
ONLINE LEARNINGWITH KERNELS: OVERCOMING THE GROWING SUM PROBLEM

Abhishek Singh, Narendra Ahuja and Pierre Moulin

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

abhishek singh@ieee.org, {n-ahuja, pmoulin}@illinois.edu

ABSTRACT

Online kernel algorithms have an important computa-

tional drawback. The computational complexity of these

algorithms grow linearly over time. This makes these algo-

rithms difficult to use for real time signal processing applica-

tions that need to continuously process data over prolonged

periods of time. In this paper, we present a way of over-

coming this problem. We do so by approximating kernel

evaluations using finite dimensional inner products in a ran-

domized feature space. We apply this idea to the Kernel Least

Mean Square (KLMS) algorithm, that has recently been pro-

posed as a non-linear extension to the famed LMS algorithm.

Our simulations show that using the proposed method, con-

stant computational complexity can be achieved, with no

observable loss in performance.

1. INTRODUCTION

Online learning is a key concept used in several domains such

as controls (system identification and tracking), computer vi-

sion (visual tracking, video surveillance), signal processing

(active noise cancellation, echo cancellation) etc [4].

Over the past decade or so, there has been considerable

research in trying to incorporate kernel methods for online

signal processing problems, using stochastic gradient based

learning. The motivation has been to combine two ideas - 1)

Kernel methods offer a principled and a mathematically sound

way of learning non-linear functions, and, 2) Stochastic gra-

dient based learning allows for making updates after seeing

each sample, making the learning process ‘online’.

A number of related methods have been proposed that per-

form online learning in a functional space induced by kernels.

Examples of such algorithms are the NORMA algorithm [5],

the PEGASOS algorithm [12], the Kernel Least Mean Square

(KLMS) algorithm [6], among others.

In this paper, we investigate an important limitation of

learning online in functional spaces. The time and memory

complexity of online kernel algorithms grows linearly with

time. This is a natural fallout of the Representer theorem,

which expresses the function to be learnt as a linear combina-

tion of kernel functions centered on the training samples. As

the number of training samples grows, this linear combina-

tion grows as well. This prevents these algorithms from being

applicable for real time signal processing applications, which

often need to process streaming data over prolonged period

of time. Most existing approaches to curb this problem are

based on suitably sparsifying the dataset to carefully weed

out ‘uninformative’ samples so that the growth in complexity

is sublinear.

In this paper, instead of approximating the training data,

we approximate the kernel functions. We use the recent idea

of approximating kernel evaluations using finite dimensional

inner products. More specifically, we use the random Fourier
features proposed in [9] to map the input data into a finite di-
mensional space, where inner products closely approximate

kernel evaluations. We propose to use these features in an

online stochastic gradient optimization setting of the KLMS

algorithm. We show that on doing so, we can achieve constant

time and memory complexity, just like the simple linear LMS

algorithm. The proposed algorithm, called the RFF-KLMS

algorithm, enables the practical use of online algorithms like

KLMS for real time and large scale signal processing appli-

cations.

In the next section, we formalize the online learning set-

ting, and present a generic formulation for kernel based online

learning algorithms. In Section 3, review the Kernel LMS

algorithm, that has been recently proposed as a non-linear

extension to the LMS algorithm. In Sections 4 we discuss

the problem of the growing sum in the KLMS algorithm and

the other related algorithms, and review some existing meth-

ods that have attempted to alleviate this problem. In Section

5, we describe the proposed RFF-KLMS algorithm that ap-

proximates the KLMS algorithm but in constant time/memory

complexity. In Section 6, we present our simulation results.

2. ONLINE LEARNINGWITH KERNELS

Consider a set of T pairs of training input vectors and corre-

sponding labels, {(xt, yt)}Tt=1. Let ft(.) be the trained pre-
dictor at time t. When a new sample xt is observed at time
t, the predictor makes a prediction ŷt = ft(xt). The true
label yt is then observed, and a loss function l(ŷt, yt) is eval-
uated. The goal of online learning is to update the predictor

2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 23–26, 2012, SANTANDER, SPAIN



ft(.) → ft+1(.) such that the cumulative loss
∑

t l(ŷt, yt) is
minimized.

The function f is usually assumed to be of the form,

f(x) = 〈Ω, φ(x)〉, (1)

where φ(x) = κ(x, ·) maps the input vector x into a func-

tional space induced by the positive definite kernel function

κ. Learning the function f amounts to learning the weight

vector Ω in the functional space.

