
A Vision System for Monitoring Intermodal Freight Trains

Avinash Kumar, Narendra Ahuja, John M Hart
Dept. of Electrical and Computer Engineering

University of Illinois,Urbana-Champaign
Urbana, Illinois 61801

{avinash,ahuja,jmh}@vision.ai.uiuc.edu

U K Visesh, P J Narayanan, C V Jawahar
Center for Visual Information Technology

International Institute of Information Technology
Hyderabad, India

{ukvisesh,pjn,jawahar}@iiit.ac.in

Abstract

We describe the design and implementation of a vision
based Intermodal Train Monitoring System(ITMS) for ex-
tracting various features like length of gaps in an inter-
modal(IM) train which can later be used for higher level
inferences. An intermodal train is a freight train consisting
of two basic types of loads - containers and trailers. Our
system first captures the video of an IM train, and applies
image processing and machine learning techniques devel-
oped in this work to identify the various types of loads as
containers and trailers. The whole process relies on a se-
quence of following tasks - robust background subtraction
in each frame of the video, estimation of train velocity, cre-
ation of mosaic of the whole train from the video and classi-
fication of train loads into containers and trailers. Finally,
the length of gaps between the loads of the IM train is esti-
mated and is used to analyze the aerodynamic efficiency of
the loading pattern of the train, which is a critical aspect
of freight trains. This paper focusses on the machine vision
aspect of the whole system.

1. Introduction

Intermodal(IM) freight trains have become the most
widespread and fastest growing portion of the North Amer-
ican Freight Railroads. Their traffic has grown from 6.2
million in 1990 to 11 million in 2004, an increase of 77 per-
cent [1]. These trains are generally more than 1 mile long
and their operating speeds can be as high as 79 miles per
hour(mph). While traveling at such high speeds, IM trains
suffer large aerodynamic resistance owing to the big gaps
between IM loads, thus resulting in high energy cost. This
is a timely issue because of the fuel crisis in the past 5-10
years which has led to indirect effects of increase in trans-
portation cost. Therefore, it is necessary to make IM trains
more fuel efficient. In the following paragraphs we briefly
introduce terms relating to IM trains, reasons for more fuel

consumption and how an intermodal train analysis can help
in achieving fuel efficiency.

Each load of an IM train is placed on a long iron platform
with wheels called as a rail car as shown in Fig. 1(a) and
a series of such rail cars of different lengths are attached
together to form a train. Loads of different sizes and types,
as shown in Fig. 1(b-f), can be placed on each of the rail
cars. We define the arrangement of these loads across the

(a) (b) (c)

(d) (e) (f)

Figure 1. (a) Railcar (b-f) Different kinds of
loads (b) Double Stack with upper and lower
stack of same length (c)&(d) Double Stack
with upper and lower stack of different length
(e) Single Stack (f) Trailer.

length of an IM train as the loading pattern for that train.
Fig. 2 shows our notion of good and bad loading patterns.
Thus, poor loading assignments between loads and railcars
lead to large gaps in IM trains. In [4] it was found that
such inefficient loading patterns contribute to considerable
increase in aerodynamic penalties. A good loading pattern
would reduce the air resistance by as much as 27 percent
and the fuel consumptions by a gallon per mile per train [5].
Therefore, a vision based system is developed to measure
the loading efficiency and provide feedbacks to terminals,
i.e., train yards where the IM trains are loaded.

A loading pattern analysis would involve measuring the
gaps between consecutive loads of the train and then use
this information to determine the aerodynamic efficiency of
the loading assignment as in [5]. One way of doing this
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Figure 2. (a) good loading pattern - length of
railcars match the length of the loads (b) bad
loading pattern - smaller loads are kept on
longer railcars leading to more aerodynamic
resistance.

could be manually checking the length of the gaps of the
train, which is a tedious process, especially if the length
of the train extends to a mile. Our work intends to auto-
mate this whole process with less or no manual intervention.
The main purpose of this research is to develop a camera
based automatic train monitoring system, which will cap-
ture a video of a moving train and apply image processing
and machine learning techniques to process this video. This
task is made challenging by the fact that our system must be
real time and handle various imaging conditions e.g., cloudy
skies and dim light conditions. The prototype system we
developed captures the video of a train, does background
subtraction on individual frames, generates the mosaic of
the train and then calculates the gaps of the IM train. The
gap lengths are then used to calculate the aerodynamic effi-
ciency of the train.

