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Random field models have many applications in image processing and analysis. The main 
concern of this paper is to design a decision rule for fitting an appropriate random field 
model to a given image. We assume that the given image is a particular re.libation of a 
homogenous Gaussian discrete random field. We represent the underlying random field by a 
set of parametric models representing the spatial dependence. Using spectral representations 
of the random field and standard Bayesian methods, we develop a decision rule for choosing 
an appropriate model from a class of such models. We discuss the relevance of the theory 
developed in this paper for applications in image modeling and texture characterization. 

1. INTRODUCTION 

Random field models have many applications in image processing and analysis; 
for example, they can be used for design of image enchancement or restoration 
algorithms [1-3], for image coding [4-6], segmentation of images [7-8], and 
characterization of textures [9-10]. Typically, an image is represented by a two- 
dimensional scalar array, the gray level variations defined over a square grid. One 
of the important characteristics of this data is the statistical dependence of the gray 
levels within a neighborhood. For example, y ( s l , s 2 ) ,  the  scalar gray level at 
position (s 1, s2), might be statistically dependent on the values of gray levels over a 
neighborhood that includes {(s I - 1,s2), (s 1 + 1,s2), ( s l , s  2 - 1), ( s t , s  2 + 1)}. This 
is in contrast to the familiar time series models where the dependence is strictly on 
the past observations. Therefore any image model should adequately reflect the 
statistical dependence of a pixel on its neighbors in all directions. 

The statistical dependence of gray levels in a neighborhood can be represented in 
several ways. Suppose we concatenate the observations from successive rows and 
obtain a one-dimensional series of real numbers. This series can be treated as a 
realization of a discrete one-dimensional stochastic process and can be represented 
by one-dimensional time series models. Seasonal autoregressive models and their 
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variants have been used to represent such time series data [4, 9]. Another method 
would be to retain the two-dimensional character of the data and represent the 
statistical dependence of the pixel y ( s  t, s2) on the neighbors on the left and top of 
(sl,s2) as shown in Fig. 1. A special case of this representation with a = b -- 1 has 
been used in the image processing literature quite extensively [1, 3, 10]. The above- 
mentioned approaches are inadequate for an image since they do not include the 
neighborhood dependence in all directions. As mentioned earlier, an image repre- 
sents a statistical phenomenon on a plane and hence the notion of past and future 
as understood in classical time series analysis is not relevant. Hence any ap- 
propriate image model should include dependence in all directions. 

Image models which include dependence in all directions (referred to as neigh- 
borhood models in the sequel) have been considered recently [3, 7, 8, 11]. The 
neighborhood dependence might include the four nearest pixels (east, west, north, 
and south pixels), eight nearest pixels [3, 11], or all the pixels inside a square 
window surrounding the pixel at (s 1, s2) [7, 8] as shown in Fig. 2. In these models, 
the observation y(sl, s2) is written as a linear weighted sum of observations over the 
corresponding neighborhood and an independent noise sequence. These models are 
characterized by a set of unknown weights or coefficients and the variance of the 
noise driving the model. 

Prior to the use of these models two problems have to be tackled, namely, the 
estimation of the unknown parameters and the choice of an appropriate neighbor- 
hood of pixel dependency for the given image. The parameter estimation is usually 
handled by the maximum likelihood (m.l.) method. The problem considered here is 
the choice of appropriate neighborhood. There is no need for any special restric- 
tions on the image such as isotropy. Neighborhoods having arbitrary number of 
members can be considered. It is well known that even in the case of one- 
dimensional time series models, a model of appropriate order should be fitted 
before it can be used for applications. Hence the importance of the choice of an 
appropriate neighborhood for an image, before using it for further applications, 
need not be overemphasized. 
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FIo. 1. Two-dimensional unilateral dependence. 
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FIG. 2. Neighborhood dependence. (a) Four-neighborhood [3], Co) eight-neighborhood [3], and (c) the 
pixels within a surrounding window [7-8]. 

The main approaches to choosing neighbors in model building are the following: 

(1) Pairwise hypothesis testing, 

(2) Akaike's information criterion (AIC), 

(3) The Bayesian approach. 

