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Abstract. The analysis of periodic or repetitive motions is useful in
many applications, both in the natural and the man-made world. An
important example is the recognition of human and animal activities.
Existing methods for the analysis of periodic motions first extract motion
trajectories, e.g. via correlation, or feature point matching. We present a
new approach, which takes advantage of both the frequency and spatial
information of the video. The 2D spatial Fourier transform is applied to
each frame, and time-frequency distributions are then used to estimate
the time-varying object motions. Thus, multiple periodic trajectories are
extracted and their periods are estimated. The period information is
finally used to segment the periodically moving objects. Unlike existing
methods, our approach estimates multiple periodicities simultaneously,
it is robust to deviations from strictly periodic motion, and estimates
periodicities superposed on translations. Experiments with synthetic and
real sequences display the capabilities and limitations of this approach.
Supplementary material is provided, showing the video sequences used
in the experiments.

1 Introduction

Periodic motion characterizes the motion of humans and animals, as well as
many man-made objects [1]. This paper presents a new approach to the analysis
of multiple periodic motions in a video sequence. The primary motivation and
intuition lie in the observation that repetitive patterns have distinct frequency
space signatures. If these signatures can be extracted, then they can be used to
enhance the more common, spatial domain analysis of the video sequence. This
synergy between periodic motion and frequency space representations has been
surprisingly underexploited.

The main parts of the proposed approach are as follows. (1) Through a pro-
cess called μ-propagation, the periodic changes in object motions are converted
into a proportional variation in frequency (Sec. 4). This results in a frequency-
modulated (FM) signal with time-varying frequencies. (2) Time-frequency dis-
tributions (TFDs) are used to estimate the time-varying frequencies, and the
periods present in them are estimated via spectral analysis methods (Sec. 3, 4).
(3) Once all the periods in the video sequence are estimated, each object is
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segmented (Sec. 5) by matching each frame with frames at displacements cor-
responding to its period (since an object is expected to re-appear in the same
position after an integer number of periods).

1.1 Previous Work

The numerous methods for analyzing repetitive motions can be separated in two
large categories: the first based on the analysis of feature correspondences, and
the second category on region correlations.

Point Correspondence Methods: Much of the work on periodic motion es-
timation and analysis [2], [3] extracts the trajectories by tracking the position
of reflective markers throughout the video. When manual intervention or the
placement of markers are not possible, feature correspondences are used. How-
ever, varying illumination, or local occlusion lead to point feature detection and
localization errors, making the point matching unreliable. Given the detected
point features in each image, the large numbers of possible pairings also make
them computationally forbidding for many applications.

Region Correspondences: Region based methods [4] find repetitions in inter-
frame region correlations [5]. They avoid the sensitivity of point correspondences,
but are still sensitive to non-constant illumination. Also, they detect “in po-
sition” periodicities, i.e. oscillating positions of the objects around the same
pixel(s). They cannot detect periodicities superposed on other motions, such as
translations (e.g. walking), without pre-processing. Pre-processing requires that
each oscillating object is segmented in each frame [4], [6] and then aligned in
successive frames, to detect periodicities.

1.2 Motivation

The proposed work is strongly motivated by the aforementioned frequency-
compatible nature of periodic motion analysis, the limitations of the current,
spatially based methods, and the potential advantages of combining the strengths
of spatial and frequency based approaches. The advantages the frequency based
methods [7], [8] introduce include the following. (1) Frequency-based approaches
involve spatially global, instead of local, analysis. (2) There is no need for ex-
plicit feature matching (as in spatial methods). (3) Frequency domain analysis is
robust to illumination changes: Fourier Transform (FT) based motion estimates
are extracted from phase changes induced by motions, which are not as sensitive
to illumination changes as spatial correlations [9]. (4) Efficient algorithms are
available for FT computation.

1.3 Contributions

The major contributions of the proposed approach are: (1) Unlike previous work,
it extracts multiple periodic motions. (2) Periodic trajectories are extracted si-
multaneously, not one at a time (Sec. 5). (3) It is robust to deviations from strict
periodicity (Sec. 6). For example, (a) when the period is not truly constant, or
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(b) when the magnitude of the velocity or displacement profile does not have the
exact same value at each repetition, or (c) when object shape is not rigid, and
all or some of the motion parameters fluctuate around some ”mean” values, the
effects of these deviations on the proposed approach are marginal (Sec. 9). (4)
The computational cost is lower than that of the spatial methods, because (a)
the FT computation is efficient, and (b) frame by frame processing is reduced
to a few frame correlations for segmentation (Step (3) in Sec. 1). (5) It is an
example for formulating joint spatial and frequency solutions to other problems.

