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Abstract

A number of bottom-up saliency detection algo-
rithms have been proposed in the literature. Since these
have been developed from intuition and principles in-
spired by psychophysical studies of human vision, the
theoretical relations among them are unclear. In this
paper, we present a unifying perspective. Saliency of
an image area is defined in terms of divergence be-
tween certain feature distributions estimated from the
central part and its surround. We show that various,
seemingly different saliency estimation algorithms are
in fact closely related. We also discuss some commonly
used center-surround selection strategies. Experiments
with two datasets are presented to quantify the relative
advantages of these algorithms.

1 Introduction
Visual saliency is the perceptual quality which

makes some items in the scene pop out from their
surround and immediately attract our attention. It is
well-known that humans can detect salient areas effort-
lessly even in complex scenes and in clutter. An effec-
tive computational model for automatically generating
saliency map from images is of great interests because
it can facilitate many important computer vision and
graphics applications, including adaptive image com-
pression, object detection and recognition, thumbnail
generation, content-aware image re-targeting, and non-
photorealistic rendering, among many others.

Inspired by some principles of human visual atten-
tion supported by psychological studies, many saliency
detection algorithms have been proposed in recent
years. Here we list several principles that have been
exploited in the literature:
• Rarity: less frequently-occurring features are

salient [4, 27, 22]
• Local complexity: local unpredictability indicates

high saliency [15]
• Contrast: High center-surround contrast draws vi-

sual attention [12, 9, 7, 1, 5]
• Priors: Special characteristics of high-level con-

tent of complex images, e.g., faces, learned from
examples [19, 14, 21]

We refer readers to [24, 3] for a comprehensive survey
of saliency detection algorithms. However, due to the

difference in principles used and implementation de-
tails, the underlying relations among these methods re-
main hard to understand and their fundamental capabil-
ities are unclear.

In this paper, we present a unifying perspective of
bottom-up saliency detection algorithms. The saliency
of a pixel is defined as the divergence between the prob-
ability distributions estimated using samples from cen-
ter and surround, respectively. We explicitly show that
most of the current bottom-up saliency models are in
fact special cases within our formulation, correspond-
ing to various assumptions and approximation (Section
2). Therefore, we provide a standardized interpretation
of the quantities involved in them. Moreover, as diver-
gence has well-known fundamental connections with
well-established fields such as information theory and
statistical decision theory [23], we can understand these
methods in a more principled way. In addition, we dis-
cuss commonly used center-surround selection strate-
gies (Section 3). Experimental results are shown to re-
veal the relative advantages of each algorithms and pro-
vide further insights (Section 4).

2 A Unifying Framework
2.1 Center-Surround Divergence

Denote xi ∈M, 1 ≤ i ≤ N as the ith pixel location
in an image with N pixels and spatial support M and
fxi
∈ IRd as the features extracted at position xi, e.g.,

luminance, color, orientation, texture, or motion. For a
pixel located at xi, we first define two disjoint spatial
supports, namely center Ci and surround Si. We also
denote their union as Ai = Ci ∪ Si and the patch cen-
tered at xi as Ni.

The saliency of xi can thus be defined as the diver-
gence between the two feature distributions estimated
using samples from center and surround:

sxi
= D(PCi

||PSi
), (1)

where D(·||·) is a contrast function which establishes
the dissimilarity of one probability distribution to the
other on a statistical manifold. The most frequently
used class of divergences is the so-called f-divergence,
which includes the well-known Kullback-Leibler diver-
gence (KL divergence) as a special case.
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Table 1. A summary of saliency detection algorithms using divergence analysis
Basic form Works Assumptions and Notes Center-surround selection strategies

DKL(PCi
||PSi

)

[16] Independence among feature channels Multi-scale, patch-based
[4, 27] Self-information Ci: {xi}, Si: Ni \ xi
[22] Difference of self-information Single-scale patch-based
[15] Surround distribution PSi

∼ PU Ci: adaptive, Si:M\ xi

DKL(PSi ||PCi)

[20] Downsample image for speedup Ci: {xi}, Si: Ni \ xi
[26] Luminance feature, look-up table for speedup Ci: {xi}, Si:M\ xi
[12, 9] Contrast as center-surround difference Ci: fine scales, Si: coarse scales
[1] Replace all samples with its mean for speedup Ci: {xi}, Si:M\ xi
[2] Maximum symmetric surround Ci: {xi}, Si: adaptive
[8] K nearest neighbor for approximation Ci: {xi}, Si: center-weighted

Dλ(PCi
||PSi

) [7] Discriminant center-surround hypothesis Single-scale, patch-based
DCS(PCi

||PSi
) [5] Sparse histogram comparison Ci: regions, Si: center-weighted

In the following subsections, we show that most of
the saliency detection algorithms in the literature share
Eqn. 1, which represents their common nature. Table 1
presents a summary of various saliency detection algo-
rithms for different definitions of divergence.