In the pairwise hypothesis testing approach [12], a so-called null hypothesis is set 
up, (say) that the given two-dimensional data could be represented by an isotropic 
four-neighborhood model (e.g., one that includes east, west, north, and south 
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neighbors), and a decision rule is designed so that the probability of rejecting the 
null hypothesis when it is indeed true has a prespecified upper bound. The main 
criticism of this approach is that the resulting decision rules are not consistent, i.e., 
the probability of choosing an incorrect model does not go to zero even as the 
number of observations goes to infinity. Also, the decision rules may not always be 
transitive, i.e., given three hypotheses Cl, C 2, and 123, if C 1 is preferred to C2 and C 2 
is preferred to C3, then it does not follow that C~ is preferred to C 3 [13]. 

The AIC method [14} computes the so-called AIC statistic of the given observa- 
tions for each model. The best model is the one which minimizes the AIC statistic. 
This method gives a transitive but not consistent decision rule [15]. 

In the Bayesian approach [13] of fitting models to data, various possible models 
are postulated as mutually exclusive hypotheses Ci, 1 _< i < r. The hypothesis that 
maximizes the posterior probability density P(Ct[y ( s ) , s  E s is chosen as the 
correct model with minimum probability of error. This approach involves obtaining 
an expression for the likelihood of the observations and integrating it over the 
parameters using an appropriate prior probability density function. 

In this paper we propose a Bayesian method for finding a neighborhood model 
for a random field, using the spectral representation for the random field. Specifi- 
cally, using the asymptotic Gaussian properties of the finite Fourier transforms 
( Z ( X i j ) , ~ i j ~ h )  , where f~x is a set of discrete frequencies X u = ( X o i , ~ o j ) ,  
h o = 2~r/N,  an explicit expression is given for p(z(Xij), Xij E fix[0k), 0 k being the 
vector of parameters in the model. 

We integrate this probability density function over the variable O k using the 
corresponding regular prior probability density function of 0 k, viz., p(OklCk) to 

obtain p ( z ( X i j ) , X ~  E f~x[Ck). Using this expression and the prior probabilities 
P ( C k ) ,  k = 1, 2 . . . . .  r, of the hypotheses, a decision rule for choosing a model with 
minimum probability of error is designed. This decision rule involves arbitrary 
quantities like prior densities of the parameters. A decision rule suppressing the 
terms involving the prior densities is also given. Though this rule does not have the 
minimum error rate property, it is asymptotically weakly consistent. 

We drop the boldface notation in s and Xii throughout and use exp and e 
interchangeably to indicate the exponential function. 

The transform domain approach used in this paper can be easily extended to 
include moving average and autoregressive and moving average models. 

The organization of the paper is as follows: In Section 2, an explicit expression is 
derived for the probability density of the transforms of the observations given the 
neighborhood model obeyed by the observations. In Section 3, the problem of 
finding the appropriate neighborhood is posed as a class selection problem and 
decision rules are designed for choosing this neighborhood. Section 4 discusses the 
properties of the decision rule. The decision rule for the class of unilateral models 
is derived in Section 5. A brief discussion of the relevance of the theory developed 
here to image processing is given in Section 6. 

2. EXPRESSION FOR THE PROBABILITY DENSITY (p(z(Xu), X,,j E O x Ir O) OF 
TRANSFORMS OF OBSERVATIONS OBEYING A RANDOM FIELD MODEL 

In this section we derive an explicit expression for the probability density of the 
finite Fourier transforms of the observations ( y ( s ) ,  s E s  where fl~ is a square 
grid of side N, s = (sl, s2) is a specific location on the grid and 1 _< s i <_ iV, i = 1, 2. 
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The given observations y(s)  are assumed to obey the random field model 

E(q~,O): y ( s )  + ~,, epkY(S + q,)  = V~ u(s), 
qk ~Q 

(2.1) 

s U f~,, Q = (qk = (qk.l,qk,2), k ---- 1 , 2 , . . . m ,  

qk ~ (0,0), q*,i are integers) 

Here {u(s),s ~ f~s) is Gaussian i.i.d, noise with zero mean and unit variance. For  
simplicity, in what follows, we denote qk by qk. 