Instead of optimizing the cumulative loss directly, we op-

timize a stochastic estimate of the loss in order to facilitate

online learning. We can therefore define an instantaneous risk

as,

Rinst(Ω, λ, t) = l(f(xt), yt) +
λ

2
‖Ω‖2. (2)

Using the stochastic gradient descent procedure, the weight

vectorΩ can be iteratively updated using the following update
rule:

Ωt+1 = Ωt − μ

[
∂Rinst(f, λ, t)

∂Ω

]
Ω=Ωt

. (3)

The gradient of the instantaneous risk can be evaluated as,[
∂Rinst(Ω, λ, t)

∂Ω

]
Ω=Ωt

= l′(ft(xt), yt)κ(xt, ·) + λΩt. (4)

The stochastic gradient update rule therefore becomes,

Ωt+1 = (1 − μλ)Ωt − μl′(ft(xt), yt)κ(xt, ·) (5)

⇒ ft+1(x) = (1 − μλ)ft(x) − μl′(ft(xt), yt)κ(xt, x)(6)

(5) is the fundamental idea behind most online learning algo-

rithms in literature. However, (5) is not directly applicable

in practical settings, since the weight vector Ω belongs to a

possibly infinite dimensional functional space, and is not di-

rectly accessible. Therefore, for practical computations, the

function ft is expressed as an expansion using the Represen-
ter theorem as,

ft(x) =

t−1∑
i=1

αiκ(xi, x) (7)

Using Eqns. 6 and 7, we obtain,

t∑
i=1

αiκ(xi, x) = (1−μλ)

t−1∑
i=1

αiκ(xi, x)−μl′(ft(xt), yt)κ(xt, x)

(8)

Therefore, we can formulate an update rule for the coeffi-

cients αi as,

α+i =

{
−μl′(ft(xt), yt), if i = t.

(1 − μλ)αi, if i < t.
(9)

This general class of algorithms has been called NORMA

(Naive Online Rreg Minimization Algorithm) [5]. A closely

related method called PEGASOS (Primal Estimated Sub-

Gradient Solver for SVM) [12] has also been proposed using

a similar framework for the special case of using the hinge

loss function.

Another interesting case arises when the square loss func-

tion is used, without the explicit regularization term. The

resultant algorithm is called the Kernel LMS algorithm [6],

which we describe in the next section.

3. KERNEL LMS ALGORITHM

The KLMS algorithm attempts to extend the classical LMS

algorithm for learning non-linear functions, using kernels [6].

By using a kernel function Φ(.), the KLMS algorithm first

maps the input vectors x to Φ(x). An instantaneous risk func-
tional using the square loss can be defined as,

Rinst(Ω, t) = (〈Ω, Φ(xt)〉 − yt)
2

. (10)

The stochastic gradient descent update rule for the infinite di-

mensional weight vector Ω can be formulated as,

Ωt+1 = Ωt − μ

[
∂Rinst(Ω, t)

∂Ω

]
Ω=Ωt

(11)

⇒ Ωt+1 = Ωt + μ (yt − 〈Ωt, Φ(xt)〉) Φ(xt) (12)

= Ωt + μetΦ(xt) (13)

As before, since the sample (xt, yt) is not used for com-
puting Ωt the error et = yt − 〈Ωt, Φ(xt)〉 is the test error.

Again, (13) is not practically usable since the weight vec-

tor Ωt resides in a possibly infinite dimensional functional

space. Therefore, (13) can be recursively applied, starting

with Ω1 = 0, to obtain,

Ωt+1 = μ

t∑
i=1

eiΦ(xi). (14)

To obtain the prediction f(x) for a test sample x, we now
simply evaluate the inner product,

f(x) = 〈Ωt+1, Φ(x)〉 = μ

t∑
i=1

ei〈Φ(xi), Φ(x)〉 (15)

= μ
t∑

i=1

eiκ(xi, x). (16)

(16) is obtained by using the kernel-trick. The above equation

is the KLMS algorithm, as proposed in [6].

It has been shown in [6] that in the finite data case, the

KLMS algorithm is well posed in the functional space, with-

out the addition of an extra regularizer. Not having to choose

a regularization parameter makes the KLMS algorithm sim-

pler to use from a practical standpoint.