2 Mathematical Formulation

Consider M periodically moving objects si(r̄), 1 ≤ i ≤ M , with no interobject
occlusion, and a still background sb(r̄). In the spatial domain, frame 1 is a(r̄, 1) =
sb(r̄)+

∑M
i=1 si(r̄)+vnoise(r̄, 1). The objects actually mask background areas [10],

so a more accurate model is acquired by removing (setting to 0) the background
in each frame1. Then, frame n (1 ≤ n ≤ N) is a(x, y, n) =

∑M
i=1 si(x−bx

i (n), y−
by
i (n)) + vnoise(x, y, n), where b̄i(n) = [bx

i (n), by
i (n)] represents the displacement

of object i, 1 ≤ i ≤ M from frame 1 to n, 1 ≤ n ≤ N . Its 2D FT is:

A(ωx, ωy, n) =
M∑

i=1

Si(ωx, ωy)e−j(ωxbx
i (n)+ωyby

i (n)) + Vnoise(ωx, ωy, n). (1)

A(ωx, ωy, n) has bx
i (n) and by

i (n) as linear terms in its phase, and consequently
it has a time-varying spectrum. The latter cannot be estimated via the 3D FFT,
since the motion is not constant, as in [11]. Alternate methods are needed if we
wish to estimate the periodicity in bx

i and by
i from the spectral variations.

3 Short Term Fourier Transform

Non-stationary signals, i.e. signals with time-varying spectra, can be analyzed
with time-frequency distributions (TFD’s), which capture the variations of the
frequency content of the signal with time [7]. We use the Short-Term Fourier
Transform (STFT), which is the most common TFD [12]. The STFT captures the
spectral variation with time by computing the FT of the local signal, by filtering
it with an appropriate low-pass time function. The spectrum of the filtered signal
represents the spectral content of the signal at that time instant. For a 1D
signal s(t), the STFT is defined as STFTs(t, ω; h) ≡

∫ +∞
−∞ s(τ + t)h∗(τ)e−jωτ dτ ,

where h(t) is a lowpass function representing the “analysis window”. There is
an inherent tradeoff between time and frequency resolutions, depending on the
window used: if h(t) has higher values near the observation point t, the STFT
estimates more local quantities. A window that is compact in time leads to higher
1 In general, the background at each pixel can be estimated from the observed intensity

distributions at each pixel, and its recognition as background will involve a statistical
decision. We will omit the details of this step in this paper.
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time resolution, whereas a window peaked in the frequency domain gives better
frequency resolution.

4 Time-Varying Frequency Estimation

The time-varying frequency of the signal A(ωx, ωy, n) in Eq. (1) can be estimated
by applying the TFDs, which have been used for 1D signals [13]. They have also
been used for motion estimation [14], but for horizontal or vertical projections
of the video, i.e. 1D signals again. Here, we present a method that can estimate
the 2D object motions without resorting to projections.

Consider frame a(x, y, n). We construct an FM signal, whose 2D frequency
is modulated by the time-varying displacements of the objects, via constant μ
propagation [14]. Essentially, we estimate the 2D FT at a constant 2D “spatial
frequency” μ̄ = [μ1, μ2], as follows:

A(μ1, μ2, n) =
∑

x

∑

y

M∑

i=1

[si(x − bx
i (n), y − by

i (n)) + vnoise(x, y, n)]ej(μ1x+μ2y)

=
M∑

i=1

Si(μ1, μ2)ejμ1bx
i (n)ejμ2by

i (n) + Vnoise(μ1, μ2).

