before applying any motion model one has
to segment the trajectories into groups that correspond to
rigid objects. This cost computation scheme is described
in detail in section TV-B.

The third method to compute the cost to be associated
with a trajectory and a point in the third frame that lies in
its circle of interest is based on the image plane continuity
of the trajectory across the frames. This 1s done as follows.
The time axis is collapsed so that the problem of fitting a
function to the trajectory becomes a one-dimensional prob-
lem. A Lagrange interpolation is done between the points
constituting the trajectory and the slope at the last point
of the trajectory is computed. Then, the slope of the line
segment joining the last point of the trajectory and the
point in the current frame that is competing for the match
is computed. The cost associated with the hypothesis is
then based on the similarity of the two slopes. This cost
computation scheme is described in detail in section IV-C.

We thus have three different cost measures that are as-
sociated with each competing hypothesis. A method to
merge these three costs and associate a single cost measure
with each competing hypothesis is devised.

C. Cost Merge Algorithm

Three cost computation schemes have been outlined
above. Each method works well in some cases but fails
in others. The 2-D geometrical cost computation method
might not yield good results at points close to object
boundaries because of differences in the motions of the two
objects. It could also happen that though a certain point
in the current frame is the correct match for a point in the

previous frame, there might be no subset of neighbors that
match for the two points. The cost computed using the
assumption of 3-D motion continuity across frames yields
better results than the 2-D method but again fails at ob-
ject boundaries because the rigidity assumption is violated
across boundaries. This method also fails when there is a
temporal discontinuity in the motion of objects. Finally,
the cost computation scheme based on the 2-D continuity
of trajectories gives good results at object boundaries but
fails when there i1s a temporal discontinuity of motion. In
a situation in which there is a temporal discontinuity in
the motion, only the cost based on the 2-D arrangement
of neighbors can be used. Table I lists the cases in which
the three methods fail or apply.

TABLE 1
COMPARATIVE ANALYSIS OF THE EFFECTIVENESS OF THE THREE COST
COMPUTATION SCHEMES.

Cost
computation Fails Works
scheme
2-D arrangement | When no subsets | A1l other
of neighbors of neighbors times
match
Continuity of At object A11 other
of 3-D motion boundaries times
and temporal
motion
discontinuities
Continuity of Temporal A11 other
trajectories motion times
discontinuities

This suggests that there is a need to merge these costs
and determine a single cost measure for a certain match
that does not fail at either object boundaries or motion dis-
continuities. One could suggest many methods to achieve
this. In this system we have taken the simple approach of
choosing the least of the three costs. In our experiments
we have seen that this method works pretty well, and there
is no need for a more complex cost merge scheme. Once
the merged cost associated with every hypothesis is com-
puted, they are incorporated into an energy function along
with the uniqueness constraints. This energy function is
minimized using the Hopfield network.

III. MAPPING THE FEATURE CORRESPONDENCE AND
TRAJECTORY FINDING PROBLEMS ONTO THE
HoPFIELD NETWORK

In this section we briefly describe how the problems of
feature correspondence and trajectory finding are mapped
onto the Hopfield network.

A. Mapping the feature matching problem onto the network

Consider the case in which there are two images of the
scene taken at two different time instants, ¢; and t5. The



feature detector is run on the two images and two sets of
feature points are obtained. Let the first image have Ny
points and the second image have N» points. The problem
at hand is to find a subset of points, Ni5 in number, in the
first frame that has matches in the second frame.

The Hopfield network [8] used for the above problem
consists of a two-dimensional array of processing elements
(PEs) having Ny rows corresponding to the Ny points in the
first frame and Ny columns corresponding to the Ny points
in the second frame. Each PE is essentially a nonlinear
amplifier that produces an output v; which is related to its
input u; by the equation

=g(Ay) = %(1 + tanh(Au;)) (1)
where X is called the gain parameter. The input u; to the
i'" PE is the weighted sum of the outputs of the PEs that
are connected to it. The processing element (7, j) repre-
sents the hypothesis that the ¢** point in frame 1 matches
the j' point in frame 2. Each processing element has a
potential associated with it. This potential corresponds
to the quantity v discussed previously and can take on a
continuum of values between 0 and 1. The value 1 repre-
sents a sure match between the corresponding points in the
two frames and the value 0 represents a nonmatch. Any
value between 0 and 1 signifies the level of confidence in
the match between the corresponding points.