2.2 From Center to Surround
We first consider saliency sxi

as the KL divergence
from center to surround, i.e., from PCi

to PSi
:

sxi = DKL(PCi ||PSi) =
∑
f

PCi(f) log
PCi

(f)

PSi(f)
. (2)

By assuming independence among the dimensions in
fxi , one can compute the KL divergence in each feature
channel and fuse them to form the final saliency map
[16].

By shrinking the center support to a single pixel xi,
i.e., Ci = {xi}, we have PCi

(fxi
) = 1. Then, Eqn. 2

simplifies to

sxi
= I(fxi

) = − logPSi
(fxi

), (3)

which yields the Shannon’s self-information as used in
AIM [4] and SUN [27] models.

The difference between the self-information of ob-
serving fxi

evaluated using PAi
and PCi

has the form

− logPAi
(fxi

)− (− logPCi
(fxi

)) = log
PCi

(fxi
)

PAi(fxi)
,

which gives rise to the saliency measure defined in [22].
By assuming the surround distribution PSi

to be
uniform PU , we can build connection with the local
complexity-based methods [15], which uses entropy of
a local region as a saliency measure:

H(PCi
) = log |F| −DKL(PCi

||PU ), (4)

where F is the set of the feature values.

2.3 From Surround to Center
As the KL divergence is not symmetric, one can

compute the saliency as the KL divergence from the op-
posite direction:

sxi
= DKL(PSi

||PCi
) =

∑
f

PSi
(f) log

PSi(f)

PCi
(f)

. (5)

The meaning of Eqn. 5 and 2 can be better understood
via the fundamental connection between the KL diver-
gence and the likelihood theory [6].

DKL(PSi
||PCi

) = −H(PSi
)−

∑
f

PSi
(f) logPCi

(f),

(6)
where the second term of the right hand side can be
rewritten as the minus log-likelihood function:

−
∑
f

PSi(f) logPCi(f) =
−1
|Si|

∑
j:xj∈Si

logPCi(fxj ).

We can then interpret the quantity DKL(PSi ||PCi) as
how well the probabilistic model of center PCi

can ex-
plain the samples from surround. If PCi

can provide a
good fit of the surrounding samples, then the saliency
sxi

is small, and vice versa. On the other hand, Eqn.
2 measure saliency as how well the model of surround
PSi

can explain samples from center.
We can view the likelihood model in Eqn. 6 as a gen-

eralization of many contrast-based methods [26, 1, 20,
2, 8], which makes different assumptions and approxi-
mations. For example, by shrinking the center support
to a single pixel xi and assuming the form of PCi

as
Gaussian distribution with mean fxi and variance σ2,
the minus log-likelihood in Eqn. 7 become

1

|Si|
∑

j:xj∈Si

(fxi
− fxj

)2

σ2
+ const (7)

Many of the contrast-based methods measure saliency
by approximately evaluating Eqn. 7. As examples,
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[1] replaces all fxj with its mean ( 1
|Si|

∑
j:xj∈Si

fxj ),
[12, 9] use difference between fine and coarse scales in
Gaussian pyramids, [2] use adaptive surround Si, [26]
assume that PCi

follows Laplacian distribution, and [8]
uses k nearest neighbors to achieve computational effi-
ciency.

2.4 Symmetrised Divergence
In contrast to the non-symmetric KL divergence,

some symmetrised divergences have also been pro-
posed. One example is the λ divergence:

Dλ(P ||Q) = λDKL(P ||A)+(1−λ)DKL(Q||A), (8)

where P,Q,A are probability distributions and A =
λP + (1 − λ)Q. By appropriately choosing λ as the
prior probability of the center λ = |Ci|/|Ai|, the λ di-
vergence between center and surround is

Dλ(PCi ||PSi) = λDKL(PCi ||PAi)+(1−λ)DKL(PSi ||PAi),

which is the mutual information of feature distribution
and center-surround label used in [7].

Another alternative is the Cauchy-Schwarz diver-
gence [13], which is given by

DCS(P ||Q) = − log

∫
P (x)Q(x)dx√∫

P (x)2dx
∫
Q(x)2dx

.