The random field is homogeneous and Gaussian but not necessarily isotropic. A 
random field is said to be homogeneous if the following condition is satisfied: 

R(s ,  t) -- E ( ( y ( s )  - E (y ( s ) ) ) ( y ( t )  -- E (y ( t ) ) ) )  

= R ( s  - t )  

--i.e., the covariance function is translation invariant. In addition, if the covari- 
ance function R(s , t )  is also invariant to rotation, the random field is called 
isotropic. In general, images are not isotropic and hence the random field models of 
interest to us are only homogeneous and not necessarily isotropie. 

Equation (2.1) is characterized by an unknown (m + 0-dimensional vector 
o r =  (q~r,p) such that q~i4 = 0, j = 1,2 . . . . .  m and p > 0. Equation (2.1) represents 
the dependence of an observation at location (sl,s2) on its neighbors in the 
direction specified by Q. When qk, 1 and qk,2 take only nonpositive values we 
obtain models where the observation at location (svs2) is a linear combination of 
the observations in a one-sided neighborhood. We assume that the coefficients in 
(2.1) satisfy the following condition to ensure homogenity [16]: 

I Y, ePkt k"tr < 1 
qkeQ 

whenever I tl[ -- [t2 [ = 1. 

The two-dimensional transfer function of the system in (2.1) is given by 

~, q~kexp(VLL l ~k~ +Jqk'2)) ] -1  
qk~Q 

(2.2) 

I n  ( 2 . 2 ) ,  e x p ( V  - 1 X f j )  s t a n d s  f o r  t h e  v e c t o r  
[exp(V--1 X0i),exp(V-= 1 ~oj)].The corresponding spectral density function 
evaluated at frequency (~ij -- (7%i, A0J), (i,j) E f~,) is given by 

(2.3) 

where [[a[[ denotes the modulus of the complex variable a. To make our notation 
clear, we consider a few examples. 



306 KASHYAP, CHELLAPPA, AND AHUJA 

EXAMPL~ 1. East, West, North, and South model. 
Let the neighborhood be 

O = ((1, 0), (0, 1), ( -  l, 0), (0, - 1)). 

The equation for y( ' )  is 

y(sl,s2) + r + 1,S2) + r + 1) + r  1,s2) + r - 1) 

- - -  u(s,, 

The transfer function is given by 

H(exp(X/-Z--]-h/j), ~b)= [ l + r + r 

+ r + r - I 

The corresponding spectral density function evaluated at h,.j = (~o i, ho j  ) is 

Sy ( X U ; ~ , p ) = p(1 + r e V-S--f hoi + r v-:'-ix~ + r e - xfx-f hoi + qb4e-V-~h~ -'1 

• (1 + d~le-V-STx~ + r e-V=-f XoJ 

--1 
a..,x/-~ Xd r eV'--[ Xoj) + v3~ + 

For the isotropic case, r = r -- r = r -- r we have 

Sy(A,7; r  -- p(1 + 2r + 20cOsXoj ) -2. 

EXAMPLE 2. One-sided models of images. 
Let the neighborhood be 

Q = { ( 0 , - 1 ) , ( - 1 , -  1 ) , ( -  l,O)}, 

The corresponding equation being 

y(sl,s2) + r  1) + r  1,s2-  1) 

+ r - 1,s2)-= V~pu(s,,s2). 
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The transfer function for this system is given by 

H(exp(X/-Z-f XU),~, ) = [1  + , , e  - v ~ x d  + e~2 e-v-~x~ + *3e-v-~xoJ] -1. 

The corresponding spectral density function is given by 

Sy(hU;qhp) = 0(1 + t~le-~rZ-lX~ + t~2 e-V-zj'x~ + ~3e-V-~X~ - l  

-1 
x (1 + ~lev'X-iXoi + ~ S  X~ + dp3 ex/-L-~x~ 

For the special case when ~2 = r162 we obtain the familiar separable model [1-2]. 

Expression for the Probability Density of Transforms of Observations 

In this section we derive an explicit expression for the probability density of the 
transform (z(X;j),XuE ax} of the observations (y(s),s ~2~), given that the 
observations obey the model in (2.1). 