The connections between the processing elements and
the weights associated with them depend on the energy
function that has to be minimized. The energy function
(E'F) used in this problem has the form
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where, v;; represents the potential of the (i, j)'" PE, Tj; 4
represents the weight of the link from the (k,[)"" PE to
the (i, )" PE, I;; represents the bias input to the (i, j)**
element and R;; represents the resistance seen at the input
of the (i, j)*® PE. The last term in the above equation is
the gain function term.

The energy function (EF) can also be written, specifi-
cally for the problem of feature correspondence, as
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Each term in the above equation has a physical explana-
tion that is outlined below. The first term deals with row
inhibition. This term ensures that when the network sta-
bilizes, there is at most one PE in each row that has a
potential of 1 whereas all of the other elements have value
0. The constant A determines the relative importance this
term is given w.r.t. the other terms. The second term deals
with column inhibition. This is the column analog of the
first term. When the network stabilizes, at most one PE
in each column has a potential of 1. Again the constant
B decides the relative importance this term is given w.r.t.
the other terms. The first two terms in the above equa-
tion enforce the concept of uniqueness of a match, i.e., a
point in the first frame can match at most one point in
the second frame and vice versa. Since both of these terms
are equivalent, we generally give them equal importance,
i.e., we have A = B. The third term in the energy equa-
tion deals with global inhibition. This term is minimum,

e., 0, only when the total number of 1's in the array is
Nis. This term ensures that there are approximately Nis
matches obtained when the network stabilizes. At the en-
ergy minimum, in most cases, we will not have exactly Ny,
matches but some number that is close to it. In this prob-
lem we set Nis to min(Ny, N2). The fourth term deals
with cost based row inhibition. For a certain point in the
left frame, all of the points in the second frame compete for
a match. If a certain point in the second frame has a lower
cost associated with it than another point, then it tries to
reduce the potential of the other hypothesis by issuing an
inhibitory signal. This reduces the potential of the other
PE. In this term again D determines the relative weight
that this term has in the final expression. In this discus-
sion, the cost associated with a particular match between
point ¢ in the first frame and point j in the second frame
(given by Cost(i, j)) is obtained by selecting the minimum
of the various costs discussed in section II-C. Analogously,
the last term deals with cost based column inhibition. Ide-
ally the last two terms should also be 0 when the network
stabilizes on a solution.

Comparing Equations (2) and (3) we obtain

Tijme = —Abip(l—6;1) — Béji(1—6) — C
—D(Cost(i, j) — C’ost(k 0)éir (1 — &;1)
—E(Cost(i,j) — Cost(k,1))b;1(1 — &) (4)

where 6y, = 1 if m = n and b, = 0 if m # n. We also
obtain

Iij = CNyo (5)



We use the gradient descent method to approach the
energy minima. The equation for gradient descent can be

written as
dui;  O(Energy) ()
dt - 6%
which yields
N1 N
dui]' Uij
T ; ;Tij;klvkl T + Lj (7)

where 7;; = R;;C, the time constant. In our formulation of
the problem, we have assumed that the time constant is the
same for all processors. This does not affect the solution
but only decides the rate of convergence.

A digital simulation of this system requires that we inte-
grate these equations numerically. For a sufficiently small
value of At, we can write

N1 N3

U5
Au;; = (Z ZTij;klUkl - TJ + L;j)At
k=11=1

(8)

The values of u;; can be iteratively updated according to
the following rule.
wij(t 4 1) = wij(t) + Augj (9)

The final output potential of the PE is given by

(10)

If we substitute Equations (4) and (5) into (8) we obtain
the following result:

N Ny
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N2
—D > (Cost(i,j) — Cost(i, k))vir
k=1k#j

