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Abstract 
This paper is concerned with the problem of surface recon- 
struction from stereo images for large scenes having large 
depth ranges, where it is necessary to aim cameras in differ- 
ent directions and to fixate at different objects. In the past 
we have reported an approach to acquiring multiresolution 
surface information. This paper concentrates on the selec- 
tion of new fixation points from among the nonfixated, low 
resolution scene parts, and subsequent processing for surface 
reconstruction. The coarse stereo estimates in the vicinity of 
the new fixation point are refined as the images of the new 
fixation point gradually deblur during the process of refixa- 
tion and are subsequently used to analyze the fixated parts 
of the scene. 

1 Introduction 
This paper is concerned with the problem of surface re- 
construction from stereo images for large scenes having 
large depth ranges. At any stage of such a surface re- 
construction process, sharp images can be acquired only 
for narrow parts of the visual field, capturing a limited 
depth range. The high resolution parts of the scene, con- 
tained within the depth of field of the cameras, are said 
to constitute a central visual field, while the low resolu- 
tion parts out of the depth of field, and typically away 
from the image center, are said to belong to the periph- 
eral visualfield [8]. Accurate surface map is extracted for 
the central visual field by integrating the use of camera 
focus, camera vergence, and stereo disparity [l]. When 
the entire surface of the fixated object has been scanned, 
the acquired surface map does not smoothly extend, and 
therefore surface reconstruction must be resumed by fix- 
ating on a new object, selected from the periphery of 
the current visual field. This presents a dilemma since 
the exact locations and shapes of “new objects” are un- 
known. 

We present an approach to using coarse structural in- 
formation about the scene in selecting a new fixation 
point in the peripheral field and acquiring structural in- 
formation in the vicinity of the selected point at increas- 
ing resolution as the cameras reconfigure and aim at the 
point. 
~~ 
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Section 2 summarizes the past research related to the 
work reported in this paper. Section 3 presents an algo- 
rithm that interleaves coarse-tufine acquisition of stereo 
images with their analysis for coarse-tufine surface re- 
construction. Section 4 gives details of implementation 
and the experimental results. Section 5 presents con- 
cluding remarks. 

2 Background 
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This paper pursues the basic theme of active, intelligent 
data acquisition [3,4]. Computational active vision has 
become more feasible in the recent years with the avail- 
ability of sophisticated hardware for controlling imaging 
elements [1,7,10]. In their analysis of surface reconstruc- 
tion from stereo images, Marr and Poggio [ll] also point 
out the role of eye movements in providing large rela 
tive image shifts for matching stereo images having large 
disparities, thus implying the need for active data acqui- 
sition. Ballard and Ozcandarli [5] point out that the 
incorporation of eye movements radically changes (sim- 
plifies) many vision computations. Aloimonos et a1 [2] 
show that active control of imaging parameters leads to 
simpler formulations of many vision problems that are 
not well behaved in passive vision. Geiger and Yuille [9] 
describe a framework for using small vergence changes to 
help disambiguate stereo correspondences. Abbott and 
Ahuja [l] demonstrate the efficacy of integrating image 
acquisition and image analysis for a single object, by in- 
terleaving the processes of camera vergence and focusing 
with those of depth estimation from camera focus and 
stereo disparity. Shmuel and Werman [13] have consid- 
ered the related problem of surface map generation from 
multiple viewpoints; they use iterative Kalman-filtering 
techniques to  predict a new camera pose for maximal 
reduction of uncertainty in depth information. Some 
recent studies have considered higher level criteria for 
fixation (called attention),  e.g., for recognition [6]. 

3 Algorithm 
In this section we describe an algorithm to achieve the 
desired integration of multiresolution image acquisition 
and their coarse-to-fine processing. To describe the al- 
gorithm, consider the state wherein a fine surface map 
has been constructed for the central visual field along 
with a coarse map for the peripheral visual field with re- 



spect t o  the current fixation point. Then the algorithm 
for iteratively extending the surface map consists of the 
following steps. 

3.1 Target Selection 
The extension of the surface map resumes by fixating at 
another object. The availability of the peripheral sur- 
face map makes the selection of a new fixation point 
possible, albeit with limited accuracy, and thus helps to 
avoid the need for knowing object depths before they are 
estimated! 

Given an approximate surface map in the peripheral 
visual field, how should we select a fixation point? In 
[l] some criteria were identified for selection of a fixation 
point which were motivated by known characteristics of 
fixation in human vision as well as computational consid- 
erations. We use similar criteria here. A target point at 
position p, in a coordinate system fixed with respect to 
the camera locations, is chosen from the current periph- 
ery so that the following weighted average is minimized: 

where PCAM and p p o ~  denote the locations of cam- 
era reference frame and the current point of fixation, re- 
spectively; 11 . 11 is the Euclidean distance norm; and the 
function A gives the angular separation between two 3D 
points in the camera reference frame. Candidate target 
p must be visible to both viewpoints. 

