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Abstract

There has been much interest, recently, in the use of Bayesian
formulations for solving image correspondence problems.
For the two-view stereo matching problem, typical Bayesian
formulations model the disparity prior as a pairwise Markov
random field (MRF). Approximate inference algorithms for
MRFs, such as graph cuts or belief propagation, treat the
stereo matching problem as a labelling problem yielding
discrete valued disparity estimates. In this paper, we pro-
pose a novel robust Bayesian formulation based on the re-
cently proposed kernel maximum likelihood (KML) estima-
tion framework. The proposed formulation uses probability
density kernels to infer the posterior probability distribution
of the disparity values. We present an efficient iterative al-
gorithm, which uses a variational approach to form a KML
estimate from the inferred distribution. The proposed algo-
rithm yields continuous-valued disparity estimates, and is
provably convergent. The proposed approach is validated
on standard stereo pairs, with known sub-pixel disparity
ground-truth data.

1. INTRODUCTION

The dense stereo matching problem is to determine pixel
pairs corresponding to common scene points, given two ste-
reo images under a known camera configuration. The pixel
pair correspondences are usually represented in the form of
a disparity or depth map. Stereo matching finds applica-
tions in several vision tasks such as image-based rendering,
and 3-D scene reconstruction. The key issues complicating
the task of stereo matching include the presence of imaging
noise, specularities, occlusions, and textureless regions.

Recently, Bayesian formulations for establishing image
correspondences have attracted much interest [1–5], due to
the ease with which prior knowledge can be incorporated,
and because modeling assumptions explicitly emerge in such
formulations. Let I = {IL, IR} denote the given stereo im-
age pair, where IL, IR ∈ Z

N1×N2 denote the left and right
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images respectively. The aim, in stereo matching, is to find
a disparity map D = {di}i∈{1,...N1}×{1,...,N2}, which es-
tablishes {Ii} = {(IL(i), IR(i + di))} as the desired cor-
respondences. In practice, the epipolar constraint is typi-
cally used to constrain di to be one-dimensional. Bayesian
approaches formulate this problem as one of inferring the
posterior probability distribution P (D|I) = P (I|D)P (D).
An estimate of the true disparity map can be subsequently
obtained from the inferred distribution, using, for example,
maximum a-posteriori (MAP) or minimum mean-squared
error (MMSE) estimation.

Typical Bayesian formulations model the conditional dis-
tribution P (I|D) as a product of independent marginal dis-
tributions P (Ii|di), where the marginal distributions are se-
lected in accordance with standard imaging models (such as
the Lambertian model). The disparity prior P (D) is usually
modeled as a pairwise Markov random field (MRF) to en-
force spatial smoothness of the disparity map [3, 5]. While
performing exact inference on MRFs is computationally in-
tractable, approximate inference algorithms based on the
use of graph cuts [4, 5], and belief propagation [3], have
been shown to yield good performance for the two-view
stereo matching problem [6].

These algorithms treat the stereo matching problem as a
labelling problem, with the disparity estimates constrained
to take values from a discrete set, for e.g., di ∈ Z. The use
of such discretized disparity maps in applications such as
image-based rendering causes artifacts in the synthesized
views [6]. While the fidelity of the computed maps can
be enhanced by considering larger discrete sets, the com-
putational complexity scales up quickly—the order of com-
plexity for the belief propagation algorithm, for example, is
O(L2) where L is the number of disparity levels [3].

In this paper we propose a novel Bayesian formulation
for the two-view stereo problem. The presented formulation
is based on the recently proposed kernel maximum likeli-
hood (KML) estimation framework [7]. The proposed for-
mulation uses probability density kernels to infer the poste-
rior distribution P (D|I). We present an efficient variational
approach for finding the KML disparity estimate. The key
features of the proposed framework are as follows. Firstly, it
does not require the disparity estimates to take values from

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04) 
1051-4651/04 $ 20.00 IEEE 



a discrete set. Secondly, it is an exact inferential frame-
work and the proposed variational solution is provably con-
vergent. Finally, the underlying kernel density estimation
framework provides robustness to occlusions and outliers.
We illustrate the efficacy of the proposed algorithm by com-
paring its performance to that of a Potts model [8] based
formulation, which uses belief propagation for inference.

2. KERNEL MAXIMUM LIKELIHOOD STEREO
MATCHING
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Fig. 1. The underlying model assumed by the KML frame-
work. The left (reference) image is characterized by sample
set SX , the right image is characterized by sample set SY .
The sample sets are related by a parametric transformation
TΘ, and a noise process N .

We present a novel stereo matching formulation based
on our recently proposed kernel maximum likelihood (KML)
registration framework (cf. Chapter 7, [7]). The KML ap-
proach is a maximum likelihood approach which uses prob-
ability kernels for estimating priors for an image from the
data (as opposed to a preselected pdf model).