The system developed in [2] uses laser based techniques
to analyze the wheels of trains. To our knowledge, there has
not been any other such system developed before, which
monitors the loads of a freight train, extracts useful fea-
tures of the train and then does high level processing tasks
e.g., calculate aerodynamic efficiency of the train, finding
empty rail cars. In Section 2 we describe the camera setup
and modules of the whole system namely background sub-
traction, mosaic generation and gap estimation. Section 3
shows results on detection accuracy of our system and ro-
bustness of gap estimation and mosaic generation.

2. System Overview

The whole system consists of two parts.
Camera Setup : A test location with high frequency of IM
trains was chosen for capturing videos of the train. The
speed of these trains at this location was mostly around 70-
75 mph. A calibrated CCTV camera capable of capturing
frames at resolution of 640x480 at 30 frames per second
was placed facing the track. The camera would get activated
and start capturing video as soon as the IM train comes into
view. The camera setup at the test site had the parameters
as shown in Fig. 3. Software : The software we developed
is called as Intermodal Train Monitoring System(ITMS). A
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Figure 3. Setup (a) Top view (b) Side view

flowchart describing the complete system is shown in Fig. 4.
The algorithm first takes the video obtained at the test site
as input. It then extracts individual frames from the video.
The images are not corrected for distortion as this could cost
us more time in execution of the system. The background
is then subtracted from each frame by using edge based and
learning techniques (section 2.1). By correlating two con-
secutive background subtracted frames the velocity of the
train is calculated in terms of pixel shift per frame (section
2.2). This velocity is used to create the mosaic of the IM
train (section 2.3). After mosaic creation, the boundaries of
the loads are detected (section 2.3) and the loads are classi-
fied (section 2.4) into containers and trailers. The mosaic is
used to calculate the gap lengths between the loads (section
2.5).

1. Video of an Intermodal 8. Gaps between the
loads is calculated.train is acquired.

2. Frames of the Video 
are extracted.

3. Background is subtracted
from each frame.

4. Train velocity is estimated
from two consecutive 
background subtracted 
frames.

7. Loads are classified
into different categories
depending on their types.

6. Boundaries of the loads 
on IM train are detected.

5. Mosaic of the complete 
intermodal train in 
generated.

Figure 4. Flowchart of the Machine Vision Al-
gorithm

2.1. Background Removal
The loads of an IM train can be broadly classified into

containers and trailers. The containers are rectangular box
shaped structures as shown in Fig 1(b-e). The trailers differ
from containers in that they have wheels near their bottom
as shown in Fig 1(f). The containers are stacked on rail cars
in the following two configurations: Single Stack which has
only one container and Double Stack which has two con-
tainers stacked over each other and placed on the rail car.
Once the video of IM train is obtained, the next step is to
separate the foreground from the background. The back-
ground is defined as any part of the image which does not
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belong to the IM train e.g. sky, ground behind the train. See
Fig. 5 for sample background and foreground frames from
the videos we captured. A simple template based back-
ground subtraction algorithm does not work properly for
our case, since the background changes dynamically e.g.
clouds change position over the duration of train movement.
Thus, for robustness of background subtraction, we adopted
the following three stage algorithm.

• Entire background above the top of the loads (region
marked Red in Fig. 5(d)) is removed using edge detec-
tion methods.

• Gaps between consecutive loads (region marked Green
in Fig. 5(d)) is removed using edge detection based
methods.

• The gap boundaries are not straight for gaps having
double stacks with unequal lengths. To handle the
background in the small region near the edge of the
smaller stack (region marked Blue in Fig. 5(d)), we
use an adaptive background subtraction method from
[6] .