To this end we first obtain an expression for p(z(Xtj),X O E ~Zx[q,O) and then 
integrate over (~/,, O) by using an arbitrary but otherwise regular prior probability 
density function p(q~, 0). An expression for p(z(Xq), Xtj ~ a x ]q~, p) is obtained by 
using the stochastic properties of finite Fourier transforms [17-18]. 

Consider the finite Fourier transforms (Z(hu),~t U ~ f~x} of the observations 
(y(s),s ~ fl,) over a square grid N • N, defined below: 

2(Xij) ~----" ( N ) - - l  E exp( -- ~ - - ~  ~.~js )y ( �9 ), XU~ ~ .  (2.4) 

We now state a theorem regarding the distribution of {z(Xij),X u ~ ~Za}. 

THEOREM 1. For an infinite observation field, the finite Fourier transforms 
(z(Xu), X 0 ~ ~Zx} are (a) independent and (b) have a complex normal distribution 
with zero mean and variance 

E(4X,j)z*(X.)) =S.(X.;*,O), X.ea , (2.5) 

where Sy(Ai]; q~, p) is given by Eq. (2.3). 

Comments. (1) The distribution theory given in Theorem 1 is exact only when 
the observation field is infinite. For a finite field of observations the Fourier 
transforms are only approximately uncorrelated. Similarly, for finite observation 
fields, Eq. (2.5) is only approximately true. The smoother Sy(hu; •, p) is in the 
vicinity of ~'ig, the better is this approximation. If Sy(Xij; q,p) is constant over 
(-Tr,~r), (2.5) is exact. 

It is interesting to compare the expression obtained here for the probability 
density of the transforms of observations and the expressions obtained in Whittle 
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[12]. Whittle starts with an exact expression for the likelihood of the noisy variates 
(u(s),s ~ f~,). Since for a general neighborhood model the Jacobian of the 
transformation from the noisy variates u(.) to the observations y( . )  is difficult to 
evaluate, an approximate expression is used for the determinant. However, the 
expression obtained here is not an approximation to the likelihood function of the 
observations as in [12]. The density function considered here is the joint density of 
the finite Fourier transforms which is a one-to-one transformation with Jacobian 
unity (though a general proof can be given to establish this, a simple derivation is 
given in Appendix II for a 4 • 4 field). Consequently, the estimates of 4k, 0 
obtained by maximizing p(z(hu),  h u E f~xl~b, 0) are only approximately the maxi- 
mum likelihood estimates. 

We now obtain an expression for the estimates of the unknown parameters ~, p. 
The expressions for the maximum likelihood estimates ~, ~ of (~,p) are given 
below: 

9~Rm -- N h U E~x 

+ l n  ~,, Jlz(h,j)l]2/ H(exp(vrZ-l -hu) ,q0 2} (2.6) 
htj Ef~x 

and 

1 / 
= ~v~ 2E IIz(x,j)ll ~ n(exp(VZ 1XU,~) 2. 

h U Ef~x 
(2.7) 

Equations (2.6) and (2.7) can be obtained by solving the two simultaneous 
equations in ~ and p that result by equating the first derivatives of 
lnp(z(Xu),~ U E f~xl~,P) w.r.t. ~ and p to zero. We assume the existence of first 
and second derivatives of likelihood function w.r.t. ~ and p. 

To obtain p(z(Xij), ~lj ~ ~x) we integrate p(z(~u),  h u E ~x [q*, P) over (~, p) 
using an appropriate prior probability density function. We do not make any 
specific assumption about the structure of the prior probability density functions. 
They need be regular but are otherwise arbitrary. Letting Or= (~b r, p) and perform- 
hag the integration 

we arrive at 

THEOg~M 2. As the rectangle of observations becomes large in all dimensions, the 
probability density (p(z(Xu),X U E ~x) is given by 

lnp(z(X,j) ,X,+ e a~ )  -- N~ ' : y 
hlj EflX 

- 2mmN+ Inp(~, ~) - a(N) + b(m) 

+ oI l 
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where ~ and ~ are given in (2.6) and (2.7), respectively, and 

a(N) = 0.5(N2 + N21n2rr) + InN, (2.10) 

b(m) ffi 0.5(m + 1)ln2~r, (2.11) 

and O(1/N) denotes a deterministic constant term behaving like k i l N  for large N 
where k I is independent of N. 

