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Abstract

The underlying principle behind most optical flow
algorithms is that the brightness of a pixel remains
the same as it flows from one frame to the next. The
first order Taylor approximation used in formulating
this brightness constancy principle may not be accu-
rate when intensity profiles change non-linearly. In this
paper, we propose a method of alleviating the effect of
this approximation. Instead of computing image gra-
dients using conventional horizontal and vertical filters
of fixed coefficients and sizes, we propose to obtain the
gradient information by an explicit examination of ramp
profiles at a given location, in all directions. The gradi-
ent information obtained using the proposed analysis is
more robust under non-linear changes in intensity pro-
files. Our results demonstrate that by incorporating the
ramp structure information as proposed, we are able to
improve existing optical flow algorithms.

1. Introduction

New databases and objective evaluation methodolo-
gies such as the Middlebury benchmark have spurred
recent research interest in optical flow estimation. This
is evident by the number of recent additions to the Mid-
dlebury rankings [3].

Although several methods for optical flow estimation
have been proposed, the central idea common to most
of them remains the same. The optical flow problem
is posed as the optimization of an energy function that
is the weighted sum of two terms - a data term, and a
regularization or smoothness term.

The most commonly used data term used in the flow
literature is based on the brightness constancy principle,
which assumes that when a pixel flows from one im-
age to the other, its intensity or color does not change.
This principle is formulated by using a first order Tay-
lor series approximation of the image at the particular
location. Such a formulation, however, is only accu-
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rate if the image has a linearly varying intensity pro-
file near that location. In areas where intensities vary
non-linearly, the first order approximation is no longer
accurate.

In this paper, we propose a method to alleviate this
problem. Instead of using conventional first order gra-
dient operators to formulate the brightness constancy
principle, we propose to do a more detailed analysis
of the local image structure. Instead of using prede-
fined, fixed-size filters to compute the gradient, we ob-
tain the gradient information by using the ramp trans-
form of the image, which was proposed earlier by our
group [1]. The ramp transform provides gradient infor-
mation by an explicit examination of ramp profiles at
a given location, in all directions. This reflects the lo-
cal image structure better than conventional gradient fil-
ters. As we show in Section 3, exploiting this additional
ramp structure information can help alleviate the inac-
curacy of the first order approximation of the brightness
constancy principle, in cases where there are non-linear
changes in intensity profile.

Our idea is applicable to all existing optical flow
methods that use the gradient based formulation of the
brightness constancy principle, and can be used to im-
prove over their existing results. We have applied the
proposed idea to the classical framework of Black and
Anandan [5], as well as a more recent algorithm of Sun
et al [6], and have observed consistent improvement in
all cases.

2 The Brightness Constancy Principle

The brightness constancy principle states that pixel
intensities are translated from one frame to the next.
I(x,t) =I(x+u,t+1). (1)

Consider first, the simple case of estimating flow in the
1-D case. Let fi(z) and fa(z) be 1-D signals at two

time instants (f2(x) = f1(z — w)). Using a first order
Taylor approximation of f; (z —u) about z, it is easy to



Figure 1. (a) Computing flow in a 1-D signal, with a
linear profile. First order approximation of the bright-
ness constancy principle holds, and the flow can be
computed exactly. (b) Estimating flow in case of a non-
linear intensity profile. The first order approximation
using the conventional gradient can yield incorrect es-
timates of the flow.

derive an estimation of the flow magnitude as,

fi@) — fa(w)
fite)

This can be generalized to the 2-D case to yield the well
known gradient constraint equation,
OI(x,t) 0

o

Eqn. 2, however, is accurate only if the signals have
a linear intensity profile, such as in Fig. 1(a). On the
other hand, if the signal has non-linear variation, Eqn.
2 would fail to give an accurate estimation of the flow,
as can be seen from the example in Fig. 1(b). This is
because the conventional way of computing gradients
can become very sensitive to local non-linearities that
may be present in the signal profile.