We now explain the proposed formulation using the ab-
straction shown in Fig. 1. The left stereo image IL under-
goes a transformation TΘ and a random distortion, repre-
sented by the process N , to yield the right stereo image IR.
TΘ represents the change in the spatial locations of the pix-
els as well as their intensities. The stereo matching problem
is solved by estimation of the parameters Θ, characterizing
this change. This task is complicated by the fact that N
is difficult to model, as it includes the combined effects of
occlusion (say, No) and additive imaging noise N1.

The KML framework forms non-parametric probability
density estimates using kernel density estimation [9]. This
approach has the following advantages: (1) Since the esti-
mated image pdf is produced by the aggregate of all image
pixels, the effect of a small subset of pixels being occluded
(i.e. the effect of N0) is mitigated. (2) The effect of addi-
tive noise N1 is easily incorporated in the definition of the
density kernels. (3) The approach provides us with an esti-
mate of a probability distribution for the input image—this
is crucial as real-world objects cannot always be modeled
through known parametric density models. (4) It is conve-
nient to add other priors to the resulting Bayesian formu-
lation and variational frameworks are easy to formulate for
exact Bayesian inference.

As shown in Fig. 1, we represent IL and IR using ran-
dom variables X and Y respectively, where X, Y are de-
fined over the joint range space and domain space of the
respective images. The given stereo pair is treated as inde-
pendently drawn samples from the distributions, fX(x) and
fY (y) of X and Y respectively. The corresponding sample
sets are denoted by SX = {xi}m

i=1 and SY = {yj}n
j=1. We

further use SD = {1, . . . , N1} × {1, . . . , N2}, and SR ⊂
Z to denote the 2-D spatial domain space and the inten-
sity range space of the images, respectively. Then, xi =
[i; Il(i)], with spatial location i ∈ SD, and intensity Il(i) ∈
SR. The elements yj ∈ SY are similarly defined for the
right image. For stereo matching, the two sample sets may
be considered to be related through a spatially varying trans-
form TΘi , which may be defined in terms of the disparity
map D = {di}, di ∈ R. We index each sample by its spa-
tial location, and use the Lambertian assumption to define

TΘi(xi) = TΘi([i; Il(i)]) = [i + [di, 0]; Il(i)] (1)

and write the kernel estimate for the conditional density as,

PKML(I|D) ∝
m∏

i=1

n∑
j=1

K(H−1(TΘi(xi) − yj)) (2)

We model the prior P (D) as a pairwise MRF, as is con-
ventionally done in Bayesian formulations [3, 5], and use a
robust difference function ρ(·) for disparity differences,

P (D) ∝
∏

(i,j),‖i−j‖≤1

eρ(|di−dj|) (3)

We seek a disparity field D̂ for the left image, which maxi-
mizes the posterior likelihood P (D|I), i.e., D̂ = argmaxD

(log P (I|D) + log P (D)). This can be written as

D̂ = argmax
D

(Edata(D) + Esmooth(D)) (4)

Equation (4) explicitly represents the log-posterior distribu-
tion as a sum of a data term and a smoothness term. The
data term models the requirement that the disparity estimate
be consistent with the observed data I, and the smoothness
term models the requirement that the disparity estimate be
spatially smooth. From (2) and (3), the KML estimate is,

D̂KML = argmax
D

(log PKML(I|D) + log P (D))

= argmax
D

(
m∑

i=1

log
n∑

j=1

K(H−1(TΘi(xi) − yj)) + λ ×
∑

‖i−j‖≤1

ρ(|di − dj |)) = argmax
D

(P1(D) + P2(D)) (5)
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(a) (b)

Fig. 2. (a) Left image of venus stereo pair. (b) Left image
of map stereo pair.

3. VARIATIONAL OPTIMIZATION ALGORITHM

The maximization required to be performed in (5) is for a
non-convex, nonlinear function defined over a N1 × N2 di-
mensional state-space. We now present an iterative algo-
rithm for performing this optimization based on the follow-
ing variational principle. In each iteration, a lower bound to
the function in (5) is found for a given value of D. The next
value of D is then found by maximizing this lower bound.

Consider, first, the smoothness prior term P2(D) in (5).
For a convex function ρ(x), ρ(x2) − ρ(x1) ≥ ρ′(x1)(x2 −
x1). Thus, taking ρ(x) = α exp(−x2/h2

d) yields, for some
di,0, dj,0 ∈ R, ρ(|di − dj |) ≥ ρ(|di,0 − dj,0|) + (α/h2

d) ×
exp(−(di,0−dj,0)2/h2

d)((di,0−dj,0)2− (di−dj)2). Thus,

P2(D) ≥ P2(D0)+λ

m∑
i=1

∑
j,‖j−i‖≤1

vij

(
kij − (di − dj)2

h2
d

)
(6)

where vij = αe
−(di,0−dj,0)2

h2
d , kij = (di,0−dj,0)

2

h2
d

, and D0 =
{di,0} is an initial disparity map.