N1
—E > (Cost(i, j) — Cost(k, j))vx; (11)
k=1k#i

Equations (9) and (11) describe the dynamics of the net-
work. Now only the initial values of the potentials of the
PEs ( v;; for the (4, )" PE ) have to be specified. Having
done this the network could be allowed to evolve in time
until it attains a steady state, i.e., a stage where the out-
puts of the PEs do not change. The output of each PE is
initialized to v;; = 1.0—Clost(4, j). The initial output could
then be viewed as the probability that the corresponding
hypothesis is true. The network can then be allowed to
evolve 1n time until it stabilizes. The advantages of this
initialization scheme are that a fewer number of iteration
steps are needed and the solution obtained is better than

that obtained using random initialization. After the net-
work stabilizes, all of the PEs have outputs equal to either
0 or 1. Those that have outputs 1 have been identified
as the correct hypotheses while those that have outputs 0
have been i1dentified as the wrong hypotheses.

B. Mapping the trajectory detection problem onto the net-
work

The problem of establishing the correspondence between
the trajectories computed until the previous frame and the
points in the current frame, is similar, in formulation, to
the problem of feature correspondence between two frames.
The only difference is the method in which the costs associ-
ated with every competing hypothesis is calculated. In the
case of feature correspondence between two frames, we rely
only on the cost based on the image plane similarity in the
arrangement of neighbors around the point pairs constitut-
ing the hypotheses. In the case of correspondence between
the trajectories and points, there are three cost measures
based on the image plane similarity in the arrangement of
neighbors around the last point of each trajectory and the
point in the current frame that constitute each hypothe-
sis, continuity of 3-D motion and continuity of trajectories.
The details of the implementation of the three cost com-
putation schemes are explained in section IV.

Before proceeding with the discussion on the computa-
tion of the costs associated with the match hypotheses, we
discuss the scheme used to select the various constants that
determine the weights, A, B, C'; D and F, associated with
the Hopfield network. The weights A and B are associated
with the constraint that a match should be unique. Since
this criterion is very important, one must choose large val-
ues for both A and B. The parameter C' dictates the total
number of matches obtained after the Hopfield network sta-
bilizes. Since the total number is not known ahead of time
(some points in frame 1 may not have matches in frame
2 and vice-versa), one must not choose a very high value
for C' since this would impose artificial constraints on the
problem. The parameters D and E determine the contri-
bution of 2-D and 3-D motion constraints to the energy
function. Since these are subject to problem noise, choos-
ing a very high value for these constants is undesirable. In
keeping with these guidelines and after some experiments
on real images we have chosen the following values for the
parameters - A = 1.0, B = 1.0, C =02, D = 04 and
E =0.4. It was found that these values yield good results
for most feature correspondence problems.

IV. CosT COMPUTATION

In the previous section, the mapping of the feature corre-
spondence and trajectory finding processes onto the Hop-
field network was discussed. The energy function that had
to be minimized was a function of the costs associated
with every possible hypothesis. In addition, uniqueness
constraints were incorporated into the energy function. In
this section, the details of the implementation of the three
costs are discussed.



A. Two-Dimensional Geometrical Cost Computation

The first step towards computing this cost is to deter-
mine the neighbors of the points in both of the frames.
This can be done by triangulating the point sets using De-
launay triangulation [6]. For each point in either frame, a
set of points that are Delaunay neighbors to it is obtained.
To compute the cost associated with a certain match, some
method to evaluate the similarity between the sets of neigh-
bors of the two points being considered for the match is
necessary.

Consider two points, ¢ in the first frame and j in the
second frame. Let the set of points that are neighbors to
i be (a, b, ¢, d, ) and the set of points that are neigh-
bors to j be (a’, b, ¢/, d'). To compute the similarity of
the 2-D arrangement of neighbors around the points ¢ and
J let us consider the sets of lines (ia, ib, ic, id, ie) and
(ja', jb', je', jd'). A subset of lines belonging to the first
set that have matches with lines belonging to the second
set has to be determined. This is done using another Hop-
field network, which is again a two-dimensional network
with each PE representing the hypothesis that a certain
line in the first set matches another line in the second set.
The formulation of this problem is exactly the same as that
described above. The problem of computing the cost as-
sociated with a match between pairs of lines still remains.
This 1s a simple problem. To compute the cost associated
with a match between a pair of lines, first, the similarity in
their positions, lengths and orientations is computed. The
similarity function used is