We now describe how the use of the ramp transform
can yield a more accurate description of the gradient in
areas of such non-linear intensity profiles.
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3 Proposed Approach

The ramp transform was proposed in [1], for detec-
tion of ramps in images, by analyzing multiple inten-
sity profiles passing through a given pixel in all differ-
ent directions. It has been successfully used to design
a low level, multiscale, hierarchical segmentation algo-
rithm [1], which has been used for higher level visual
recognition tasks [2], [7] as well.

A ramp, in the 1-D case, is characterized by its
strictly increasing (or decreasing) profile, between the
end points e; and es as shown in Fig. 2(a). We define
the ramp magnitude at a point z to be,
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Figure 2. (a) Slope of the dotted black line is the
ramp magnitude of the signal at x, as defined by Eqn.
4. (b) Estimating the flow using the ramp magnitude
in place of the true derivative of the signal at x. The
estimated flow U is more accurate than in Fig. 1(b),
since the ramp magnitude is more robust to small non-
linearities in the signal profile..

where a = min{|x — eq|, |x — ea|}.

R(x) is related to the gradient magnitude of f at .
Conventional gradient magnitudes are computed using
fixed size filters (with fixed coefficients). However, in
the case of R(x), the “filter size’, a is a function of the
ramp end points e; and e;. Therefore, the proposed
measure is more adaptive to the structure of the ramp.
It is computed using information from the entire ramp
profile, and is therefore less sensitive to the local non-
linear behavior of the intensity profile within a ramp.

Fig. 2 shows how the ramp magnitude R(x) can be
used to yield a potentially better estimate of the flow in
the 1-D case.

In the 1-D case, it is easy to compute the end points
of the ramp by simply looking at regions where the sig-
nal has a strictly increasing or decreasing profile. How-
ever, in the 2-D case, infinitely many intensity profiles
pass through a given point. To compute the ramp mag-
nitude R(x) for the 2-D case, we follow the approach of
[1], as follows:

Let r(x, 6) be the ramp magnitude measured at the
point x in the image, by analyzing the 1-D ramp along
a direction making an angle 6 with the horizontal. We
compute this ramp magnitude along several different di-
rections 6, between O and 7.

The ramp magnitude R(x) at location X is now de-
fined to be,

(&)

The ramp magnitude at x in the 2-D space, therefore,
corresponds to the ramp magnitude along the direction
of steepest ascent (or descent).

Using the ramp magnitude and the corresponding di-
rection §* = argmaxp r(x,d), we can define a ramp
based image gradient measure as,

VrI(x,t) = [R(x) cos 0%, R(x) sin 6*]"

R(x) = max r(x,6).

(6)
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Figure 3. Steps involved in detecting the non-motion edges of the image. Out of all the edges produced by the low level
segmentation algorithm, the non-motion edges are detected by looking for similar flow values across the edges. A dilation
operation is performed on these edges to yield the final non-motion edge mask.

Conventional horizontal and vertical gradient filters
face problems while estimating gradients at sharp cor-
ners. Since we explicitly scan several values of the di-
rection 6 for searching for the largest ramp magnitude,
we avoid such problems.

We propose to use the quantity in Eqn. 6 as the
measure of the image gradient in the gradient constraint
equation of Eqn. 3 in order to compute optical flow.

The brightness constancy relation is not valid along
motion discontinuities. We therefore choose to use the
ramp gradient of Eqn. 6 only in the ramps that are
along the non-motion boundaries of the image. The
non-motion boundaries are determined as follows: We
first use a baseline optical flow method to obtain the
flow field between the image pair. We then use the low
level segmentation algorithm of [1] on the first image
to obtain all the edges present in the image. Some of
these edges (ramps) correspond to motion boundaries,
whereas others do not. To determine the edges corre-
sponding to non-motion boundaries, we compare the
flow values across the edges. If the difference of the
flow values on either side of the edge is smaller than
a threshold, the edge is labeled as a non-motion edge.
The non-motion edge map thus obtained is then dilated
using a 5 x 5 mask. This whole process is summarized
in Fig. 3.