Consider, next, the data term P1(D) in (5). We make use
of the concavity of the log(·) function to find a lower bound
for this term. For the case where the kernel is exponen-

tial, we get log
∑n

j=1 K(H−1(TΘ(x)−yj))∑ n
j=1 K(H−1(TΘ0 (x)−yj))

≥ ∑n
j=1 pj(cj −∥∥H−1(TΘ(x) − yj)

∥∥2) where cj =
∥∥H−1(TΘ0(x) − yj)

∥∥2
.

Finally, for a diagonal bandwidth matrix H , with intensity
bandwidth h2

I , and spatial bandwidths h2
w1

, h2
w2

, by sum-
ming over the samples in SX we get

P1(D) ≥ P1(D0) +
m∑

i=1

n∑
j=1

wij×

(cij − (Il(i) − Ir(j))2

h2
I

− (i + di − j)2

h2
w1

) (7)

where wij = K(H−1(TΘ0(xi)−yj))∑ n
k=1 K(H−1(TΘ0 (xi)−yk)) , and cij are both

functions of D0. Defining g(D) .= P1(D) + P2(D) and

combining (6) and (7) yields

g(D) ≥ g(D0) + A(D0) −
m∑

i=1

n∑
j=1

wij(
(i + di − j)2

h2
w1

)

−λ

m∑
i=1

∑
j,‖j−i‖≤1

vij(
(di − dj)2

h2
d

) (8)

where A(D0) is defined appropriately.
Two observations can be made from (8). Firstly, both

the values and the derivatives of the lower bound and the
function g(D) are identical at D = D0. Secondly, the lower
bound is easy to maximize. It requires solving the following
sparse, linear system of N1 × N2 equations in {di}m

i=1

n∑
j=1

wij

h2
w1

(i + di − j) + λ
∑

j,‖j−i‖≤1

vij(
(di − dj)

h2
d

) = 0 (9)

where the weights wij , vij are functions of D0.
To summarize, the iterative algorithm proposed to com-

pute D̂KML is as follows: (1) Choose an initial disparity map
D0. (2) Find D̂KML by solving the linear system in (9). (3)
Stop if ‖D0 − DKML‖ ≤ ε, else set D0 = D̂KML and goto
Step 2. In practice, the bandwidth parameters in the objec-
tive function in 5 are scheduled so as to provide a gradual
reduction in scale, over the course of the iterations.

The iterative algorithm described above can be shown to
converge to a local maximum of the cost function given in
(5). The proof is omitted due to lack of space, but the inter-
ested reader is referred to the similar proof in ( [7], Section
7.3.1). This algorithm provides an efficient computational
method to solve the MRF in (5) and yields continuous-valued
disparity estimates. In the next section, we present results
for the performance of the proposed formulation.

4. RESULTS

To evaluate the performance of the proposed formulation,
we use the rectified gray-scale venus and map stereo pairs,
with known sub-pixel disparity ground-truth data [6]. Fig.
2 shows the left image of each stereo pair. Denoting the
estimated disparity map by DKML = {dKML

i }, and the
ground-truth by DGT = {dGT

i }, we use the following met-
rics to quantitatively evaluate algorithm performance: (1)
B, the fraction of pixels for which |dGT

i − dKML
i | > 1,

(2) BO, the fraction of pixels in non-occluded regions, for
which |dGT

i − dKML
i | > 1, (3) MO, the disparity mean

square error (DMSE) for non-occluded pixels, and (4) MOC ,
the DMSE for non-occluded pixels which additionally sat-
isfy |dGT

i −dKML
i | ≤ 1. We compare proposed algorithm’s

performance to that of a Potts model [8] based MRF formu-
lation, which uses belief propagation for inference.

The results for the venus stereo pair are shown in Fig-
ures 3(a)-(c). Fig. 3(a) shows the true disparity map, Fig.
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(d) (e) (f)

Fig. 3. Disparity maps for venus (top row) and map (bottom row) stereo pairs. (a), (d) Ground-truth. (b), (e) Proposed
algorithm. (c), (f) Belief propagation.

3(b) shows the disparity map produced by the proposed al-
gorithm, and Fig. 3(c) shows the disparity map produced by
the belief propagation algorithm. Median filtering was used
to eliminate noise in the estimated disparity map. As can
be seen, unlike the belief propagation algorithm, the pro-
posed algorithm produces a smooth, non-discretized dispar-
ity map. Figures 3(d)-(f) show similar results for the map
stereo pair.

Table 1 quantitatively compares the performance of the
two algorithms. For the venus stereo pair, the metrics B
and BO , which do not penalize discrete-valued estimates,
are comparable for the two algorithms. The DMSE metrics
MO and MOC are significantly lower for the proposed al-
gorithm. For the simple disparity configuration of the map
stereo pair MO is comparable for the two algorithms, but
MOC is significantly lower for the proposed algorithm.

Finally, we note that, unlike the Potts model based for-
mulation, the proposed formulation does not incorporate
gradient based cues in the smoothness prior. We anticipate
that incorporating these cues will further improve the per-
formance of the proposed algorithm.
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