
A Data Partition Method for Parallel Self-organizing Map

Ming-Hsuan Yang and Narendra Ahuja
Department of Computer Science and Beckman Institute

University of Illinois at Urbana-Champaign
Urbana, IL 61801

Email:{ mhyang, ahuja} @vision.ai.uiuc.edu
Web Page: http://vision.ai.uiuc.edu

Abstract
We propose a method to partition training vectors into

clusters for a parallel implementation of Self-organizing
Map (SOM) algorithm The proposed algorithm assigns a
cluster to a processor such that, in updating weights, the
neighborhoods of a winning node in a cluster do not over-
lap the neighboring nodes of some winning nodes in other
clusters. It reduces the overheads caused by synchroniza-
tion (i.e. maintaining coherency) of the weight matrices in
the processors since the proposed algorithm allows multi-
ple vectors to find their winning nodes and update weights
in parallel. Our experimental results show that an aver-
age speedup of 3.15 for a parallel implementation of a four-
processor simulation.

1 Introduction

The Self-organizing Map (SOM) algorithm has attracted
much of interest among researchers from computer vision,
image compression, to information retrieval. SOM has
proved to be one of the most robust and useful algorithms
for classification and dimensionality reduction. However,
the computation involved in the algorithm is extremely high,
especially for the problem in which the number of input vec-
tors and the size of the map are large. For example, it takes
supercomputers several days to compute a large map in a
large scale text classification experiment[lS]. Therefore, it
is necessary and important to develop efficient parallel SOM
algorithm for real-world applications.

Many algorithms have been proposed to parallelize Koho-
nen’s SOM algorithm. One type of the parallel algorithms is
to use the characteristics of the architecture. Many parallel
SOM algorithms have been proposed on different architec-
ture, such as transputer [l] [231, eight neighbor processor
array [22], connection machine [201, parallel coprocessor
[lq, single instruction multiple data machine [l 13, multiple
instruction multiple data machine [26], systolic array [lo]
[25], and recently PVM [2] E71. Another type of parallel
SOM algorithm is to partition the data into several chunks
such that these chunks can be executed by different proces-

sors in parallel. The advantage of this approach over the
machine-dependent algorithm is its universal applicability

For a good statistical accuracy, the complete learning pro-
cess may require an a appreciable number, say, 100,OOO
steps. However, the number of available samples is usually
much smaller than the required steps, it is obvious that the
samples must be reused iteratively. Several alternatives have
been proposed: the sample may be applied cyclically or in a
randomly permuted order, or picked up at random from the
basic set (i.e. bootstrap learning). It turns out in practice
that order cyclic application is not noticeably worse than the
order, mathematically better justifiable methods [6] .

The proposed algorithm is based on the observation of
the dynamic behavior and the characteristics of the neigh-
borhood function in Kohonen’s SOM algorithm. Kohonen
points out that the period during which a rough order in
the SOM is obtained is usually relatively short, on the or-
der of lo00 steps [6]. Whereas most of the computing time
is spent for the final convergence phase, in order to achieve a
sufficiently good statistical accuracy. Furthermore, the start-
ing neighborhood function, N,(O), is recommended to be at
least half of the largest diagonal of the map for the ordering
phase. Meanwhile, the neighborhood function in the second
phasedecreaseswithrespecttotime, i.e. N,(t) I NJt-1).

Let N be the number of processors, I be the number of
input vectors and M2 be the number of nodes in the map,
the idea is to partition the input vectors into N clusters such
that a processor can take one cluster as its own inputs and
all the processors can form their maps concurrently. Mean-
while, we also want to balance the load of a processor as
much as possible, i.e. every processor has approximately
6 input vectors. ~n other words, the proposed algorithm
decomposes the original problem into a set of subproblems
such that these subproblems can be solved simultaneously
(i.e. divide-and-conquer). The proposed algorithm is de-
veloped based on the observation that a rough order in the
SOM is obtained after a short ordering period, We divide the
map into N submaps equally (i.e. a submap has $ nodes)
and cluster the input vectors whose winning nodes are in ev-

1131 ~ 7 1 [SI 141 1191 131 1211.

0-7803-5529-6/99/$10.00 01999 IEEE 1929

mailto:vision.ai.uiuc.edu
http://vision.ai.uiuc.edu

ery submap at the end of the ordering phase. Consequently,
we divide the original problem into N subproblems. Every
subproblem has roughly 6 inputs for a $$ nodes and these
subproblems can be solved simultaneously because they are
roughly independent.