Each of these methods is explained below. The loads have

(a) (b) (c) (d)

Figure 5. (a) and (b) Background template
images with clouds,sky and fields (c) Fore-
ground containing load (d) Regions where
different subtraction algorithms are applied.

box shaped structure, which gets projected as a rectangular
shape in an image. Thus a load can be characterized by a top
edge and two side edges. The enclosed region corresponds
to the load i.e. foreground, and the outside region is back-
ground. A gradient based edge detector is applied to each
frame to obtain a binary image with edges of the loads get-
ting the highest intensity value of 255. Due to overexposure,
some of the detected edges may not be continuous, thus we
dilate the edge image using a 5x5 mask. Fig 6 shows the
edge detection and dilation results.

In this dilated edge image, we need to identify the top
edge of the load. As the background usually contains struc-
tures like sky, clouds and bushes, which have low frequency
components, the edge detection process detects very few
edges from the background. Since the loads are almost rect-
angular in shape their top edge is assumed to be a straight
line. Thus the first pixel location where the sum of inten-
sities along x-direction peaks is taken to be the top of the

(a) (b) (c)

Figure 6. (a) Original Frame containing a load
(b) Edges of the load detected (c) Dilated
Edge image.

container. This is depicted in Fig. 7. The region above this
pixel location in the image frame is considered to be back-
ground. Now, we remove background from the gaps lying

Y

X

Figure 7. Detection of top edge of the load.

between the vertical boundaries of consecutive loads. Since
the containers and trailers are long, only some portion of
their length gets imaged in consecutive frames. In fact any
load can be imaged in four possible configurations as shown
in Fig. 8. Three of these configurations (a-c) contain gaps
or part of the gaps. To detect these gaps, we start from the

(a) (b) (c) (d)

Figure 8. (a) Left part of the gap is visible (b)
Complete gap is visible (c) Right part of the
gap is visible (d)No gap visible.

leftmost column of the image frame and look at the location
of the highest edge pixels along y direction. These locations
have higher y coordinate values for loads and lower values
for gaps. We decide on a threshold Th, and whenever the
difference in measurement in consecutive columns exceeds
Th we signal the presence of left side of the gap. Similarly
we repeat the process to find the right side of the gap. The
threshold Th can be calculated as follows. The height of
the rail car and the containers is fixed and can be obtained
from freight train manual [3]. Assuming perspective projec-
tion, the height of rail car hrc in image pixels is computed
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using the parameters of the camera setup as shown in Fig.
3. Similarly we can calculate the height of a single stack(
smallest in height among all loads ) in image pixels as hss.
Their difference i.e., hss − hrc is our threshold Th. Fig. 9
depicts the gap detection algorithm. The above algorithm

Y

X

Figure 9. Detection of gaps in between loads.
is sufficient for detecting gaps, which do not have a double
stack container with unequal length stacks on either of its
sides(Fig. 5(c)). In such cases, the above technique based
on edge detection only helps in removing a part of the gaps
between longer stacks as shown in green color in Fig. 5(d).
In order to remove background near the shorter of the two
stacks (blue region in Fig. 5(d)), we apply an adaptive back-
ground subtraction method described in [6]. In this method
the temporal pixel intensities obtained across frames at one
particular location are modeled as a mixture of gaussians. In
our work, we input all the intensities in background frames
captured before the arrival of IM train ( see Fig. 5(a,b) ) and
the intensities from the background regions detected using
edge based method to learn the parameters of the gaussians
corresponding to the background. Since we do not have any
prior knowledge about the presence of such kind of gaps,
we apply this adaptive algorithm near the boundaries of all
the gaps detected using our previous edge based method.
We thus use edge based and adaptive learning techniques
for robust background removal as seen in Fig. 10.

(a) (b) (c) (d)

Figure 10. (a) and (c) Example frames from a
video (b) and (d) Corresponding background
subtracted frames.