The frequencies ωi(n) = μ1b
x
i (n) + μ2b

y
i (n) in A(μ1, μ2, n) are extracted by

applying TFDs to that signal. However, the motion appears in each ωi(n) as a
weighted sum of the horizontal and vertical displacements. This problem can be
overcome simply, by estimating A(μ1, μ2, n) at μ1 = 0 and μ2 = 0. This gives
ωi(n) = μ2b

y
i (n) and ωi(n) = μ1b

x
i (n) respectively, so the horizontal and vertical

displacements are separated.
Using TFD’s, the multiple frequencies are represented by multiple ridges in

the time-frequency plane, which show the power spectrum corresponding to each
time and frequency instant. The peaks of these ridges give the dominant fre-
quencies at each time n, leading to a multicomponent signal, consisting of the
M time-varying frequencies ωi(n), one for each object 1 ≤ i ≤ M .

5 Multiple Period Detection and Estimation

We introduce a simple but efficient method for the recovery of the M different
repetitive components of the object motions, that takes advantage of their pe-
riodic nature. At each frame n, we have M displacement values bx

1(n), ..., bx
M (n)

and by
1(n), ..., by

M (n). For each object, the bx
i (n), by

i (n) form periodic functions of
time. We examine only the horizontal trajectories, since the same analysis can be
applied to the vertical ones. For object i, 1 ≤ i ≤ M , and time n, 1 ≤ n ≤ N , we
get the periodic signal b̄x

i = [bx
i (1), ..., bx

i (N)], representing its motion over time.
We sum the M signals b̄x

i of all objects i at each instant n, to form the function
ḡx = [gx(1), ..., gx(N)] =

∑M
i=1 b̄x

i , with values at each frame n (1 ≤ n ≤ N)
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given by gx(n) =
∑M

i=1 bx
i (n). The resulting 1D function ḡx is a sum of periodic

functions b̄x
i , with different periods T x

i (1 ≤ i ≤ M). Traditional spectral analy-
sis methods (e.g. the MUSIC algorithm) give the M frequencies ωx

i (1 ≤ i ≤ M)
of ḡx, and the corresponding periods T x

i = 1/ωx
i . The details of the spectral

analysis methods used are omitted, as they are beyond the scope of this paper,
and well documented in the literature [15], [8].

5.1 Periodically Moving Object Extraction

Once the different periods are estimated, the moving objects can also be ex-
tracted: by correlating frames separated by an integer number of periods, we
expect to get higher correlation values in the area of each periodically moving
object. We have bx

i (n) = bx
i (n + T x

i ), by
i (n) = by

i (n + T y
i ) for object i. We con-

sider T x
i = T y

i = Ti for simplicity, but the same analysis can be applied when
T x

i �= T y
i . If Tj denotes the period of object j, at time n′ = n + Tj we have:

a(x, y, n′) =
M∑

i=1

si(x − bx
i (n′), y − by

i (n
′)) + vnoise(x, y, n′)

=
∑

i�=j

si(x − bx
i (n′), y − by

i (n′)) + sj(x − bx
j (n′), y − by

j (n
′)) + vnoise(x, y, n′)

since object j is in the same position in frames n and n′ = n+Tj. Therefore, we
can extract the jth object by correlating frames n and n′ = n + Tj: since only
that object is expected to re-appear in the same position in those frames, the
correlation values will be highest in the pixels in its area.

5.2 Object Extraction for Periodic Motion Superposed on
Translation

As stated in Sec. 1, one of the main contributions of our method is the fact that it
allows the estimation of periodic motions superposed on translations, such as walk-
ing. In these cases, the legs are moving periodically, but the moving entity is also
translating. Correlation-based methods cannot deal with such motions, because
of the shifting position of the periodically moving object. The time-varying trajec-
tory b(n), which is used to create the FM signal, is of the form b(n) = α ·n+bP (n),
where 1 ≤ n ≤ N , α is a constant and bP (n) is the periodic component of the
motion. The FM signal we create via μ-propagation is z(n) = ejμ(α·n+bP (n)), with
phase φz(n) = μ(α · n + bP (n)). The TFDs estimate its frequency, i.e. the time-
derivative of φz(n), ωz(n) = ∂(jμ(α·n+bP (n)))

∂n = jμαn + ∂bP (n)
∂n . Consequently, the

translational component of the motion becomes a simple additive term, whereas
the periodicity of bP (n) is retained in the extracted frequency. This allows us to
deal with periodic motions superposed on translations, without needing to align
the video frames.

