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Abstract 
We propose a method to partition training vectors into 

clusters for a parallel implementation of Self-organizing 
Map (SOM) algorithm The proposed algorithm assigns a 
cluster to a processor such that, in updating weights, the 
neighborhoods of a winning node in a cluster do not over- 
lap the neighboring nodes of some winning nodes in other 
clusters. It reduces the overheads caused by synchroniza- 
tion (i.e. maintaining coherency) of the weight matrices in 
the processors since the proposed algorithm allows multi- 
ple vectors to find their winning nodes and update weights 
in parallel. Our experimental results show that an aver- 
age speedup of 3.15 for a parallel implementation of a four- 
processor simulation. 

1 Introduction 

The Self-organizing Map (SOM) algorithm has attracted 
much of interest among researchers from computer vision, 
image compression, to information retrieval. SOM has 
proved to be one of the most robust and useful algorithms 
for classification and dimensionality reduction. However, 
the computation involved in the algorithm is extremely high, 
especially for the problem in which the number of input vec- 
tors and the size of the map are large. For example, it takes 
supercomputers several days to compute a large map in a 
large scale text classification experiment[lS]. Therefore, it 
is necessary and important to develop efficient parallel SOM 
algorithm for real-world applications. 

Many algorithms have been proposed to parallelize Koho- 
nen’s SOM algorithm. One type of the parallel algorithms is 
to use the characteristics of the architecture. Many parallel 
SOM algorithms have been proposed on different architec- 
ture, such as transputer [l] [231, eight neighbor processor 
array [22], connection machine [201, parallel coprocessor 
[lq, single instruction multiple data machine [l 13, multiple 
instruction multiple data machine [26], systolic array [lo] 
[25], and recently PVM [2] E71. Another type of parallel 
SOM algorithm is to partition the data into several chunks 
such that these chunks can be executed by different proces- 

sors in parallel. The advantage of this approach over the 
machine-dependent algorithm is its universal applicability 

For a good statistical accuracy, the complete learning pro- 
cess may require an a appreciable number, say, 100,OOO 
steps. However, the number of available samples is usually 
much smaller than the required steps, it is obvious that the 
samples must be reused iteratively. Several alternatives have 
been proposed: the sample may be applied cyclically or in a 
randomly permuted order, or picked up at random from the 
basic set (i.e. bootstrap learning). It turns out in practice 
that order cyclic application is not noticeably worse than the 
order, mathematically better justifiable methods [6] .  

The proposed algorithm is based on the observation of 
the dynamic behavior and the characteristics of the neigh- 
borhood function in Kohonen’s SOM algorithm. Kohonen 
points out that the period during which a rough order in 
the SOM is obtained is usually relatively short, on the or- 
der of lo00 steps [6]. Whereas most of the computing time 
is spent for the final convergence phase, in order to achieve a 
sufficiently good statistical accuracy. Furthermore, the start- 
ing neighborhood function, N,(O), is recommended to be at 
least half of the largest diagonal of the map for the ordering 
phase. Meanwhile, the neighborhood function in the second 
phasedecreaseswithrespecttotime, i.e. N,(t)  I NJt-1).  

Let N be the number of processors, I be the number of 
input vectors and M2 be the number of nodes in the map, 
the idea is to partition the input vectors into N clusters such 
that a processor can take one cluster as its own inputs and 
all the processors can form their maps concurrently. Mean- 
while, we also want to balance the load of a processor as 
much as possible, i.e. every processor has approximately 
6 input vectors. ~n other words, the proposed algorithm 
decomposes the original problem into a set of subproblems 
such that these subproblems can be solved simultaneously 
(i.e. divide-and-conquer). The proposed algorithm is de- 
veloped based on the observation that a rough order in the 
SOM is obtained after a short ordering period, We divide the 
map into N submaps equally (i.e. a submap has $ nodes) 
and cluster the input vectors whose winning nodes are in ev- 
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ery submap at the end of the ordering phase. Consequently, 
we divide the original problem into N subproblems. Every 
subproblem has roughly 6 inputs for a $$ nodes and these 
subproblems can be solved simultaneously because they are 
roughly independent. 

Nevertheless these processors need to communicate with 
others to keep consistency of the map because the neigh- 
boring nodes of a winning node may belong to a submap 
assigned to other processor. In other words, one processor 
needs to inform the other processors to update the weights 
of their nodes when the neighboring function of the win- 
ning node contains nodes in other processors. The hope of 
the proposed algorithm is that we can partition the problem 
such that the frequency of such case is rare. 

2 Proposed Method 

Kohonen’s SOM [6] is usually trained in two phases. The 
first of them is the ordering phase (coarse training) during 
which the reference vectors (i.e. weight vectors) are roughly 
ordered. During the second phase the values of the reference 
vectors are fine tuned. In other words, the reference vectors 
in a node converge to their “correct” values. The second 
phase is usually much longer (more than 10 times) than the 
first phase. Also, the neighborhood radius is also smaller 
than that in the first phase. 