F(Cy — Oy (shiftaeiuar — SHIFT)?
—C5 (Alengthgciya — ALENGTH)

—Cy (Aorientationgeryal

—~AORIENTATION))

stmil =

(12)

where F'() is a nonlinear function, Cy,Cs, C5 and Cj are
positive constants, Alengthgctuar 18 the absolute value
of the actual difference in the lengths of the lines and
Aorientationg.iua 18 the absolute value of the actual
difference in the orientations of the lines and SHIFT,
ALENGTH and AORIENTATION are constants that
have to be provided a priori. From Equation (12) it can be
seen that the argument of the similarity function is maxi-
mum when shiftgciua = SHIFT, Alengthgeruar = 0 and
Aorientation = 0, the maximum value of the argument
being C1 + CsALENGTH 4+ C4AORIENTATION. The
function F() is now defined to be

l‘ZCg,
x < Cy

Flz) = &,

= Cs, (13)

where
Cs = —(C1 4+ CsALENGTH 4+ C4AORIENTATION)

The values of the parameters SHIFT = 2 pixels,
ALENGTH = 6 pixels, AORIENTATION = 6 degrees,
C1=1.0,Cy =0.025,C5 =0.16, C4 = 0.16 and C5 = 3.0

were selected after several experiments on real images.

The similarity measures for all pairs of lines in the two
sets, 1.e., for each line match hypothesis are computed.
They are then normalized so that they take on values from
0 to 1. The cost associated with each hypothesis is then
calculated using the following equation

(14)

cost = 1.0 — similyormatized

Having computed the cost associated with every line
match hypothesis, a Hopfield network, similar to the one
we described earlier on in section III-A, is used. It is al-
lowed to evolve in time until it stabilizes. Let us say that
after stabilizing, the network produced the following solu-
tion : line 7@ matches line ja’, line ¢b matches line jb', and
line ¢c matches line jd’, where a, b, ¢, @', V', d’ are the
points taken from the example considered at the beginning
of this section. This means that points d and e in the first
set and point ¢’ in the second set did not have matches. To
compute a cost to be associated with the hypothesis that
point ¢ in the first frame matches point j in the second
frame, the following algorithm is used.

1. For every matched line pair ( ia and ja’, for e.g. )

compute the quantity

1.0 — dot product between the vectors z_j and aa’.

2. Take the minimum of the above quantity over all of

the matched pairs. This is the cost.
Once the cost for every point pair is calculated using the
above method, the Hopfield network is initialized and al-
lowed to evolve in time according to Equations (9) and (11).
When the network stabilizes, all of the PEs that have po-
tential values equal to 1 are those that represent correct
matches.

B. Motion Model Based Cost Computation

Let us consider a situation wherein the third frame be-
comes available to us. At this stage, a set of correspon-
dences between the first two frames is available. Let us as-
sume that there are Ni points in the first frame, N, points
in the second frame and N3 points in the third frame. Us-
ing information about the 2-D arrangement of neighbors
around the points in the first two frames, a set of Ny5 cor-
respondences can be obtained. These correspond to trajec-
tories of length two. Knowing these correspondences, one
could compute the 3-D motion and structure of these points
and predict their positions in the third frame. If one wants
to use a motion model that assumes rotation and transla-
tion of the objects, then one must know the segmentation
a priori to be able to compute the motion accurately. We
discuss the segmentation technique in section VI. Let us at
this point assume that the segmentation of the trajectories
until the previous frame i1s known. To estimate the 3-D
motion and structure of objects comprising the image, one
can use any of the existing motion and structure algorithms
described in [7]. These algorithms formulate the problem
of obtaining the motion and structure as a least squares
problem and require a minimum number of trajectories of
a certain length. The formulation of the motion model
based cost computation problem does not change with the
kind of motion model applied and hence 1t is not central to