4. THE GROWING SUM PROBLEM

From the update rule(s) in (9), we see that a new coefficient

is introduced for every new training sample, while all the pre-

vious ones are updated. Therefore, the number of coefficients

grows with the number of training samples seen. This is, of

course, a natural consequence of using the Representer the-

orem in (7), which parameterizes the current prediction in

terms of a sum of kernel evaluations on all previously seen

data. In the KLMS algorithm as well, the prediction function

in (16) involves a summation over all previously seen training

data, and this grows with the number of samples seen. This is

quite disturbing for any practical, real time application.

There have been quite a few attempts at overcoming the

growing complexity of online learning algorithms. In [5] it

was proposed to use the regularization term of the NORMA

algorithm as a ‘forgetting’ factor, which would downweight

the effect of previously seen samples. A sliding window ap-

proach could then be used to truncate the samples that fall

beyond this window.

For the particular case of the KLMS algorithm, a way of

constraining the the growth of the summation was proposed

in [7], in which new feature vectors that are linearly depen-

dent on the previous training vectors, are not used to update

the model. This helps slow down the rate of growth of the

summation. A more recent attempt at curbing the growth pro-

poses to quantize the input space, in an online manner [3].

Quantization of the input space into a small number of ‘cen-

ters’ reduces redundancy in among the input vectors. For each

new input vector, only the center closest to it is used for up-

dating the model.

All these methods have greatly improved over the plain

vanilla online kernel algorithm(s). However, they still have

some drawbacks:

1. The above approaches do not fully solve the growing

sum problem. They curb the rate of growth from linear

to sublinear. The algorithms, however, still have grow-

ing complexity. For real time applications that require

running the learning algorithms for long periods of time

under non-stationary conditions, these algorithms are

eventually bound to grow beyond control.

2. All the above algorithms essentially aim to constrain

the training samples, either by quantization [3] or spar-

sification [7], or simply a sliding window [5]. However,

in a non-Bayesian , supervised learning scenario, the

training data is the only source of information available
for learning the model. Some information is bound to

be lost if the training data is constrained using the quan-

tization or sparsification step.

3. The data constraining strategies such as quantization or

sparsification introduce additional computational bur-

den, at each iteration.

5. PROPOSED SOLUTION

We take a fundamentally different approach in addressing the

growing sum problem of online learning. Instead of trying to

constrain the input vectors, and curb the rate of growth of the

sum, we try to address the problem at its root. We observe that

the problem of the growing sum arises due to the Representer

theorem of (7). The Representer theorem, in turn, is required

since the ‘weight vector’ representation of the function is im-

practical to work with in functional spaces due to their infinite

dimensionality. We therefore, propose to use finite dimen-
sional approximations of the function weights (and the fea-

ture vectors). In other words, we propose to project the input

vectors into an appropriate finite dimensional space, where
the inner products are close approximations to the original

infinite dimensional inner products (which are simply kernel

evaluations using the ‘trick’).

Therefore, we want to look for a finite dimensional map-
ping Ψ : Rd → R

D such that,

〈Ψ(x), Ψ(y)〉 ≈ κ(x, y). (17)

The feature vectors Ψ(x) are obtained using randomized
feature maps. Randomization is a relatively old principle used

in learning. For instance, using random networks of non-

linear functions for regression problems has been known to

be empirically quite successful [2, 10].

More recently, inner products of random features have

been proposed for approximating commonly used kernel

functions such as Gaussians [9], and this has been success-

fully used for large scale machine learning applications [8].

In this work, we propose to use these random feature ap-

proximations for kernels for the stochastic gradient descent

based online learning algorithms (in particular, KLMS algo-

rithm).

Consider a Mercer kernel κ(·, ·) that satisfies the follow-
ing for all input vectors x, y ∈ R

d:

• A1: It is translation or shift invariant. That is, κ(x, y) =
κ(x− y).

• A2: It is normalized. That is, κ(0) = 1 and κ(x−y) ≤
1.

A way of approximating kernels satisfying A1 and A2

using inner products of finite dimensional random map-

pings was proposed in [9]. The underlying idea is based

on Bochner’s theorem [11], which is a fundamental result in

harmonic analysis which states that any kernel function κ sat-
isfying A1 and A2 above is a Fourier transform of a uniquely

defined probability measure on Rd.

Theorem 1 (Bochner’s Theorem) A kernel κ(x, y) = κ(x −
y) on R

d is positive definite if and only if κ is the Fourier
transform of a non-negative measure.