Nevertheless these processors need to communicate with
others to keep consistency of the map because the neigh-
boring nodes of a winning node may belong to a submap
assigned to other processor. In other words, one processor
needs to inform the other processors to update the weights
of their nodes when the neighboring function of the win-
ning node contains nodes in other processors. The hope of
the proposed algorithm is that we can partition the problem
such that the frequency of such case is rare.

2 Proposed Method

Kohonen’s SOM [6] is usually trained in two phases. The
first of them is the ordering phase (coarse training) during
which the reference vectors (i.e. weight vectors) are roughly
ordered. During the second phase the values of the reference
vectors are fine tuned. In other words, the reference vectors
in a node converge to their “correct” values. The second
phase is usually much longer (more than 10 times) than the
first phase. Also, the neighborhood radius is also smaller
than that in the first phase.

The proposed data partition algorithm is based on the ob-
servation that the mapping from the input vectors to the
nodes on the map stabilizes after the first phase and the ra-
dius of the neighborhood function is smaller than that in the
first phase. Let N be the number of processors in the parallel
machine and M2 be the size of a rectangular map, we divide
the map into N non-overlapping clusters where a cluster has

nodes. The training vectors are then grouped into N
clusters based on the mapping after the ordering phase. The
map itself is relatively stable after the first phase, i.e. the
winning nodes of an input vector in two consecutive epochs
are close to each other. In the second phase, the vectors
in every cluster can be presented to the map in parallel since
they, with high probability, will be mapped to the same node
as the first phase or neighboring nodes within the Same clus-
ter. If an input vector is mapped to a node in another cluster,
then it is necessary to send the newly updated weights to
other processors to keep the coherency of the weigh matri-
ces. However, the proposed data partition reduces the oc-
currence of such mapping and thus reduces the overheads
caused by synchronization of weight matrices.

Figure 1 summarizes the idea,of the proposed method.
At the beginning phase of ordering, the winning node of an
input vector can be anywhere on the map as shown in Fig-
ure l(a). At the end of ordering phase, the reference vec-
tors (i.e. weight vectors) are ordered. The proposed method
then clusters the input vectors whose winning nodes fall in

a submap and divides the original map into N subproblems.
In the second phase, the reference vectors of the nodes in
the submap are being fine tuned. In other words, the win-
ning nodes of an input vector do not change much between
epochs, which means that the winning nodes tend to fall in
the same cluster as shown in Figure l(b). The main idea of
the proposed method is to divide the original problem into
N subproblems such that all of them can be processed in
parallel, except the necessary inter process communication
when the neighboring nodes of the winning node of an input
vector are not within the same submap.

(a) At beginning of the ordering phase,
the neighborhood of a winning node
of an input vector appears anywhere
on the original map and the neighbor-
hoods of winning nodes tend to over-
lap each other.

I

@) After ordering phase, the neigh-
borhood of a winning node becomes
smaller and tend to localize in one
submap.

Figure 1: Interactions of the neighborhoods of winning
nodes in the ordering and convergence phases.

3 Experimental Results

We simulate the partition method on a SGI machine with 4
processes on a image coding problem in that the task is to

1930

map 2048 training vectors into a 8 x 8 SOM map’. Our ex-
perimental results show that the probability that we need to
synchronize the weight matrices is roughly 5%. The speed
up, compared with a conventional SOM algorithm running
on a single processor, is 3.15. The experimental results show
that the proposed method achieves good speedup.

Figure 2 shows the decompressed image using SOM for
compression. Note that the results from parallel implemen-
tation is the same as those from conventional SOM. In other
words, the proposed method does not trade in performance
for speedup. On the other hand, we will discuss some meth-
ods to further increase the speedup if the performance (e.g.
quality of the decompressed image) is not the highest prior-
ity.

4 Discussion and Conclusion

We present a partition method that reduces the overheads
caused by synchronizing the weight matrices of different
processors. Experimental results show that our method has
a linear speedup close to N where N is the number proces-

Although we have demonstrated the potential of the pro-
posed method, we have not gathered good results on PVM.
We conjecture that there is some technical problems on
the synchronization functions in the PVM library. Our fu-
ture work wil l include implementations and experiments on
PVM as well as SGI Power Challenge. Furthermore, we
will also verify our algorithm with experiments on parallel
machines with different number of processors and different
problems.

