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Abstract

In this paper, we present a three-view matching algorithm
that takes into account surface foreshortening effects to
match image feature points and provides surface normal
directions at these points as a by-product. Compared to
other existing, similar algorithms that consider surface
foreshortening effects, our algorithm is more ef�cient
since it decomposes a 2D surface orientation search into
two 1D searches along two pairs of epipolar lines, and
more robust since two pairs of stereo images from three
cameras are used and the decomposition makes it possi-
ble for our algorithm to detect and match surface points
near 3D edges. Experimental results showing correspon-
dences, surface normal directions, reconstructed surfaces
are presented and evaluated.

Introduction
The task of matching points between two images is cen-
tral to computer vision [1, 2]. Many existing stereo
matching approaches use a �xed window ofa priori cho-
sen size [3] or an adaptive window [4] of variable size
chosen based on local variations of intensity and dispar-
ity. These methods do not take into account viewing ge-
ometry and local surface orientation, which will affect
the shapes of corresponding windows. Therefore, the
accuracy of the above matching algorithms will be af-
fected if this foreshortening effect is considerably large,
which is common in wide baseline cases. Devernay and
Faugeras [5] propose a �ne correlation method that al-
lows a matching window to locally deform between a
stereo image pair to estimate accurately both the dispar-
ity and its derivatives directly from image data. Mai-
mone [6] models the deformation using local spatial fre-
quency representation, but the scheme still needs brute
force search over the surface orientation in addition to
the depth search. Hattori and Maki [7] propose an algo-
rithm which computes the surface depth and orientation
simultaneously by �rst getting an initial depth estimate
assuming the local surface to be frontal parallel and then
considering the surface orientation to re�ne the depth es-
timate.

Compared to these methods, our proposed three-view
matching algorithm is more ef�cient and more robust.
The use of a three-camera setting to decompose the 2D
surface orientation search into two 1D searches along
two pairs of epipolar lines makes our matching approach

more ef�cient. These two orientation searches yield an
estimate of the surface orientation and a more reliable
depth estimate since two pairs of stereo images are used.
In addition, our matching algorithm also takes into ac-
count the presence of a 3D edge in the vicinity of the
point to be matched, so that it can detect and match sur-
face points near 3D edges.

Our Approach
Three calibrated cameras, two displaced horizontally and
two vertically, are used to acquire two stereo pairs of im-
ages. The distance between each camera and the object is
approximately the same. Since their viewing directions
are quite different, we do not use recti�cation as tradi-
tional stereo matching algorithms do. Below, we �rst
discuss the matching algorithm for two views and then
follow with the three-view cases.

Two views
In Fig. 1(a),O1 andO2 are the two camera centers and
P is an object surface point. PlaneO1O2P intersects
the object along the surface curveRP Q, whose projec-
tion in each image,Ri Pi Qi ; i = 1 ; 2; is on a straight
line, called epipolar line. The two epipolar lines are de-
noted ase12 ande21, respectively, in imagesI 1 andI 2,
as shown in Fig. 1(b). For simplicity, we �rst consider
deformation within the epipolar planeO1O2P, which is
a one-dimensional deformation along the epipolar line.
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Figure 1: Two camera case: (a)O1O2P plane.O1 and
O2 are two camera centers andP is a point on the object
surface. PlaneO1O2P intersects the object along the
surface curveRP Q. (b) Epipolar lines in imagesI 1
andI 2. PointR1; P1; Q1 andR2; P2; Q2 are images of
3D pointR; P; Q on I 1 andI 2, respectively.
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Figure 2: Viewing geometry within the epipolar plane.
P P0 is a short segment on curveRP Q

The viewing geometry within the planeO1O2P is
shown in Fig. 2. Suppose the 2D world frame is placed
at cameraO1 and the coordinate frame of cameraO2
is related to the world frame with a 2D rigid body mo-

tion (R, T). The rotation matrixR = [
R11 R12
R21 R22

]

and the translation vectorT = [
T1
T2

] are obtained

from calibrated extrinsic parameters. Without loss of
generality, we approximate a short curveP P0 on the
object surface as a straight line whereP = ( X; Y )T

and P0 = ( X + �X; Y + �Y )T . The coordinates of
P and P0 viewed from cameraO2 are (X 0; Y 0)T and
(X 0 + �X 0; Y 0 + �Y 0)T , respectively, inO2 's coordi-
nate frame. CameraO1 projectsP andP0 onto the 1-
dimensional epipolar linee12 with local coordinatesx1
andx1 + �x 1, while cameraO2 projects them onto the
epipolar linee21 with local coordinatesx2 andx2 + �x 2.
From the perspective projection model, we have

x1 =
f 1

Y
X;

x1 + �x 1 =
f 1

Y + �Y
(X + �X );

x2 =
f 2

Y 0(R11X + R12Y + T1);

x2 + �x 2 =
f 2 � [R11(X + �X ) + R12(Y + �Y ) + T1]