the feature correspondence problem. In this paper, we use
the translation model only because, to a first order, if the
sampling in time 1s dense, the motion of the objects can be
approximated by a translational model. Having computed
the motion and structure for every segment, we could use
that to predict the position of the feature points in the cur-
rent frame. With every trajectory there is a corresponding
point which represents the predicted position of the feature
point in the current frame. In order to compute the cost
associated with a match between a trajectory and an actual
point in the current frame, we could compute the similar-
ity in the arrangement of neighbors around the predicted
point associated with the trajectory and the actual point in
the third frame. This could be done as explained in section
IV-A . As more information becomes available about the
segmentation and more trajectories accumulate over more
frames, one could use more complex motion models to pre-
dict more accurately the positions of the feature points in
the current frame.

C. Cost Based on the Continuity of Trajectories

The third method to compute the cost to be associated
with a match between a trajectory and the points in the
current frame that lie within its circle of interest depends on
the the continuity of the trajectory. Consider a trajectory
of length n+1 extending from the first frame to the (n41)*"
frame. Let the image plane coordinates of the points con-
stituting the trajectory be (X, Yp), (X1,Y1),..., (Xn, Yn).
A function has to be fit through these points. While trying
to fit a function to these points, one has to consider some
specific situations. If the point is stationary, then a func-
tion cannot be fit to the point set. It is also important to
determine whether the abscissa or the ordinate is to be the
independent variable. We use Lagrange interpolation to fit
a polynomial of degree three or four to the data because the
error with higher degree fits is high. When the trajectory
has a length greater than 4, only the last four points of the
trajectory are considered. The next step is to compute the
slope of the trajectory at the last point of the trajectory.
At any time instant, this is the point that belongs to the
previous frame. The slope of the lines joining the last point
of the trajectory and the points in the current frame that
lie within its circle of interest are computed. The cost as-
sociated with a match is related to the dot product of the
two slope vectors.

In this section, the ways in which the cost associated with
various hypotheses are calculated have been discussed. In
the case in which the correspondence between trajectories
and points in the current frame is sought, there are three
different methods to evaluate the costs. As discussed in
section II-C, the minimum of the three cost values is se-
lected and associated with each hypothesis.

Once the costs associated with every hypothesis are com-
puted, the output potentials of the PEs of the Hopfield
network can be initialized as

vij = 1.0 — Cost(1, j) (15)

where the subscript 75 denotes the hypothesis that the t*

point in the previous frame or the i*? trajectory until the
previous frame matches with the j** point in the current
frame. Once the output potential of every PE is initialized,
the network is allowed to evolve according to Equations (9)
and (11). The output potential of some of the PEs will grow
to 1.0 while that of others will fall to 0.0. The PEs whose
output potentials converge to 1.0 are those that represent
the correct hypotheses while those that have their output
potentials converging to 0.0 represent wrong hypotheses.

V. ELIMINATING WRONG CORRESPONDENCES

Any energy minimization technique suffers from the
problem of getting trapped in local minima. In our prob-
lem, this results in wrong correspondences. One way to
overcome this problem is to use simulated annealing. This
is computationally very intensive and cannot guarantee a
global minimum in finite time. Another way to overcome
this problem is to use heuristic techniques to remove wrong
correspondences. We propose another network that is very
similar to the Hopfield network described earlier to solve
this problem. The algorithm is outlined below.

We assign one correspondence to a processing element
that 1s exactly like the PEs of the Hopfield network. For
every correspondence obtained using the correspondence
network

1. Compute its Voronoi neighbors. This is done by com-
puting the Voronoi neighbors of the point in the first
frame of every correspondence.

2. Determine that neighbor that is most similar to it.
The similarity measure used is based on the difference
in the lengths and orientations of the correspondences.
For the two correspondences, compute Alength and
Aangle. Using this calculate

lengtheost = 0.5[1.0 4+ tanh (1.5(Alength — 2.0))]

angcost = 0.5[1.0 4+ tanh (0.15(Aangle — 20.0))]

Finally, these costs are merged to get one similarity
measure by the following equation,

cost = 1.0—simil = (1.0—angcost)lengthcost+angcost

This formula has been used because there is evidence
[9], [10] to believe that humans consider direction of
motion continuity to be very important in all their
visual tasks.