The proposed algorithm can be modified to further in-
crease speedup. One possible way to improve the speedup
is to first sort the input vectors in ascending order such that
the ordering phase may take less time. However, it is not
known how this will affect the resulting map. For exam-
ple, it is clear how sorting affects the quality of the decom-
pressed images in our experiments. Another possible way
to speed up the learning process is to disallow inter process
communication while suffers certain degraded performance.
However, it can be used when a very large dataset needs to
be trained promptly and the quality of the map is not critical.
We will explore these methods in a large scale experiments
to better understand the effects of ordering and inter process
communications.

sors.

References
[13 J. M. Auger. Parallel implementation on transputer of Koho-

nen’s algorithm. In D. Gassilloud and J. C. Grossetie, editors,

‘We tested the same algorithm on a PVM of 4 Pentiurn machines. How-
mer we feel that the inter process communication functions in W M is not
well implemented since it takes much time in communicating with other
nodes. Thus, we only discuss the simulated results in this paper.

Computing with Parallel Architectures: Z Node, pages 215-
226, Dordrecht, Netherlands, 1991. Kluwer.
H. Guan, C. kwong Li, T. yat Cheung, and S. Yu. Parallel
design and implementation of SOM neural computing model
in PVM environment of a distributed system. In Proceedings
of Advances in Parallel and Distributed Computing (Cat. No.
97TB100099), pages 26-31. IEEE Comput. Soc. Press, Los
Alamitos, CA, USA, 1997..
T. Hamalainen, H. Klapun, J. Saarinen, and K. Kaski. Map-
ping of SOM and LVQ algorithms on a tree shape parallel
com uter system. Parallel Computing, 23(3):271-89, 1997.
H. &iss and M. Dormanns. Partitiomng and mapping of par-
allel programs by self-organization. Concurrency: Practice
and Experience. 8(9):685-706, 19%.
T. Kohonen. Internal representations and associative mem-
ory. In R. Eclaniller, G. Hartman, and G. Hauske, editors,
Parallel Processing in Neural Systems and Computers, pages
177-182. Elsevier, Amsterdam, Netherlands, 1990.

[6] T. Kohonen, I. Hynmnen, I. Kangas, I. Laaksonen, and
K. Torkkola. LVQ-PAK The Learning Vector Quantization
program package. Report A30, Helsinki University of Tech-
nology, Laboratory of Computer and Information Science,
Jan. 19%.

Paral-
lelization of analyses using self-organizing maps with PVM.

[7] J. S. Lange, P. Schonmeier. and H. Freiesleben.

Nuclear Instruments and Methods in Physics Research A,
389:274-76, 1997.

[SI T. U, S. Klasa, and Y. Y. Tang. Data mapping for paral-
lel programs with changing size windows. In Seventh In-
ternational Conference on Parallel and Distributed Comput-
ing Systems, pages 640-3. Int. Soc. Comput. & Their Appl.
-ISCA, Rdei

[9] T. Li and L. &. Topological feature maps on parallel com-
puters. International Journal of High Speed Computing,
7(4):5314, 1995.

[IO] R. Mann and S. Haykin. A parallel implementation of Koho-
nen’s feature maps on the warp systolic computer. In Proc.
IJCNN-90. Int. Joint Con$ on Neural Networks, Washington,
DC, volume II, pages 84-87, Hillsdale, NJ, 1990. Lawrence

, NC, USA, 1994.

Erlbaum.
[1 I] M. Manohar and J. C. Tilton. Progressive vector quantization

on a massively parallel SIMD riachine with application to
multispectral image data. IEEE Trans. on Image Processing,
5(1):142-147, January 1996.

[12] G. Myklebust and J. G. Solheim. Parallel self-organizing
maps for actual applications. In Proc. ICNN’95, IEEE Int.
Con5 on Neural Networks, volume II, pages 1054-1059, Pis-
cataway, NJ, 1995. IEEE Service Center.