Y 0+ �Y 0 ;

wheref 1 is the distance between optical centerO1 and
epipolar linee12, f 2 is the distance between optical cen-
ter O2 and epipolar linee21. Since we are considering a
short curveP P0, andP0 is very close toP, we assume
that �Y � Y and �Y 0 � Y 0. Suppose lineP P0 is:
Y = aX + b, then we have�Y = a � �X . From the
above equations, we have

�x 2 = g(a) � �x 1

where

g(a) =
f 2

f 1
�

Y
Y 0 � (R11 + a � R12)

is a function ofa, which denotes the orientation ofP P0

in the epipolar plane. So, if we know the ratiog(a) of
�x 2 and�x 1, we can calculate the orientation of lineP P0

using

a = g� 1(ratio) =
ratio � f 1 � Y 0 � R12 � f 2 � Y � R11

f 2 � Y � R12
;

whereY andY 0 follow if the corresponding image points
x1 one12 andx2 one21 are known, andf 1; f 2; R11; R12
follow from the calibration parameters.

By considering the deformation within the epipolar
planeO1O2P, we can estimate the depth of a given point
P1 in I 1 and its foreshortening ratio simultaneously us-
ing

(d̂; ^ratio ) = arg max
d;ratio

Corr(d; ratio );

where Corr(d; ratio ) is the correlation value based ond
and ratio . In practice, we use a pair of parallelogram
shaped windows with a small height as in Fig. 3 along
epipolar lines to correlate pointP1 in I 1 and candidate
P2 in I 2. For each candidateP2, we change the ratio
of the lengths of the two windows. The ratio yielding
the best correlation is kept as the match quality ofP2.
The candidate yielding the best match quality is selected
as the matched point. For the best matchP2, and the
corresponding ratio, we estimate both the depthY , and
slopea (and therefore the surface normal atP within the
epipolar plane) simultaneously.

To simplify the computation, we make two approxi-
mations. First, we do not consider the deformation along
the direction perpendicular to the surface curve, which
is within planeO1O2P. However, from our assumption
thatO1P ' O2P, this deformation will be very similar
for both imageI 1 andI 2. Moreover, since we use a par-
allelogram shaped window with a small height, the de-
formation differences in the vertical direction can be ne-
glected. Second, the use of rectangular windows aligned
with an epipolar line for matching is only an approxi-
mation. Truly, the windows should be trapezoid shaped
since adjacent rows of the window should lie on adja-
cent epipolar lines and epipolar lines intersect at epipole.
However, in our case, since the epipole is far away from
the object in the image, adjacent epipolar lines can be
approximated by parallel lines.
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Figure 3: Parallelogram windows with small height
along epipolar lines. The width of these windows are
varied to yield a best correlation value.

So far, we have not considered the situation when the
point of interestP is close to a 3D edge, which is not
assured since we select the points based on their image
space salience. To address this problem, we consider two
different windows extending to the left and right ofP and
calculate the correlations for each for a range of ratios. If
we assume that 3D edges do not occur nearP on both
sides of it, one of the two windows should yield a match.
We distinguish the following cases and draw inferences
as indicated:
1. If both sides' match qualities are high, then
a) if the two ratios are the same, we consider the surface
curve as a straight line and its orientation can be esti-
mated from either side's ratio (or both);
b) if the two ratios are different, we consider this point



as a 3D edge point, hence there is no single orientation
to be computed rather the two sides have different orien-
tations.
2. If one side's match quality is high and the other's is
low, we know that there is a 3D edge point within the
window with lower correlation value. The result is still
acceptable and the orientation can be estimated using the
ratio on the higher correlation side.
3. If both match qualities are low, we regard it as a failed
match (e.g., there is an edge point nearby on each side).

Thus, our two-view matching method involves search
along the epipolar lines, for a match between two pairs
of parallelogram shaped windows with their long edges
parallel to the epipolar lines. For each of the two pairs of
windows, we vary the ratio of their widths and calculate
the correlation values. From the best correlation values
and the associated ratios we estimate the depth and slope
of the point, and infer whether the point is along a smooth
surface curve or there is a 3D edge point nearby along the
curve.

Three views
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Figure 4: (a) Three cameras �xating on the object from
different viewpoints. (b) Corresponding two pairs of
epipolar lines.

Since the above two-view matching algorithm gives
the surface orientation only within the epipolar plane, we
use three calibrated cameras,C1, C2 andC3 (Fig. 4) and
each camera captures one image of the object, yielding
three images,I 1, I 2 andI 3.