The segmentation cannot be performed directly in terms of the periodic mo-
tion parameters, since the object has also translated. This difficulty can be eas-
ily overcome by estimating the “mean” translation between frames, via their
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FT [9], [10]. If there are M objects in the sequence, where object i is displaced
by b̄i(n) from frame 1 to n, the ratio of the FTs of frame n (Eq. (1)) and frame
1 is φn(ω̄) = A(ω̄,n)

A(ω̄,1) =
∑M

i=1 γi(ω̄)e−jω̄T b̄i(n) + γn(ω̄), where γi(ω̄) = Si(ω̄)
A(ω̄,1) ,

γn(ω̄, n) = Vnoise(ω̄,n)
A1(ω̄) . Its inverse FT is:

φn(r̄) =
M∑

i=1

γi(r̄)δ(r̄ − b̄i(n)) + γn(r̄, n), (2)

so it has peaks at r̄ = b̄i(n), for 1 ≤ i ≤ M . Thus, the peaks of φn(r̄) estimate
the “mean” translations b̄i(n) of object centroids, between frames 1 and n.

6 Evaluation of the Robustness of the Estimates

Although many motions appearing in nature and in man-made applications have
a repetitive form, they are not necessarily strictly periodic. In most cases, their
period may fluctuate around a “mean period”, and the peak displacement may
exhibit similar deviations around a mean value. For the analysis here, we con-
sider one object, and only the motion in the x-direction since the same ap-
plies to the y-direction. Consider an ideal periodic trajectory x(t) = x(t + T ),
and a nearly periodic trajectory x′(t) = x(t + T ′) + ε2, where T ′ = T + ε1,
ε1 ∼N (0, σ2

1), ε2 ∼N (0, σ2
2). The analysis will be carried out in continuous time,

so the signal under examination is A(μ1, 0, t) = S(μ1, 0, t)ejμ1x(t), with STFT
STFT ′(t, ω) =

∫
S(μ1, 0)ejμ1x(t+τ)h∗(τ)e−jωτ dτ . For a near-periodic trajectory

x′(t), the STFT is STFT (t, ω) =
∫

S(μ1, 0)ejμ1(x(t+τ+T+ε1)+ε2)h∗(τ)e−jωτ dτ .
The noise in the displacement period and peak magnitude introduce errors in
the STFT, which is a random quantity. Its mean, w.r.t. the random quantities
ε1, ε2, is Eε1,ε2 [STFT ′(t, ω)] = Eε1Eε2 [STFT ′(t, ω)] = Eε2 [ejμ1ε2 ]Eε1 [F (ε1)],
where F (ε1) = S(μ1, 0)

∫
ejμ1x(t+τ+T+ε1)h∗(τ)e−jωτ dτ . Then:

Eε2 [e
jμ1ε2 ] =

1√
2πσ2

∫ Δ2

−Δ2

exp

[

−1
2

(
ε22
σ2

2
− 2jμ1ε2

)]

dε2. (3)

For z = ε2
σ2

− jμ1σ2, Eq. (3) is Eε2 [ejμ1ε2 ] = e− 1
2 μ2

1σ2
2√

2π

∫ Δ2/σ2−jμ1σ2

−Δ2/σ2−jmu1σ2
e−z2/2dz.

This integral can be estimated numerically, and it can be shown that for σ2 → 0,
Eε2 [ejμ1ε2 ] → 1. This shows that the mean STFT, with respect to the displace-
ment magnitude error ε2, is unaffected by this noise. Essentially, the STFT
estimator is unbiased with respect to ε2, i.e. if this error is introduced in many
realizations of the trajectory, the average value of the resulting “noisy” STFTs
will be the same as the true STFT. This explains why the time-frequency dis-
tribution estimate (STFT) is robust to deviations from a “perfect” trajectory,
where ε2 = 0. For the error in the trajectory period ε1, we have:

Eε1 [F (ε1)] =
1√

2πσ1

∫

F (ε1)e−ε21/2σ2
1dε1 =

1√
2πσ1

∫

h∗(τ)e−jωτ A(τ)dτ, (4)
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for A(τ) = 1√
2πσ1

∫ Δ1

−Δ1
ejμ1x(t+τ+T+ε1)e−ε21/2σ2

1dε1. For ε1 = 0, i.e. when T is
constant, Eq. (4) gives the STFT of the ideal periodic signal. A(τ) depends on
the form of x(t), but Eε1 [F (ε1)] in Eq. (4) is essentially the same as the STFT of
ejμ1x(t), except after the signal x(t) has been “filtered” by the Gaussian function
e−ε21/2σ2

1 . This filtering behaves like a low pass function for the signal x(t), since
it is blurred by the Gaussian function. Eq. (4) will give the time-frequency power
spectrum of this “filtered” signal, which will lead to correct frequency estimates,
since the peaks in the spectrum will simply be spread out by the blurring process.