2.2. Velocity Estimation
In order to generate a mosaic, the next step is to detect

the velocity of the IM train. We assume that the motion of
the train is horizontal and there is negligible vertical mo-
tion. A correlation based technique is applied to get the

pixel location where there is a best match between consec-
utive frames. Since 2D correlation is not very fast and our
application should be real time, we approximate it with a
1D correlation. This is done by summing up the intensities
in two consecutive images column wise and then correlating
these summed up 1D arrays. The summing operation takes
care of the slight motions in vertical direction. The array in-
dex of maximum correlation denotes the optimal pixel shifts
between consecutive frames and is thus the velocity of the
train in pixel shift per frame. Thus the estimated optimal
velocity vopt(I1, I2) can be written as

vopt(I1, I2) = argmax
v

∑
x

(∑
y

I1(x, y) ·
∑

y

I2(x + v, y)

)

where, I1 and I2 are two neighboring image frames.

2.3. Mosaic Generation and Detection of
Boundaries of the Load

Mosaic generation is important because it results in one
big panorama of the train in which the loads are visible as
a single complete block. The detection and classification of
loads becomes easier on the whole mosaic, since it depends
on the global properties of the complete load like length of
the load, which is not visible in a single frame. To gener-
ate the mosaic, we extract a patch of pixels of certain width
from the center of the frames and then paste these patches
on one large image. The width of each patch is equal to the
velocity estimate (as calculated in Section 2.2) of the train in
the frame, from which the patch was taken. The reason be-
ing that the velocity estimate describes the amount by which
the pixels have been shifted. Thus by selecting patches of
length equal to the velocity we make sure that there is least
overlapping region between consecutive patches when we
create the mosaic. Since distortion is least in the center of
the image, we choose the patch located at the center of the
image. Fig. 11 shows our results on mosaic generation for
one IM train.

Figure 11. Mosaic of an intermodal train con-
sisting of background subtracted loads.

Now, the foreground pixels in the mosaic are given a
mask value of 1 and the background pixels of 0 to create
a foreground mask image. To detect the boundaries of the
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load in the mosaic, we count the number of foreground pix-
els in a column. Thus, for a mosaic of dimensions 640x1000
we get a 1D array of size 1x1000 containing the number
of foreground pixels taken column wise. Since, the gaps
have some foreground in the form of parts of the iron con-
nectors between consecutive rail cars which are very less
compared to that in the loads, we can apply k-means algo-
rithm with k=2 (foreground in loads and foreground in the
gaps) over this 1D array. Based on the two clusters we de-
cide on a threshold value for obtaining the boundaries of the
loads. For double stacks with same length containers, trail-
ers and single stacks these boundaries correspond to correct
gap edges. But for a double stack with unequal length con-
tainers, this method detects only the outer most boundary.
The innermost boundary corresponding to shorter stack is
calculated as a byproduct of the classification of the load
into double stack as in section 2.4.

2.4. Classification of Loads
Once the edges of the loads are detected, the next step

is to classify the loads into one of the following three cat-
egories - Single Stack, Double Stack and Trailer. The ac-
curacy of this classification is important because based on a
load being classified as a double stack, we look for the edge
of the smaller stack in an unequal sized double stack config-
uration. The algorithm for load classification is described in
the following subsections.
Single Stack Detection The single stacks differ from the
other types of loads in that their height is small, roughly
around 3-4 ft. From the load specifications on the height
of a single stack [3] and using camera position and the
height of the rail car, we can calculate the maximum possi-
ble height hss of a single stack in pixel values in an image.
As explained in Section 2.1, we also have the height of the
top of a load hl. Thus if hl ≤ hss, we classify that load as
a single stack. Since double stacks and trailers could be of
same size, we cannot use similar techniques for identifying
them.
Trailers The trailers are characterized by container shaped
body but having wheels and an axle at the bottom. Due to
the existence of a gap at the bottom of a trailer, the camera
is able to view the base of the trailer. The base is character-
ized by low intensity values in the range of 0-10, as there is
no direct natural light falling on it. To detect the trailer we
look for a region of pixels near the base of the trailer, which
falls in this low intensity range. If we are able to find such
a region of pixels, we classify that load as a trailer. See Fig
12.
Double Stack Detection All the loads, which are not single
stack or trailer, are assumed to be double stacks. The double
stacks are characterized by two stacks of equal or unequal
lengths kept on top of one another such that there is always
a thin gap between the two stacks. The position of the cam-