For each point of interest selected inI 1, a depth range
is set based on the assumption that the corresponding
point in 3D space is within the �elds of view of the other
two cameras. For each depth value within this range,
we calculate the two corresponding pixels one21 and
e31, respectively, and compute the best correlation value
while changing the ratios of window widths using the
two-view matching algorithm. The correlation values
from the two stereo pairsI 1I 2 andI 1I 3 are summed up
and the depth associated with the matches with largest
summation is selected to be the point's depth estimate.
From the stereo pairI 1I 2, we can estimate the orienta-
tion of the surface curve within planeP O1O2, denoted
by l1 = ( l11; l12; l13)T , and similarly, we can estimate
the orientation of the surface curve within planeP O1O3,
denoted byl2 = ( l21; l22; l23)T . Thus we can estimate
the surface normal asnp ' l1 � l2.

The depth and surface normal estimates are used to
re�ne the matchings by considering the ordering con-
straints and the continuity constraints. In our implemen-

tation, we simply check the consistency of the ordering
and the continuity of depth and orientation of current
point with its neighboring points. If a point is inconsis-
tent with the majority of its neighboring points, we assign
it a depth corresponding to a local maximum value of the
correlation within the acceptable range so that the con-
straints are satis�ed. This step is carried out iteratively
until all the points are consistent with the constraints.

Experimental Results
In this section, we present experimental results and eval-
uate them. In these experiments, the horizontal and ver-
tical camera pairs are about400mm apart, and the object
distance is about500mm. We calibrate the three cameras
using Zhang'seasycalibrationsoftware [8].

The object considered in our experiment is a piece of
folded paper with text on it. Fig. 5 shows three input im-
agesI 1; I 2 andI 3 from left to right. The marked points
in I 1 are the selected points to be matched. We use the
three-view stereo matching algorithm to �nd the corre-
sponding points in the other two images and at the same
time estimate the surface normal at these points. The
matched points are marked by round dots inI 2 andI 3. In
order to check the correctness of the matched points, we
manually enter the corresponding points, marked with
”x” in I 2 andI 3, and compare them with the points ob-
tained by our algorithm. The average and standard de-
viation of the distances between the matches found by
the algorithm and those marked manually are observed
to be 2.0760 pixels and 1.3156 pixels, respectively (in
640� 480images). Please note that this 2-pixel error is
not with respect to the ground truth, which is unavailable.
Instead, it is the difference between the matches found by
our algorithm and the manually clicked matches. Man-
ually clicking itself can easily have a 2-pixel error in a
640� 480image. It is clear that our matching algorithm
is consistent with human visual perception.

Figure 6: Two different views of surface normal esti-
mates. Red lines show the estimated surface normal di-
rection. Blue lines show the normal directions of least-
square �tted planes on neighboring3 � 3 points.

The surface normal is estimated as a by-product of our
algorithm. Fig. 6 shows two views of a surface along
with the estimated normal directions, shown as red lines.
To evaluate these estimates, we obtain a least-square pla-
nar �t to depths derived from the manually matches in
each3 � 3 neighborhood away from 3D edges, and use
the normal direction of the plane as the ground truth
at the neighborhood center. These ground truth normal
directions are shown as blue lines. The average and



I 1 I 2 I 3

Figure 5: Original images and corresponding points. The redpoints inI 1 are initial vertices to be matched. Estimated
corresponding vertices are shown as red points inI 2 and I 3. The points marked with ”x” are manually supplied
matches for evaluation purposes.

standard deviation of the surface normal directions be-
tween our estimates and the ground truth are15:1137�

and5:4698� , respectively. It is reasonably small because
when we search for the ratio of one directional defor-
mation, only10 discrete different ratios are used in each
of the two epipolar directions. (If we assume the real
surface normal directions are uniformly distributed and
there is no error in ratio estimation, the average error of
surface normal estimate in each epipolar plane will be
5� . Moreover, the smallest error in ratio estimation will
leads to an average error of20� in that plane.)

Figure 7: A set of images rendered from novel view-
points, texture mapped using imageI 1. The top right
image shows our reconstructed shape is visually accu-
rate.

The 3D model of the surface is reconstructed from the
depth values of these points. Fig. 7 shows some ren-
dered images for different viewpoints using the texture
from imageI 1. As we can see from the top right image
in Fig. 7, the reconstructed shape appears to be qualita-
tively correct.

Summary
Our three-view matching algorithm takes into account
the differential foreshortening and achieves robust stereo
matching. At the same time, the algorithm estimates
surface normal direction as a by-product. Existing sur-

face normal estimation approaches either �rst obtain the
depth and then estimate the normal (thus they are af-
fected signi�cantly by the initial depth estimate), or they
involve an exhaustive search for 2D surface orientation in
addition to the depth search. Our method estimates depth
and surface normal simultaneously. Moreover, it decom-
poses the 2D orientation search into two 1D searches
along two pairs of epipolar lines, and hence is more ef�-
cient. The redundancy provided by a second stereo pair
adds robustness to the matching. In addition, our match-
ing algorithm also takes into account the presence of a
3D edge in the vicinity of the point to be matched.
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