3. Establish a connection between the correspondence
under consideration and the most similar neighbor
with a weight equal to the cost computed in the pre-
vious step.

4. Initialize the output of the PE associated with the cor-
respondence to the similarity computed earlier. This
is the probability that the correspondence is correct.

5. Simulate every unit according to the equations

dui
dt

= —u; + L + T} jyvi0)

v; = 0.5[1.0 + tanh (Aw;)]



where j(i) is the unit that is most similar to the 7*
unit, 7 is the bias input chosen to be 50 in all our
experiments and T ;;y = —100 cost; ;(;), and u; and
v; are the input and output of the i** PE.
The network is allowed to evolve until the outputs of all
the PEs stabilize. Those PEs that approach 1.0 are kept
while the others are eliminated. With this reduced set of
correspondences, the entire process is repeated until none
of the correspondences are removed. This process results
in eliminating the wrong correspondences.

VI. SEGMENTATION OF TRAJECTORIES

Once the correspondences between two frames are ob-
tained, they must be grouped into segments representing
rigid objects. The segmentation information available for
every two frames must then be merged to cover more frames
as they become available so as to produce long trajectories
belonging to the different rigid objects. This allows more
complex motion and structure algorithms to be used to
get better estimates of 3—D motion and relative structure.
The underlying assumption made in the segmentation pro-
cedure proposed in this paper is that the motion between
two frames 1s small due to dense sampling in time of the
scene. The segmentation algorithm is outlined below.

First, the correspondence network and the network used
to eliminate the wrong trajectories are applied and correct
correspondences between two frames are obtained. For ev-
ery correspondence, its Voronoi neighbors are found. The
lines linking every correspondence with its Voronoi neigh-
bors are called edges. There are two types of edges in
a scene — inter-object edges and within-the-object edges.
For inter-object edges, the correspondences on either end
of the edge vary in length and orientation to a large degree,
whereas this variation is small for within-the-object edges.
This 1s true because the scene is sampled densely in time.
Given this premise, the steps of the algorithm are

1. Each edge is assigned to a processing element with
the same input—output characteristics described pre-
viously, i.e., v; = g(u;) = 0.5[1.0 + tanh (;\uz)] where,
u; and v; are the input and output of the i** PE and
A is the gain parameter.

2. Construct an Energy function of the form

#ofedges

Z A(L1.0 = v;)cost; + av; + / g_l(v)dv
0

i=1

FE =

that needs to be minimized to give the correct seg-
mentation. The cost function is again calculated like
in the trajectory correction algorithm. In this case the
two correspondences involved are those on either end
of the i*" edge. In the above equation, v; is the prob-
ability that the ' edge is an inter-object edge, and A
and « are the constants weighing smoothness of mo-
tion versus discontinuities of motion in space. If the
cost; 1s high, then there is a tendency for v; to go to
1, whereas if it is low then v; tends to 0 to reduce the
energy.

3. The energy i1s minimized using the gradient descent
approach where

dui _ 6E
dt - 61;2»

4. After allowing the network to stabilize, those PEs that
have potentials going to 1 are discarded and only the
within-the-object edges are retained.

This method fails when the motion between frames is very
large or when the motion between neighboring objects is
similar. The second case is very difficult to handle, whereas
the first case can be handled by trying to find a motion
model that fits unions of available segments.

= —u; + Acost; — «

VII. RESULTS

In this section we demonstrate the performance of the
algorithms on a variety of images. The examples have been
chosen to demonstrate the ability of the system to deal
with multiple objects moving in the scene and temporal
discontinuity in the motion of objects in the scene. We
also demonstrate the performance of the algorithm on some
images taken from the set of images recommended for the
general use of participants in the IEEE Workshop on Visual
Motion 1991.

/ i

Fig. 1. First frame of a sequence in which 3 objects have translational
motion.