0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) D = 100

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) D = 1000

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) D = 10000

Fig. 1. Qualitative view of the random Fourier feature (RFF) inner product approximation of the Gaussian kernel. The blue curve shows
the exact Gaussian function. The red scatter plot shows the approximation, for different values of D. (a) D = 100, (b) D = 1000, (c)
D = 10000. Clearly, the variance in approximation falls with increasingD.

Bochner’s theorem guarantees that the Fourier transform

of an appropriately scaled, shift invariant kernel is a probabil-

ity density. Defining zω(x) = ejω
T x, we get,

κ(x− y) =

∫
Rd

p(ω)ejω
T (x−y)dω = Eω [zω(x)zω(y)∗]

(18)

Therefore, zω(x)zω(y)∗ is an unbiased estimate of κ(x, y)
when ω is drawn from p. To reduce the variance of this

estimate, we can take a sample average of D randomly

chosen zω(.). Therefore, the D-dimensional inner product
1
D

∑D
j=1 zωj (x)zωj (y)∗ is a low variance approximation to

the kernel evaluation κ(x, y). This approximation improves
exponentially fast in D [9].

Note that in general, the features zω(x) are complex.
However, we can exploit the symmetry property of the kernel

κ, in which case it can be expressed using real valued cosine
bases. Therefore the mapping,

ψω(x) =
√

2 cos(ωT x+ b) (19)

where ω is drawn from p and b is drawn uniformly from
[0, 2π], also satisfies the conditionEω [ψω(x)ψω(y)] = κ(x−
y) [9].

The vector Ψ(x) = [ψω1(x), ψω2(x), ..., ψωD
(x)] is there-

fore a D-dimensional random Fourier feature (RFF) of the
input vector x. This mapping satisfies the approximation in
(17). For approximating the commonly used Gaussian ker-

nel of width σ, we therefore draw ωi, i = 1, ..., D, from the

Normal(0, Id/σ2) distribution. The quality of the approxi-
mation is controlled by the dimensionality of the mapping,

D, which is a user defined parameter. Figure 1 shows a qual-
itative view of this approximation, for different values of D.
We try to approximate κ(x, 0) using the D-dimensional inner
product 〈Ψ(x), Ψ(0)〉 as described above. The red scatterplot
shows the variance in the approximation, and the blue curve

shows the exact Gaussian kernel function.

Going back to the KLMS algorithm, instead of using exact

Gaussian kernel evaluations for learning, we use the random

Fourier feature (RFF) space to first explicitly map the input

data vectors. Since this space is finite dimensional, it now be-

comes possible to directly work with the filter weights in this

space. Therefore, (13) can be used directly, without invoking

the Representer theorem. In fact, the update equations in this

random Fourier feature space become exactly the same as the

classical LMS algorithm.

The proposed RFF-KLMS algorithm is described below:

Algorithm RFF-KLMS
Input: Sequential training data {xt, yt}Tt=1, Gaussian kernel

width σ, step size μ, RFF dimension D.
1. Draw i.i.d. {ωi}Di=1 from N (0, Id/σ2), where d is the

input space dimension.

2. Draw i.i.d. {bi}Di=1 from Uniform[0, 2π].
3. Initialize Ω1 = 0 ∈ R

D

4. for t ← 1 to T
5. Compute Random Fourier Feature (RFF) vec-

tor Ψ(xt) = [ψω1(xt), ..., ψωD
(xt)], where each

ψωi(xt) = cos(ωT
i xt + bi);

6. Compute prediction ŷt = 〈Ωt, Ψ(xt)〉;
7. Compute error et = yt − ŷt;
8. Update Ωt+1 = Ωt + μetΨ(xt);

6. SIMULATION RESULTS

6.1. Non-Stationary Regression

In our first simulation we consider a time varying regression

function as follows:

Xt ∼ Uniform[0, 1], t = 1, 2, ..., 500. (20)

Yt =

{
sin(10Xt) + Wt, if t ≤ 250

sin(12Xt) + Wt, if t > 250
(21)

where Wt ∼ N (0, 0.5) is i.i.d. observation noise, indepen-
dent of Xt. Fig. 3 shows a realization from the above model.

Clearly, the function is highly non-linear and there is a signif-

icant change in function at t = 250.