When estimating the probabilistic density P,Q using
non-parametric density estimation (known as Parzen
windowing), the CS divergence can be easily evaluated.
Specifically, we estimate the pdf of PCi

using

P̂Ci(fx) =
1

|Ci|
∑

j:xj∈Ci

Wσ2(fx, fxj ), (9)

whereWσ2(·, ·) is a Gaussian kernel with parameter σ2.
Then the CS divergence DCS(PCi

||PSi
) has the form

− log

∑
l:xl∈Ci

∑
j:xj∈Si

Kl,j√∑
l,l′:xl,x′

l∈Ci
Kl,l′

∑
j,j′:xj ,x′

j∈Si
Kj,j′

,

where Kl,j denotes W2σ2(fxl
, fxj ). This gives rise to

the histogram contrast saliency measure in [5].

3 Center-Surround Support Selection
The center-surround hypothesis for saliency detec-

tion is inspired by the center-surround mechanisms oc-
curring in the early stages of biological vision [11, 25].
However, the selection of the center and surround is not
trivial. We investigate various strategies used for select-
ing support of center and surround.

3.1 Selection of Center Support
The simplest choice for center is to use a single

pixel [4, 27, 8, 2]. However, estimating the distribu-
tion of center with a single observation clearly intro-
duces high variance. As ways of increasing the sam-
ple size, patch or window-based approaches have been
proposed [22, 16]. Yet, without knowing image dis-
continuities in the vicinity, the optimal patch/window
size of center cannot be estimated, which can be only
partly mitigated by added complexity of multi-scale
computation. Region-based approaches emerge as a
good choice for spatial support estimation of cen-
ter. Region-based methods provide appropriate spatial
scales and directly involve potential object boundaries.
Note that region-based saliency is different from region-
enhanced saliency, which amounts to post-processing of
pixel/patch-based saliency by averaging them over seg-
ments [18].

3.2 Selection of Surround Support
The selection of the surround is closely related to the

notion of local and global saliency. For example, by
choosing surround as the whole image, the algorithm
predicts globally salient regions. For local saliency, fi-
nite support or center-weighted kernels can be used.

4 Experimental Results
In this section, we quantitatively evaluate these

bottom-up saliency detection algorithms to provide a
comparative study.

Dataset and evaluation metric: We show perfor-
mance comparison on two publicly available datasets:
the MSRA dataset [19] and the McGill dataset [17].
For the MSRA dataset, we use a subset of 1,000 im-
ages where groundtruth segmentations are available [1].
McGill dataset contains 235 natural images with rough
categorization based on difficulty.

To quantitatively evaluate the performance of these
saliency detection algorithms, we use binary (thresh-
olded) saliency masks derived from the saliency map
and compare them with human segmentation to com-
pute the precision and recall curve.

State-of-the-art saliency detection methods: We
conduct a comparative study on the following state-of-
the-art methods and show the results in Fig. 1.
• Rarity-based: AIM [4], SUN [27], SW [22] from

section 2.2
• Contrast-based: IT [12], GB [9], CA [8], AC [2],

FT [1], LC [26] from section 2.3 and HC [5], RC
[5] from section 2.4.
• Spectrum-based: SR [10]
Quantitative results: Figure 1 shows the mean

precision-recall curves on MSRA and McGill datasets
of all methods listed above. (We use two separate plots
to avoid confusion.) Several observations can be seen
in the comparative experiments. For examples, self-
information methods AIM [4] and SUN [27] have sim-
ilar performance regardless of using image-specific or
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Figure 1. Quantitative comparison on
MSRA (first row) and McGill (second row)
datasets.

generic statistics of natural images. From LC [26] to
FT [1], the performance improves as the feature sets are
richer. AC [2] improves upon FT [1] with adaptive sur-
round support. RC [5] improves upon HC [5] via better
center support selection.

5 Conclusions
We have shown theoretical connections among vari-

ous bottom-up saliency detection algorithms. The uni-
fied perspective sheds new light on current methods in
the literature, by providing a standardized interpreta-
tion. We also discuss several center-surround selec-
tion strategies. Comparative evaluation on two pub-
licly available datasets brings out the relative strengths
of each method.

The list of saliency detection methods in this pa-
per is not exhaustive, e.g., spectrum-based approaches
are missing. In the future, we plan to extend our
framework to include those methods as well as build a
common ground for detailed comparison, for example,
by systematically controlling parameters when compar-
ing different divergence measures, features, and center-
surround selection schemes.
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