4 Experiments and Results

In all our evaluations, we first run a baseline flow
algorithm and obtain a flow field, which is used for
obtaining non-motion edges of the image as described
earlier. We then re-run the algorithm with the same
parameterization (as suggested by authors of the algo-
rithms), but now using the proposed ramp gradients in
place of conventional gradients, along the non-motion
edges. We compare the flow fields obtained after the
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Figure 4. Top Left: Patch from the ‘Dimetrodon’
sequence of the Middlebury set. Top Right: Ground
truth flow field. Bottom Left: Result obtained using the
Classic+NL-fast algorithm [6]. Bottom Right: Result
obtained after incorporating ramp information.

two runs, to see the improvement the proposed tech-
nique can bring over the baseline algorithm.

We test the proposed idea on multiple baseline al-
gorithms. We first test on the Classic++ algorithm,
which is essentially the classical formulation of Black
and Anandan [5], but implemented using modern nu-
merical methods, as described in [6]. The second base-
line used is the Classic+NL algorithm of Sun et al [6],
which essentially performs medial filtering of interme-
diate flow fields, by adding an extra non-local term in
the classical cost function. This method is among the
best performing algorithms in the current list of pub-
lished methods in the Middlebury benchmark.

Table 1 shows the results of applying the proposed
technique on the Classic++ algorithm, on the Middle-
bury training set (with publicly available groundtruth).
We report performance in terms of Average Angular Er-
ror [4]. We see improvements in most cases.

Table 2 shows the results of applying the proposed
method on the Classic+NL-fast algorithm, which is



Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
angle (Hidden texture) (Hidden texture) (Hidden texture) (Hidden texture) i (Synthetic) (Synthetic) (Stereo)
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Figure 5. Results of using the proposed approach with the Classic+NL algorithm [6], on the Middlebury test images. Our
results are labeled as ‘Ramp[68]’ and are shown in the red box. We are able to consistently improve over the Classic+NL
algorithm in the green box. The results can be viewed online at http://vision.middlebury.edu/flow/eval/results/results-al.php

Table 1. Average Angular Error of Classic++ algorithm [6] and our approach, on seven Middlebury image pairs.

Image Pair — || Dimetrodon | Hydrangea | RubberWhale | Grove2 | Grove3 | Urban2 | Urban3
Classic++ 2.532 1.786 2.646 2.068 6.055 2.541 4.598
Ours 2.527 1.784 2.630 2.066 6.032 2.528 4.594

Table 2. Average Angular Error of Classic+NL-fast algorithm [6] and our approach, on seven Middlebury image pairs.

Image Pair — Dimetrodon | Hydrangea | RubberWhale | Grove2 | Grove3 | Urban2 | Urban3
Classic+NL-fast 2.280 1.824 2.401 1.410 4.927 2.034 3.160
Ours 2.267 1.814 2.388 1.394 4.922 2.018 2.983

a fast implementation of the Classic+NL algorithm.
Again, we see an improvement in all cases. Fig. 4
shows a qualitative comparison on an image patch from
the ‘Dimetrodon’ pair of the Middlebury set.

We also test our approach on the Middlebury zest im-
ages (with hidden ground truths), with the Classic+NL
algorithm. The results from our algorithm are publicly
available on the Middlebury evaluation page. Fig. 5
shows a screenshot of the evaluation. The proposed
method (called ‘Ramp[68]’ in the figure) utilizing the
ramp information improves over the performance of the
Classic+NL baseline.

5 Conclusion

We have presented a way of alleviating the first order
approximation problem in the formulation of brightness
constancy principle, in case of non-linear variation of
image intensities. We have shown that the performance
of existing algorithms can be improved by incorporat-
ing the proposed ramp information for estimating the
gradient. Although the gain in performance is small, the
improvement is consistently seen across different algo-
rithms and image pairs. We see this as an important cue
for further investigation and research. It is reasonable to
expect gains in performance if the proposed idea is in-
corporated in other flow algorithms as well, which use
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the gradient constraint equation.
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