0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time/iterations

Te
st

in
g 

M
S

E

KLMS
RFF−KLMS (D=10)

(a) D = 10

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time/iterations

Te
st

in
g 

M
S

E

KLMS
RFF−KLMS (D=50)

(b) D = 50

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time/iterations

Te
st

in
g 

M
S

E

KLMS
RFF−KLMS (D=100)

(c) D = 100

Fig. 2. Plots of MSE on test set vs. number of training iterations/samples, for the KLMS algorithm, and the RFF-KLMS algorithm for
different values ofD, for the time-varying regression problem. (a) D = 10, (b)D = 50, (c)D = 100. For D = 100, there is no observable
difference in performance between the KLMS and RFF KLMS algorithms.

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Xt

Y
t

t ≤ 250

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
t > 250

Y
t

Xt

Fig. 3. Realization from the time varying regression function de-
scribed in Eqns. 20 and 21. Left: t ≤ 250. Right: t > 250. Clearly
the function is highly non-linear, and cannot be learnt by a linear
model. Non linear methods in batch mode are also not suited for
tracking such a time varying function.

We train the KLMS algorithm and the proposed RFF-

KLMS algorithm with the 500 samples from the above model.

We also generate 100 different i.i.d. samples from this model

as a test dataset. These test samples are not corrupted by the

additive noise W . Cross validation using such a test set al-

lows us to see how well the model is able to learn the true

underlying function, using noisy training samples.

After each update step in the KLMS and the RFF-KLMS

algorithm, we cross validate the model learnt thus far using

the 100 test samples. We compute the mean squared error

(MSE) as the performance statistic. We plot the MSE as a

function of the training iterations.

We have used step size μ = 0.1 for both algorithms, and
Gaussian kernel width parameter σ = 0.1 for this experiment.

Fig. 2 shows our results. We compare the performance

of the KLMS algorithm with the proposed RFF-KLMS algo-

rithm, for different values of D. Clearly, having a very small
value of D creates high variance in the approximation of the

Gaussian kernel, and performance suffers. For D = 100, the
RFF-KLMS performs very similar to the KLMS algorithm.

Note that each plot is obtained after averaging over 10 trials

with different i.i.d. training and testing data, and different

i.i.d. sampling of ωi and bi for the RFF-KLMS algorithm.

The more interesting result is shown in Fig. 4, which

0 100 200 300 400 500
1

2

3

4

5

6

7

8
x 10−3

Time/iterations

C
P

U
 T

im
e 

on
 T

es
t D

at
a 

(s
ec

on
ds

)

KLMS
RFF−KLMS (D=100)
RFF−KLMS (D=50)
RFF−KLMS (D=10)

Fig. 4. CPU time required for testing, as a function of the num-
ber of training iterations/samples, for the KLMS algorithm and the
RFF-KLMS algorithm with D = 50, 100, 500, for the time-varying
regression problem. The KLMS algorithm has a linearly growing
CPU time requirement due to the growing summation. The proposed
RFF-KLMS algorithm has a constant complexity.

shows the CPU time required for computing predictions on

the test data, after each training iteration/sample. Due to the

growing sum problem in the KLMS algorithm, the CPU time

required for testing/prediction grows linearly with the num-

ber of training samples seen. On the other hand, the proposed

RFF-KLMS algorithm runs in constant time, which is also

several times faster than the KLMS algorithm.

6.2. Classification of Diabetes Data

The Pima-Indians Diabetes dataset [1] consists of 8 physio-

logical measurements (features) from 768 subjects. The ob-

jective is to classify a test subject into either the diabetic or

non-diabetic group, based on these physiological measure-

ments. We use 500 samples as the training data and the rest

as a test set. We perform a similar experiment as before,

where both KLMS and RFF-KLMS are trained with the train-

ing data, one sample at a time. We compute the generalization



0 100 200 300 400 500
20

25

30

35

40

45

50

Training iterations/samples

C
la

ss
ifi

ca
tio

n 
er

ro
r o

n 
te

st
 s

et
 (%

)

KLMS
RFF−KLMS (D=50)

(a) D = 50

0 100 200 300 400 500
20

25

30

35

40

45

50

Training iterations/samples

C
la

ss
ifi

ca
tio

n 
er

ro
r o

n 
te

st
 s

et
 (%

)

KLMS
RFF−KLMS (D=100)

(b) D = 100

0 100 200 300 400 500
20

25

30

35

40

45

50

Training iterations/samples

C
la

ss
ifi

ca
tio

n 
er

ro
r o

n 
te

st
 s

et
 (%

)

KLMS
RFF−KLMS (D=500)

(c) D = 500

Fig. 5. Plots of Diabetes dataset classification error vs. number of training iterations/samples, for the KLMS algorithm, and the RFF-KLMS
algorithm for different values ofD. (a)D = 50, (b)D = 100, (c)D = 500. ForD = 500, there is no observable difference in performance
between the KLMS and RFF KLMS algorithms.