7 Experiments

Experiments are conducted both with synthetic and real sequences that contain
multiple periodic motions. Most real sequences involve only nearly periodic mo-
tions, i.e., they contain many deviations from strict periodicity. They can be
seen in the supplementary material to this paper. The goals of the exper-
iments are: (1) To show that the proposed method can detect multiple periodic
motions. (2) To show that the multiple periods can be estimated reliably. (3) To
extract the periodically moving objects.

Synthetic Sequence - Two Objects: Experiments are conducted with a syn-
thetic sequence, with horizontal motion (Fig. 1). We use μ-propagation [14] to
estimate the STFT (Fig. 2(a)). The power spectrum of the STFT max (Fig. 2(b))
gives the correct periods present in the sequence (Fig. 2(c)).

Real Sequence - Walking: In this experiment we examine the case of periodic
motion superposed on translation. We use the video of a person walking in
parallel to the camera sensor: the human’s body is translating to the left, but
his legs and arms are performing repetitive motions (Fig. 3). The periods of his
arms and legs are empirically found to be 5 by observing the video sequence.
They are extracted correctly via the STFT, as Figs. 4 and 5 show. The mean
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Fig. 1. (a) Frame 45 of synthetic sequence with two periodically moving objects. (b)
Object velocities in the horizontal direction, as functions of time.
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Fig. 2. Synthetic sequence: (a) STFT. (b) Max of the STFT. (c) The power spectrum
of the TFD max gives the correct periods.
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Frame 60

(b)

Extracted leg

(c)

Fig. 3. Walking Sequence: (a) Frame 12. (b) Frame 60. (c) Segmentation of the pe-
riodically moving leg, shown in black. The deviation of the leg’s motion from strict
periodicity introduces blocking artifacts in the correlation process.
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Fig. 4. Horizontal direction of Walking Sequence: (a) 2D STFT (b) The power spec-
trum for the horizontal direction correctly finds T = 5 for the leg motion

translation is then estimated to be 135 pixels via Eq. (2), and the image is shifted
back to the same position in all frames. Finally, the periodically moving leg is
extracted by correlating the shifted frame 60 with frame 12, corresponding to 3
periods, giving the result of Fig. 3(c).2 In Fig. 3(c) we show only the segmented
object (leg) area of the frame, shown on a larger scale than the original frames,
2 The sequence has 80 frames and T = 5 so every 16 frames correspond to one period.
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STFT for y dir. in Walking Seq.
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Fig. 5. Vertical direction of Walking Sequence: (a) 2D STFT (b) The PSD for the
vertical direction correctly finds T = 5 for the arm motion

y−component of 2D−space and time−STFT for Swings Seq.
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Fig. 6. Swings sequence, y direction: (a) STFT. (b) Power spectrum of the STFT. The
period estimate T = 2.875 is close to the actual value T = 2.5.

for clarity. The leg is the black part of this figure, but parts of the background
have also been extracted with it during the correlation process. This is because
the leg’s motion is not perfectly periodic, despite its strongly repetitive nature: it
is not in precisely the same position after an integer number of periods, although
it is very close to its original place, as Fig. 3(a),(c) show. Thus, the correlation
process also extracts some of the background around the object (leg), because
of these deviations from strict periodicity.

Real Sequence - Swings: This sequence shows two children on swings
(Fig. 7(a)), moving with the same period, T = 2.5, but different phase, as they
start off from different positions. In Fig. 6(a) we see that the STFT in the
y-direction captures the repetitive motions in that direction. The power spec-
trum of the peaks of this TFD contains the periodicity information, as shown
in Fig. 6(b): the period estimate T = 2.875 is quite close to its observed value
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(a) (b) (c)

Fig. 7. Swings sequence: (a) Frame 10. Segmentation results for (b) boy (c) girl

Frame 1

(a)

Frame 10

(b)

Fig. 8. Jump-rope and dribbling sequence: (a) Frame 1 (b) Frame 10

of T = 2.5. It is used to correlate frames that are an integer number of periods
apart, and thus segment the periodically moving children (Fig. 7(b), (c)). We
show only the segmented object areas of the frame, on a larger scale than the
original frames, for clarity. It should be noted that the method succeeds despite
the fact that the children are non-rigid objects. Also, since they are non-rigid,
the correlation is performed with large block sizes to account for the variations
in their overall shape (e.g. legs folding or extending).