Comments. (1) Theorem 2 gives an explicit expression for the probability 
density of the transforms of observations from a random field characterized by the 
spectral density function 

sy(x,j; 

(2) For large values of N, the contribution due to the lnp(~, ~) term is negligible 
compared to the first three terms in Eq. (2.9). 

(3) The numerical values of the estimates ~ and ~ can be obtained by a 
gradient-type algorithm. 

3. DECISION RULES FOR THE CHOICE OF NEIGHBORHOODS 

We formulate the choice of neighborhood as a classical Bayesian decision 
theoretic problem. For an image it is reasonable to assume that an observation at 
(Sl,S2) will not significantly depend on distant pixels. Hence we restrict our 
allowable neighborhood set to a maximum of eight neighbors, east, west, north, 
and south and the four diagonal neighbors. Thus our problem is to find an 
appropriate set of neighbors among the possible 2 s neighborhood sets for the given 
image. We first define the notion of a class. A class is defined as a set of models 
having the same neighborhood set Q but differing in the parameters g, and p. The ~ 
class C l consists of all models of the form 

Cl: y ( s ) +  ~,, cb,,ky(s+qk)= V~u(s ) ,  qkEQi,qkV~(O,O), (3.1) 
qk ~Q~ 

where ~i.k :/: 0, k E Qi, i = 1 . . . . .  r, Pi > 0, i - 1, 2 . . . . .  r, where r denotes the num- 
ber of neighborhoods under consideration, q~ik, and Pi, i ffi 1,2 . . . .  ,r,  are all 
unknown. Thus a class consists of an infinite number of models with the same 
neighborhood. The given set of observations (y(s),s ~ ~ )  is said to obey class C i 
if (y(s),s ~ ~ }  obeys only one model in C/. Two classes C i and Cj are said to be 
mutually exclusive if the neighborhoods they represent differ in at least one 
neighbor. In our formulation of the problem of choosing an appropriate neighbor- 
hood, the unknown parameters to be estimated from the given data are the 
neighborhood set Qi and the estimates of the unknown parameters g,, p. Let m k 
denote the number of elements in the set Qk. 

Given r mutually exclusive neighborhoods C,., i = 1, 2 . . . .  ,r, and a set of ob- 
servations (y(s),s E ~,}, our aim is to find the most appropriate class for (y(s), 
s ~ ~,).  A decision rule for assigning (y(s),s ~ f~) to one of the r classes is 
designed to minimize a suitable criterion function chosen to reflect the particular 
needs of the problem. 
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Expression for P(Ck I z( ~ ij ), ~ q E f2x ) 

We first compute an expression for P(Clz(?~y), X u E fix), the posterior probabil- 
i ty density of the transforms of the given data having been generated by some 
model Ck, for every k, k = 1, 2 . . . . .  r. Subsequently, we derive optimal decision 
rules to minimize the probability of error and discuss simplifications of the decision 
rule. 

Let O T=  r (4Jk, Ox), q~T __ (q~kt . . . . .  q~km,) r and p(OklCD be the prior probabil- 
ity density function of the parameters under class C k. an expression for 
P(Cklg(Xij),~kij E ~x) is given by 

T r m o ~  3. Let the observations obey the class C k. Then the posterior probability 
transform of the observations is given by 

lne(ck I~(x,j), x,j E ~ )  

N 2 1 
2 lnOk-- 2 m k l n N - -  ~ 

~td E ~  

+ InP(~k,  Pe I Ck) + In P(Ck) -- 1rip( z(X,j),  Xij ~ ~x ) 

-- a ( N )  + b(mk)  + 0(1),  (3.2) 

where 

a(N) -- 0 . 5 ( N  2 + N21n2~r) + InN,  

6(mk)  = (ink + 1) ln2~.  

(3.3) 

(3.4) 

P(Ck), k ffi 1, 2 . . . .  r are the prior probabilities of the classes, and  ~k and Pk have 
been defined in (2.6) and (2.7). 