The first term enforces a near-to-far ordering on fixa 
tion points. The second term favors selection of an ob- 
ject close to currently fixated object since the closer it is 
the more accurate the target location information from 
the peripheral map is. The third term biases the choice 
of target to scene points which lie in directions close to 
that of the current fixation point, preventing large an- 
gular movements of the cameras between fixations. 

3.2 Target Homing 
Once a target point has been selected on a new ob- 
ject, the cameras need to be reconfigured to fixate on 
the point. This involves changing camera orientations 
and focus axis settings. The process of performing these 
changs is called target homing, and is attempted using 
the largest available focal length (ff,,,,). While still fo- 
cused at the current fixation point, the change to large 
focal length causes substantial blurring of the new tar- 
get point. If the point spread function (p.s.f) of the fi- 
nite aperture lens is modeled by a 2D Gaussian then the 
spread parameter u1 of the Gaussian that signifies the 
degree of optical blurring of the defocused target point 
is expressed as 

where f is the focal length and A is the aperture di- 
ameter of the lens, Z p o ~  and 2 are the depths of the 
current fixation and the new target points, respectively. 
The constant of proportionality, k, is a characteristic of 
the imaging system. Let the optics1 blur of the target 
point at the beginning of the target homing phase have 
a UI  = u'lf ,  when f = ffo,,,. The stereo-based depth 

estimate of the peripheral target point is inaccurate due 
to the optical blurring (61 = U [ , ,  when f = fstereo) of 
the peripheral features in the vicinity of the target point 
during the previous fixation. In addition, a Laplacian 
of Gaussian (V'G) having a spread parameter U = upfl 
is used to  detect these features that results in location 
errors of the detected features. The Gaussian expressing 
the optical and computational blurring effects at the tar- 
get point has a spread parameter of ut = ,/-. 

As the image planes are gradually reconfigured by 
changing the focus settings and hence ZPOF, the new 
target point becomes less and less blurred; the image 
sequence acquired during the reconfiguration thus com- 
prises a multiresolution (coarse-to-fine) image sequence 
of the target area. Each pair of optically blurred images 
is subsampled, reducing the degree of subsampling as 
images become less blurred (qf decreases). Let Hi x Hi 
denote the resolution of the sampled images at the ith 
stage (ulf = d l f )  during reconfiguration: 

where f~ocus / fs tereo  = n , n  > 1. Since the optically 
blurred images are obtained continuously, the improve- 
ment in the stereo-based depth estimate of the target 
point from the analysis of two consecutive image pairs is 
significant only when the difference Aulj = u*lf -ui+llf 
is significant. Let AUT be the chosen significant value of 
AuIf. The intermediate images in which the blur of the 
target point is between uiu and u'+'lf = uiv -AUT are 
skipped for stereo analysis. This process of coarse-to-fine 
image acquisition interleaved with surface reconstruction 
is continued till ulj reaches a lower bound on U ,  uctl, Be- 
yond this stage only coarse-to-fine image acquisition is 
continued until alj = 0. 

3.3 Target Fixation 
The target homing stage terminates with the two cam- 
eras approximately focused and oriented such that the 
estimated target point location falls at the center of each 
image. In order to  focus the cameras accurately, the 
depth estimate 2, of the target point is used to establish 
an interval of focus axis settings [PI, p2] symmetric about 
an axis setting po corresponding to 2, (p1 < po and 
p2 > PO). This interval is finely quantized and searched 
for a peak of the focus criterion function, defined as the 
total squared gradient over a fixation window centered at 
the target point. As in [l], we perturb the camera orien- 
tations slightly to maximize sharpness of images and the 
correlation between the area around the target locations 
(image centers). The resulting camera configuration is 
used to initiate surface reconstruction for the new object. 

3.4 Surface Estimation 
Stereo images are acquired with a focal length fstereo to 
increase the field of view. The fixation point is in focus 
in these images. The parts of the scene that are in sharp 
focus are segmented out [SI to define the central field of 
view while the defocused regions comprise the peripheral 
field. 



Stereo reconstruction for the high resolution (using an 
N x N grid) central visual field takes place using a small 
value of U (uctl) for the Laplacian of Gaussian (V2G) 
feature detector. The surface reconstruction begins with 
initial surface estimates obtained in three different ways. 
Parts of the central visual field have highly accurate esti- 
mates obtained during high-zoom target homing. Other 
parts of the central visual field have only coarse esti- 
mates available from the previous fixation at which time 
these parts belonged to peripheral field. Finally, yet 
other parts of the central visual field may have entered 
the visual field during refixation and thus do not have 
any associated estimates; for these parts, the most re- 
cent stereo-based depth estimate of the current fixation 
point from target homing is used as initial estimate. The 
result of stereo reconstruction is a high resolution (fine) 
surface map for the central visual field. 