The proposed data partition algorithm is based on the ob- 
servation that the mapping from the input vectors to the 
nodes on the map stabilizes after the first phase and the ra- 
dius of the neighborhood function is smaller than that in the 
first phase. Let N be the number of processors in the parallel 
machine and M2 be the size of a rectangular map, we divide 
the map into N non-overlapping clusters where a cluster has 

nodes. The training vectors are then grouped into N 
clusters based on the mapping after the ordering phase. The 
map itself is relatively stable after the first phase, i.e. the 
winning nodes of an input vector in two consecutive epochs 
are close to each other. In the second phase, the vectors 
in every cluster can be presented to the map in parallel since 
they, with high probability, will be mapped to the same node 
as the first phase or neighboring nodes within the Same clus- 
ter. If an input vector is mapped to a node in another cluster, 
then it is necessary to send the newly updated weights to 
other processors to keep the coherency of the weigh matri- 
ces. However, the proposed data partition reduces the oc- 
currence of such mapping and thus reduces the overheads 
caused by synchronization of weight matrices. 

Figure 1 summarizes the idea,of the proposed method. 
At the beginning phase of ordering, the winning node of an 
input vector can be anywhere on the map as shown in Fig- 
ure l(a). At the end of ordering phase, the reference vec- 
tors (i.e. weight vectors) are ordered. The proposed method 
then clusters the input vectors whose winning nodes fall in 

a submap and divides the original map into N subproblems. 
In the second phase, the reference vectors of the nodes in 
the submap are being fine tuned. In other words, the win- 
ning nodes of an input vector do not change much between 
epochs, which means that the winning nodes tend to fall in 
the same cluster as shown in Figure l(b). The main idea of 
the proposed method is to divide the original problem into 
N subproblems such that all of them can be processed in 
parallel, except the necessary inter process communication 
when the neighboring nodes of the winning node of an input 
vector are not within the same submap. 

(a) At beginning of the ordering phase, 
the neighborhood of a winning node 
of an input vector appears anywhere 
on the original map and the neighbor- 
hoods of winning nodes tend to over- 
lap each other. 

I 

@) After ordering phase, the neigh- 
borhood of a winning node becomes 
smaller and tend to localize in one 
submap. 

Figure 1: Interactions of the neighborhoods of winning 
nodes in the ordering and convergence phases. 

3 Experimental Results 

We simulate the partition method on a SGI machine with 4 
processes on a image coding problem in that the task is to 
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map 2048 training vectors into a 8 x 8 SOM map’. Our ex- 
perimental results show that the probability that we need to 
synchronize the weight matrices is roughly 5%. The speed 
up, compared with a conventional SOM algorithm running 
on a single processor, is 3.15. The experimental results show 
that the proposed method achieves good speedup. 

Figure 2 shows the decompressed image using SOM for 
compression. Note that the results from parallel implemen- 
tation is the same as those from conventional SOM. In other 
words, the proposed method does not trade in performance 
for speedup. On the other hand, we will discuss some meth- 
ods to further increase the speedup if the performance (e.g. 
quality of the decompressed image) is not the highest prior- 
ity. 

4 Discussion and Conclusion 

We present a partition method that reduces the overheads 
caused by synchronizing the weight matrices of different 
processors. Experimental results show that our method has 
a linear speedup close to N where N is the number proces- 

Although we have demonstrated the potential of the pro- 
posed method, we have not gathered good results on PVM. 
We conjecture that there is some technical problems on 
the synchronization functions in the PVM library. Our fu- 
ture work wil l  include implementations and experiments on 
PVM as well as SGI Power Challenge. Furthermore, we 
will also verify our algorithm with experiments on parallel 
machines with different number of processors and different 
problems. 

The proposed algorithm can be modified to further in- 
crease speedup. One possible way to improve the speedup 
is to first sort the input vectors in ascending order such that 
the ordering phase may take less time. However, it is not 
known how this will affect the resulting map. For exam- 
ple, it is clear how sorting affects the quality of the decom- 
pressed images in our experiments. Another possible way 
to speed up the learning process is to disallow inter process 
communication while suffers certain degraded performance. 
However, it can be used when a very large dataset needs to 
be trained promptly and the quality of the map is not critical. 
We will explore these methods in a large scale experiments 
to better understand the effects of ordering and inter process 
communications. 
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(a) original image: ”lena” (b) decompressed image using con- 
ventional SOM for compression 

(c) decompressed image using parallel 
SOM for compression 

(d) original image: “airplane” (e) decompressed image using con- 
ventional SOM for compression 

(f) decompressed image using parallel 
SOM for compression 

(g) original image: “baboon” (h) decompressed image using con- 
ventional SOM for cornpression 

(i) decompressed image using parallel 
SOM for compression 

Figure 2 Simulation results using the conventional and parallel SOM algorithms. 
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