era is such that this gap is detected as a thin strip ( 2 or 3
pixels wide) of black line of intensity ∼ 0. To detect the
presence of this gap, we take a window of some size around
the center of the double stack configuration as shown in Fig.
13. The intensity values in this window are projected hori-
zontally along the x-direction by summing them up to give
rise to a 1D array. The location of the minimum intensity
value in this 1D array corresponds to the location of the
midline, which is defined as the boundary line between the
upper and the lower stack. See Fig. 13 for detection pro-
cess for midline. To detect if the lower and upper stacks
are of same size or different size, we choose two windows
near the left boundary of the double stack, one of these is
above the middle line and the other is below the middle line.
We look for the presence of the edge of the smaller stack in
these windows, by projecting the foreground mask profile(
described in the second paragraph of section 2.3) along y di-
rection( see Fig. 13 ) in that region and finding the location
of steep change in projected profile which will correspond
to the edge of the load. We repeat this process for the right
boundary of the double stack. Thus we detect double stack
containers along with the widths of the upper and the lower
stacks.

Figure 12. Detection of trailers. The small re-
gion near the bottom of the trailer that has
pixels with low intensity is utilized for their
detection.

Y

X

Figure 13. Detection of Double Stack.

2.5. Gap Detection
Once the stacks have been classified and their bound-

aries detected, we can then calculate the gaps between the
loads. The gaps are divided into two categories - Upper
Level gaps and Lower Level gaps. The upper level gaps
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correspond to gaps between two neighboring upper stacks
of a double stack configuration. All the other gaps are clas-
sified as lower level gaps. In Fig. 14 we show examples
with upper level gaps as blue lines and lower level gaps in
red lines.

(a)

(b)

Figure 14. Different types of gaps : (a) dou-
ble stack-single stack pair (b) double stack-
trailer pair.

3. Results and Conclusion

Once the gap lengths are detected they are sent to another
system [5] which can calculate the aerodynamic efficiency
of the IM train. The accuracy of this system critically de-
pends on how accurately we detect the gap lengths. As the
videos which we have were captured from various locations,
we do not have ground truth data of length of the gaps in
the IM trains. Thus we derived a measure of how accu-
rately the length of the different loads were detected using
our ITMS software. The railway manual [3] contains a de-
scription of the possible lengths of the double stack, single
stack and trailer in feets. Let this set of lengths be defined
as L = {l1, l2, . . . , ln}. From our camera setup we know
that 40 feets = 1000 pixels. Using this conversion rate we
convert the length of the containers into feet. Let this length
be l. Thus we define the relative error per unit length of
load,

Err(l) =
|li∗ − l|

li∗
where i∗ = argmin

i
|li∗ − l|

The above error is accumulated over all loads in an IM train
to obtain Panorama Generation Error as shown in Table
1. The average error rate is less than 4%. Since errors
in background removal directly effect velocity computation
between two frames and the velocity estimate is used in con-
structing mosaics, we can infer that low panorama genera-
tion errors imply robustness of other modules. The software
takes 5-7 minutes ( depending on the train length) to output
gap lengths on one intermodal train, which is quite compa-
rable to real time systems. The algorithm was tested on 12
sets of videos captured at the test site containing 570 dif-
ferent kinds of loads - 245 double stacks, 84 single stacks
and 241 trailers. These videos had various levels of diffi-
culty e.g. clouds in the sky, videos with less exposure, wav-
ing bushes in the background. The classification recall rate

Table 1. Panorama Generation Error
S.no Date Train index Error

1 06/08 1 3.47%
2 06/08 2 1.71%
3 06/08 4 1.65%
4 08/07 1 2.67%
5 08/29 1 8.79%
6 09/10 3 3.32%
7 09/10 9 2.86%
8 09/11 1 6.82%
9 09/11 2 4.68%

10 09/11 3 2.84%
11 09/17 3 2.31%
12 09/17 5 4.97%

for double stacks and single stacks was 100% and for trail-
ers was 99%. The results of background subtraction and
mosaic generation are shown in Fig. 10 and Fig. 11 re-
spectively. Thus we have developed a vision based system
which monitors an IM train, extracts important information
and uses them for higher level inferences which in our case
is calculation of aerodynamic efficiency [5] of the loading
pattern.
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