Proof This follows from Theorem 2 and Bayes' rule, 

e(cklz(a,j), x,j e an) = 
p(~(x,j),x,j ~ e~ICk)P( Ck) 
/, 

Y, p(z(x,A, x,j ~ e~lc.)P(c,) 
n = l  

(3.5) 

Decision Rules 

Consider a 0-1  loss function L which assigns unit cost to a wrong assignment of 
classes and zero cost otherwise, i.e., 

L ( C ~ , d ( y ( s ) , s  ~ f~,) = Cj) ~- O if Ci= Cj, 

-- 1 if C t ~ Cj. (3.6) 

Since the finite Fourier transformation is one to one, the cost of wrong assign- 
ment  of the observation set {y(s) ,s  ~ s is the same as the cost of wrong 
assignment of the set {z(Xu), ~,~j ~ f~x). Our intention is to choose the decision rule 



R A N D O M FIELD MODELS 311 

to minimize the risk function 

g 

+(d) = X P(c ) f 
k ~ l  

xp(z(X,j), x,j e ax IC,) a 14x,j), x,j e a~ I. 

Substituting the loss function in (3.6), we have 

= C.)= f P(C I4X,j),X,jea ) 
k=l  
k ~n  

X p( z(X,j),X,j e ax)dlz(Xu) ,X o e axl 

(3.7) 

(3.8) 

and the optimal decision rule is 

d*(z(X,j),X,~eax)-- argmax(e(C.l~(X,j),Xueax) }. (3.9) 

Substituting the 
simplifying we get the following rule: 

Choose class Ck. if 

k* = arg{ n~s {h,,(z(Xij),Xo~ ax} }, 

where 

posterior probability function from Theorem 3 in (3.9) and 

(3.10) 

N 2 h.(4 X,j), X,j e e~) = - - s  + m . l ~ N  ~ 

+1_ E lnlH,(exp(V--~X,j),~.)=+m, h~2~ 
2 hij ~ x  

- lnp(0 ,  lCn) - lne(C~)  + b(m,),  (3.11) 

where {~ = (~T, ~n)r is given by (2.6) and (2.7), and b(m,) is given by (3.4). 
Comments. (1) The decision statistics in Eq. (3.1 l) involve prior probabilities of 

the hypotheses, P(C/), i -- 1, 2 , . . . ,  r and the probability density functions, p (1~, [ C n). 
For simplicity, we assume (P(Cn) = 1/r, n = 1,2 . . . . .  r. 

(2) The  quantities ~, and q~n are computed using Eqs. (2.6) and (2.7),p(0.1C.) is 
computable for any known regular structure of the density function and b(m,) is 
computable using (3.4). 

(3) For  large values of N, the contribution due to b(m,) can be ignored. 

Simplified Decision Rules 

The decision rule given in (3.12) involves arbitrary quantities such as prior 
probability densities. Hence we suggest a decision rule in which the prior densities 
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are suppressed. The decision rule no longer minimizes the average probability of 
error but can be shown to be asymptotically consistent using a proof similar to one 
found in [19]. 

The simplified decision rule is: 
Choose class k* if 

where 

(3.12) 

g,,(z(Ai.i),A,j ~ fl~,) = N2in~,, + 2m, lnN 

+ 
hO ~f~ x 

(3.13) 

Equation (3.11) can be written as 

g.(z(Xt/),Xi~' E ~ x ) - - N ~ l n o  * + 2m,,lnN, (3.14) 

where 

l X 

The structure of the decision rule in (3.14) is characteristic of the Bayesian 
approach [15, 19-20]. 

4. PROPERTIES OF THE DECISION RULE 

Asymptotic consistency. One of the important properties of a decision rule is the 
consistency property. A decision rule is said to be asymptotically consistent if the 
probability of choosing an incorrect model given the correct model goes to zero as 
the number of observations goes to infinity. We do not given an explicit proof for 
the consistency of the decision rule suggested in the previous section. A proof 
similar to that ill [19] can be given to establish asymptotic consistency of the 
decision rule. 

Generality. The theory developed here is valid for autoregressive spatial models. 
The theory can be easily extended to include moving average and autoregressive 
moving average models. 

Parsimony. The expression for the decision function gk(z(Ao), ),;j E f~X) brings 
out the disadvantage of having too large a value for mk. If we increase ink, then p* 
decreases, causing a decrease in lap*. Thus N2lap7 and 2mklnN balance each 
other. This illustrates the desirability of keeping the unknown parameters to a 
minimum. 