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

Training iterations/samples

C
P

U
 T

im
e 

on
 T

es
t D

at
a 

(s
ec

on
ds

)

KLMS
RFF−KLMS (D=500)
RFF−KLMS (D=100)
RFF−KLMS (D=50)

Fig. 6. CPU time required for testing, as a function of the num-
ber of training iterations/samples, for the KLMS algorithm and the
RFF-KLMS algorithm with D = 50, 100, 500, for the Diabetes
classification problem. The KLMS algorithm has a linearly growing
CPU time requirement due to the growing summation. The proposed
RFF-KLMS algorithm has a constant complexity.

performance in terms of classification error on the test set, af-

ter each training iteration.

We use the same stepsize μ = 0.1 for both algorithms.
The kernel width was chosen to be σ = 3 for the 8-

dimensional isometric Gaussian kernel in this problem.

Fig. 5 shows classification error (on test set) vs. train-

ing samples/iterations, for the KLMS algorithm and the RFF-

KLMS algorithm with D = 50, 100, 500. In the case when
D = 500, there is no observable difference between the RFF-
KLMS and the KLMS algorithm performance. From Fig. 6,

we see that RFF-KLMS is much faster than KLMS, and more

importantly, the computation time remains constant.

7. CONCLUSION

We have presented a way of overcoming the growing sum

problem of the KLMS algorithm. We do so by approximating

the kernel function using finite dimensional inner products in

an appropriately computed randomized feature space. Our

simulations have shown that we are able to achieve the same

performance as the conventional KLMS algorithm, with the

simple computational complexity of training linear filters.

We have restricted ourselves to the KLMS algorithm in

this work, but it would be interesting to apply the same ideas

to other online algorithms such as PEGASOS or NORMA.

We would also be looking at exhaustively comparing the pro-

posed algorithm with other existing approaches for curbing

growth.

Since the use of kernel methods for signal processing

tasks has become an important research area of late, we be-

lieve the the ideas presented in this work can help bridge

the gap between some well grounded theory, and practical

implementation for real time, large scale signal processing

systems.

8. REFERENCES

[1] A. Asuncion and D. Newman. UCI machine learning repository, 2007.
[2] H. D. Block. The perceptron: A model for brain functioning. i. Rev.

Mod. Phys., 34:123–135, Jan 1962.
[3] B. Chen, S. Zhao, P. Zhu, and J. Principe. Quantized kernel least mean

square algorithm. Neural Networks and Learning Systems, IEEE Trans-
actions on, 23(1):22 –32, jan. 2012.

[4] S. Haykin. Adaptive filter theory. Prentice-Hall, Inc., 1991.
[5] J. Kivinen, A. Smola, and R. Williamson. Online learning with ker-

nels. Signal Processing, IEEE Transactions on, 52(8):2165 – 2176,
aug. 2004.

[6] W. Liu, P. Pokharel, and J. Principe. The kernel least-mean-square
algorithm. Signal Processing, IEEE Transactions on, (2):543 –554,
2008.

[7] P. P. Pokharel, W. Liu, and J. C. Principe. Kernel least mean square al-
gorithm with constrained growth. Signal Processing, 89(3):257 – 265,
2009.

[8] M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from
shift-invariant kernels. In NIPS, pages 1509–1517, 2009.

[9] A. Rahimi and B. Recht. Random features for large-scale kernel ma-
chines. In In NIPS, 2007.

[10] A. Rahimi and B. Recht. Uniform approximation of functions with
random bases. In Communication, Control, and Computing, 2008 46th
Annual Allerton Conference on, pages 555 –561, sept. 2008.

[11] M. Reed and B. Simon. Methods of Modern Mathematical Physics II:
Fourier Analysis, Self-Adjointness. Academic Press, 1975.

[12] Y. Singer and N. Srebro. Pegasos: Primal estimated sub-gradient solver
for svm. In In ICML, pages 807–814, 2007.