1131 K. Obermayer, H. Ritter, and K. Schulten. Largescale
simulation of a self-organizing neural network Formation
of a somatotopic map. In R. Eckmiller, G. Hartmann.
and G. Hauske, editors, Parallel Processing in Neural Sys-
t e m und Computers, pages 71-74, Amsterdam, Netherlands,
1990. North-Holland.- -

[14] S. Openshaw and I. Turton. A parallel Kohonen algorithm
for the classification of large spatial datasets. Computers &
Geosciences, 22(9 :1019-26. 1996.

[15] K. K. F’arh, F. H. &U, and K. Genesan. Sequential and paral-
lel neural network vector quantizers. IEEE Transactions on
CO uters, 43(1):10+9,.Jan 1994.

[16] J. ?Qtuttek. Opummng parallel program execution by
self-organizing maps. Journal of Artijkial Neural Networks,
2(4):365-80, 1995.

1931

(a) original image: ”lena” (b) decompressed image using con-
ventional SOM for compression

(c) decompressed image using parallel
SOM for compression

(d) original image: “airplane” (e) decompressed image using con-
ventional SOM for compression

(f) decompressed image using parallel
SOM for compression

(g) original image: “baboon” (h) decompressed image using con-
ventional SOM for cornpression

(i) decompressed image using parallel
SOM for compression

Figure 2 Simulation results using the conventional and parallel SOM algorithms.

1932

[17] J. Saarinen, M. Lindrms, J. Tomberg, and K. Kaski. Parallel
coprocessor for Kohonen's self-organizing neural network.
In V. K. Rasanna and L. H. Canter, editors, Proceedings of
the Sixth International Parallel Processing Symposium (Cat.
No. 92TH0419-2), pages 537-42, Los Alamitos, CA, USA,
1992. IEEE Comput. Soc. Press.

[181 B. Schatz, W. Mischo, T. Cole, A. Bishop, S. Harum, E. John-
son, L. Neumann, H. Chen, and D. Ng. Federated search of
scientific literature. IEEE Computer, 32(2):51-59,1999.

[19] E. Schikuta and C. Weidmann. Data parallel simulation of
self-organizing maps on hypercube architectum. In Pro-
ceedings of WSOM'97, Workshop on Self-Organizing Maps,
Espoo, Finland, June 4-6, pages 142-147. Helsinki Univer-
sity of Technology, Neural Networks Research Centre, Es-
poo, Finland, 1997.

[20] A. Singer. Implementations of artificial neural networks on
the connection machine. Parallel Computing, 14:305-315,
1990.

[21] D. Strupl and R. Neruda. Parallelizing self-organizing maps.
In E Plasil and K. G. Jeffery, editors, SOFSEM '97: Theory
and Practice of Informatics. 24th Seminar on Current Trends
in Theory and Practice of Informatics. Proceedings, pages
563-70. Springer-Verlag, Berlin, Germany, 1997.

[22] T. Takeda, A. Tanaka, and K. Tanno. Parallel computing al-
gorithm of neural networks on an eight-neighbor processor
m y . In Tweljth A d International Phoenix Conference
on Computers and Communicatwns (Car. No. 93CH3249-0),
pages 559-64, New York, NY, USA, 1993. IEEE.

[23] R. Tognen and Y. Attikiouzel. Parallel implementation of
the Kohonen algorithm on transputer. In Proc. IJCNN-91,
Int. Joint Con$ on Neural Networks, Singapom, volume 11,
pages 1717-1722, Los Alamitos, CA, 1991. IEEE Comput.
Soc. Press.

[24] D. E. Van den Bout and T. K. Miller III. TInMANN: the
integer Markovian artificial neural network for performing
competitive and kohonen learning. Journal of Parallel and
Distributed Computing, 25(2):107-14, March 1995.

[25] N. Vassilas and P. Thiran. On modifications of Kohonen's
feature map algorithm for an efficient parallel implementa-
tion. In ICNN 96. The 1996 IEEE International Conference
on Neural Networks (Cat. No. 96CH35907), volume 2, pages
1390-1394. IEEE, New York, NY, USA, 1996.

[26] L. Vuurpijl, T. Schouten, and J. Vytopil. Performance predic-
tion of large MIMD systems for parallel neural network sim-
ulations. Future Generatwn Computer Systems, 11(2):221-
32, March 1995.

[27] C. H. Wu, R. E. Hodges, and C. J. Wang. Parallelizing the
self-organizing feature map on multiprocessor systems. Par-
allel Computing, 17(6-7):821-832, Sepkmk 1991.

1933