A opjl larger than octl is used for the peripheral f e a  
ture detector to introduce smoothing in addition to that 
caused by optical blurring so that the number of match- 
able features is small. In addition to smoothing, the pe- 
riphery is subsampled using an M x M grid ( M  < N ) .  
The effects of blurring and subsampling significantly de- 
grade the accuracy of stereo and lead to a low resolution 
(coarse) surface map for the peripheral visual field. 

4 Implementation and Results 
In this section we present details and results of imple- 
menting our active stereo algorithm on a dynamic imag- 
ing system. The system consists of two Cohu 4815 CCD 
cameras mounted on a stereo platform and equipped 
with Vicon V17.5-105M motorized zoom lenses. High- 
precision stepper-motor rotational units are used to con- 
trol independent pan, tilt and vergence angles. The 
imaging system is controlled by a Sun Microsystems 
3/160 workstation. 

4.1 Implementation Details 
For the left and the right cameras focal lengths (cali- 
brated) of fstereo = 47.7 mm and 47.2 mm are used to 
acquire the stereo images, and fj,,, = 105.4 mm and 
101.0 mm (full zoom) are used in the fixation process. 
The baseline between the cameras is 28 cm. The p a  
rameters of (1) are chosen as a1 = 0.25, a2 = 0.5 and 
a3 = 0.25; o,,l = 6 and N = 256 for the central visual 
field; opjl = 9 and M = 128 for the peripheral field; and 
A q j  = 3 is used. 

4.2 Experimental Results 
The dynamic camera system was made to scan an in- 
door scene consisting of a vertical barrel (approximately 
cylindrical) next to a rectangular box, both resting on 
a flat table top and in front of a rear wall. During one 
of the fixations of the barrel the stereo images of Fig- 
ure 1 are acquired. Here, the barrel being in focus occu- 
pies the central visual field while the box and the back 
wall constitute the peripheral visual field. The fine cen- 
tral range map together with the coarse peripheral range 
map for this fixation is shown for the left viewpoint in 
Figure 2(a). A window in Figure 2(b) marks the newly 
selected target point on the box which minimizes (1). 

The coarse stereo depth estimate of the new target is 
2.188 m, while the measured distance is 2.18 m. 

Upon selecting the target the system aims the cameras 
at  it. The focal length of each camera is set to full zoom 
as required by the fixation process resulting in the opti- 
cally blurred left and right images of Figure 3, d l j  = 8. 
During the previous fixation ol, = 4 for the new tar- 
get point and opjl = 9, hence ot = d- = 9.9. 
These values of u'lj and ut when substituted in (3) yield 
HI = 64. NevatiaBabu line extraction algorithm [12] is 
used to detect features which are matched to obtain the 
coarse stereo map of Figure 4. The recomputed depth 
the target from stereo is 2.228 m. The next set of im- 
ages to be stereo analyzed has a21j = a'lj - Aolj = 5. 
But a2,f < uctl, and the mechanical reconfiguration is 
therefore continued without stereo analysis until the fo- 
cus setting corresponding to the depth of 2.228 m has 
been attained. To fixate the target, the search inter- 
val of focus axis settings is p l  = 5355 and pa = 5714. 
The peak of the focus criterion function is detected at 
p j  = 5578. The focus based depth estimate is 2.252 m. 
The stereo images of Figure 5 have the box occupying 
the central visual field while the barrel and the wall be- 
long to the peripheral field with the barrel being less 
peripheral (blurred) than the wall. The coarse map for 
the box is now replaced with a fine map as shown in 
Figure 6(a) which has been added to the composite map 
in Figure 6( b) that previously contained only estimates 
for the barrel. In addition, a coarse peripheral map for 
the wall emerges in Figure 6(a). 

5 Summary 
In this paper we have described our approach to selec- 
tion of new fixation points during surface reconstruction 
for large scenes having large depth ranges. The refixa 
tion step involves coarse-to-fine mechanical reconfigura- 
tion of cameras with gradual deblurring (optical) of the 
new fixation point during which multiresolution surface 
reconstruction is performed in parallel with image acqui- 
sition. The improved stereo estimates are subsequently 
used to analyze the newly fixated parts of the scene. 
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(a) (b) 
Figure 6: (a) A higher resolution (than in Figure 2) range 
map for the box that is (b) added to the composite range 
map. 