Fig. 1 shows the first frame of a sequence of 10 images of
a scene with 3 objects in translational motion. The motion
of the 3 objects in this scene was between 4 and 10 pixels
per frame. A point feature detector that selected approxi-
mately 200 of the strongest intensity maxima and minima
was applied on all the images. The feature points detected
in the first frame of the sequence with 3 moving objects
are indicated using bright or dark points as shown in Fig.
1. Fig. 2 shows all the correct trajectories found between
the first and last frames. For every frame, after the tra-
jectories extending up to the previous frame were matched
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Fig. 2. Correct trajectories detected for the sequence in which three
objects have translational motion.

Fig. 3. Segmentationobtained for the sequence in which three objects
have translational motion.

with the points in the current frame, the wrong extensions
were eliminated using the algorithm described in section V.
Fig. 3 shows the results of the segmentation algorithm ap-
plied to the correspondences between the first two frames
of the sequence. There were 140 correspondences detected
between the first two frames. It can be seen that these
correspondences, indicated by their end points belonging
to the first frame, have been grouped into four segments
indicating the 3 rigid objects and the background. All the
correspondences that belong to one object are connected
to their Voronoi neighbors belonging to the same object.

To demonstrate the capability of the system to handle

Fig. 4. First frame of a sequence in which the object undergoes a
change in the direction of motion.
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Fig. 5. Correct trajectories detected for the sequence in which the
object undergoes a change in the direction of motion.

situations where the objects in the scene have temporal
motion discontinuities, a sequence of 10 images of a scene
with one object was taken. Fig. 4 shows the first frame
of the sequence. The object shown in the figure moved to
the left for the first 5 frames and then changed direction
to move towards the upper right corner of the image. Here
again, the motion of the object was of the order of 6 to
8 pixels. In every frame around 200 feature points were
selected. The set of correct trajectories obtained between
the first and last frames is shown in Fig. 5. The algorithm
was able to handle this situation because of the way we
define the cost function in this approach. When the object
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changes its motion, the continuity of 3-D motion and the
2-D continuity of trajectories are lost and the costs com-
puted using these two methods are high. In this case the
algorithm uses the cost computed on the basis of geometri-
cal similarity in the 2-D arrangement of neighbors around
the feature points. Between the fifth and the sixth frame
(when the object changed its direction of motion) the al-
gorithm was able to detect around 130 correspondences.

Fig. 6. Second frame of a sequence taken by a camera mounted on
a rotating robot arm.

The next two sets of experiments demonstrate the fea-
ture correspondence algorithm applied to two successive
frames of image sequences taken from the set of images rec-
ommended for the general use of participants in the IEEE
Workshop on Visual Motion 1991. Fig. 6 shows the second
frame of one of the sequences. The camera was mounted
on on a PUMA robot arm which was made to rotate, caus-
ing the entire scene to rotate about the optical axis of the
camera. The motion of the feature points depends on their
distance from the center of the image. This motion varies
from 0 to 18 pixels. The feature detector detected around
190 feature points in the second and third frame of the
sequence. The feature correspondence algorithm was used
on the the two frames. The algorithm described in section
V was used to eliminate the wrong correspondences. Fig.
7 shows the correct correspondences that were determined.
In spite of the large variation in feature point motion, the
system was able to detect 99 feature correspondences.

Fig. 8 shows the fourth frame of a sequence of 6 frames
of an outdoor scene. The camera was made to move along
the pathway seen in the figure. In this sequence, the fea-
ture points detected had a motion of around 10-15 pixels.
Around 190 feature points were used in the fourth and fifth
frames to find the correspondences. After eliminating the
wrong correspondences; the correct matches are shown in
Fig. 9 Again, in spite of the large motion of feature points,
79 matches were detected. The reason for such a low per-
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Fig. 7. Correct correspondences detected between the second and

third frames of the sequence taken by a camera mounted on a
rotating robot arm.

centage of matches is that the feature detector failed to
detect robust features in some areas of the image.
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Fourth frame of an outdoor sequence taken by a camera

Fig. 8.
mounted on a robot traveling along the pathway.
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Fig. 9. Correct correspondences detected between the fourth and
fifth frames of the outdoor sequence taken by a camera mounted
on a robot traveling along the pathway.
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