Real Sequence - Jump-Rope and Dribbling Sequence: In this experiment
we used a sequence consisting of two different periodic motions: a girl with a jump
rope, jumping in place next to a girl that is dribbling a basketball (Fig. 8). The
empirically observed periods for the Jump-Rope sequence are Tx = 4.5 in the
horizontal direction and Ty = 8 in the vertical direction, while in the Dribbling
sequence, we have Tx = 2.5 and Ty = 5. As Fig. 9 shows, the estimated horizontal
periods are T = 2.5 and T = 5, so the period of the x-movement for the dribbling
is found correctly, while the jump-rope’s horizontal period is estimated with a
small error. This is expected, as the horizontal motion of the girl jumping is
small and noisy, because of the random motion and occlusion introduced by her
arms and the jump-rope. The dribbling of the ball is a more regular motion, so
its period is found with better precision. Similarly, the periods of the motions
in the y-direction are found to be T = 5.4 and T = 7.8 for the ball and the girl
jumping, respectively. Again, they are estimated with good accuracy, although
there are possible sources of errors, such as occlusion and non-rigidly moving
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Fig. 9. Power spectral density of the 2D TFDs. (a) In the x-direction both periods are
estimated correctly. (b) In the y-direction both periods are also estimated correctly.
(c) The object with T = 4 in the x-direction extracted via spatial correlation.

objects (e.g. arms) in the sequence. Finally, using the estimated periods for
the moving objects, we also extract the objects that undergo the corresponding
repetitive motions. The segmentation of the jumping girl obtained via spatial
correlation is shown in Fig. 9(c).

8 Evaluation Results

We quantitatively measure the performance of our method by estimating the
errors in the period estimates and the segmentation (Table 1). The ground truth
for the periods of the moving objects is obtained by empirically counting the
repetitions of each motion in the sequence. The error eT in the period estimates
Test is then given by the absolute difference of Test and the ground truth T

Table 1. Errors in the Period Estimates and Object Segmentation for 2D Method

Video eT (x dir) eT (y dir) eS for object 1 eS for object 2
Synthetic 0 0 0.235 0.121
Walking 0 0 0.255 0.27
Swings 0.3 - 0.37 0.443
Jump-rope and Dribbling 0.25 0.4 0.27 0.15
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i.e. eT = |Test − T |. When there are many objects in the video, the error in
the period estimate in each direction is the mean of their individual errors. The
object segmentation ground truth is obtained by manually segmenting out each
moving object Si(r̄) and the corresponding error eS is given by the number
of pixels where the extracted and actual objects differ, divided by the number
of pixels in the real object area. The segmentation errors are related to the
object’s real size. They usually originate from blocking artifacts, introduced by
the correlation. Since in some experiments there is periodic motion in only one
direction or there is only one object, there are some blanks (“−”) in the table.

9 Conclusions and Discussion

We have proposed a method for multiple periodic motion estimation that com-
bines frequency and spatial data, to overcome many difficulties and shortcomings
of existing purely spatial methods.

1. Our approach detects and estimates multiple periods in a video sequence
simultaneously (Sec. 5), in contrast to the existing literature, where each
periodic motion is analyzed separately, with the help of manual intervention.

2. The proposed approach can deal with motions that deviate from strict period-
icity (Sec. 6), as themeanSTFTerror is zero.This is also shown in experiments,
where the real sequences do not have perfectly periodic motions.

3. Our approach can also extract objects with periodic motion superposed on
translation, such as walking (Sec. 5.2). Such motions cannot be analyzed
without preprocessing in the existing literature.

4. Once the periods in the video are estimated, the periodically moving objects
can be extracted via spatial correlation methods (Sec. 5.1). Since the periods
have already been found, our segmentation is more reliable than those of
spatial only methods.
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