Transitivity. The decisions regarding pairwise comparison of the classes are 
transitive. This is because the decision function gk(z(Aij),hq E f~x) does not 
depend on any parameter outside class C k. 
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5. SPECIAL CASES (ONE-SIDED RANDOM FIELD MODELS) 

In this section we apply the general theory developed in the previous section to 
the random fields represented by one-sided models. For a weakly stationary 
process we have [18] 

lnp ~--L1 f2 LU~ 4rr 2 ,~ Sy(h; ~, p) dX. (5.1) 

Using the relation connecting the transfer functions and the spectral density we 
have 

r ~r 2 

f= f~ In H(exp(VL--i ,X),c/,) 2dh. (5.3) = lnp - 4~r2 j_~rj_~r 

Hence we have 

,rr r 2 

f'  f_' in n(exp(V--~ X), r dX=0. (5.4) 

Approximating the double integration by double summation, (5.4) reduces to 

X In [1H(exp(V-Z-T h q), ~) [12---0. (5.5) 

Using (5.5), the decision rule for these models is: 
Choose k* if 

k* = arg(min(g , ( z (~q) ,Xq~  fix)), (5.6) 

where 

g,(,(x,j),xq ~ nx) = u21n~. + 2m, t~N. (5.7) 

Thus the main difference between the test statistic for the one-sided and the 
neighborhood models is due to the term 

In H. (exp(V'-Z-T h q), ~n ) 2 . 
Aq ~ x  

6. DISCUSSION 

We discuss the relevance of the theory developed here for applications in image 
modeling and texture characterization. 

One of the main goals of any model building scheme is to develop appropriate 
representations for the given data. It is known that even for the comparatively less 
complicated autoregressive time series models, an appropriate model should be 
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used for good results in prediction and forecasting. Hence for the more com- 
plicated case of a stationary random field, the importance of choosing an ap- 
propriate neighborhood need not be overemphasized. Initially one often appeals to 
the physics of the process to choose the structure of the model. In applications like 
image modeling, where one deals with two-dimensional data, it is difficult to 
visualize the physics of the underlying random field. 

Several approaches have been suggested in the literature for choosing the 
appropriate neighborhood for stationary random fields. The classical hypothesis 
testing approach has been suggested by Whittle [12] to choose between different 
neighborhoods. By approximating the Jacobian of the transformations Whittle 
obtains an approximate expression for the likelihood of observations of a random 
field. Likelihood ratio tests and significance levels have been used to identify a 
neighborhood. Whittle's procedure becomes very complicated when models other 
than autoregression are considered. Even for autoregressive models, the evaluation 
of the Jacobian is a nontrivial task. Also, the decision rules using pairwise 
hypothesis tests are not consistent and transitive. Ladmore [14] has reconsidered 
the problem of inference of random fields using a spectral representation and the 
AIC criterion. However, even in the case of one-dimensional autoregressive mod- 
els, the AIC criterion does not yield consistent decision rules [15]. Hence, it is not 
desirable to use the AIC criterion for the choice of neighborhood in a random field 
model. 

The application of random field models in image processing and texture char- 
acterization has been considered only recently. Tou et al. [10] have used two- 
dimensional unilateral models for texture characterization. The neighborhood has 
been chosen using empirical autocorrelation functions. Neighborhood models have 
been used for image coding and restoration problems in [3, 5, 6]. The models 
considered are generally isotropic and no precise model identification schemes 
have been suggested. Akaike's FPE criterion has been used in [6-7] for the choice 
of appropriate neighborhood. Instead of using a truly two-dimensional procedure, 
the dependence along rows and columns has been determined independently. Also, 
least-square estimates, which are not consistent estimates of the parameters, have 
been used. We believe that in the absence of any consistent neighborhood selection 
rule for a stationary random field, the theory developed in this paper is relevant for 
image modeling, texture characterization, and the much broader problem of 
statistical inference of a stationary random field. 

APPENDIX I 

We prove Theorem 2. 
Consider Eq. (2.9) repeated below: 

- 2 ln2~'O - 2 x ,  ~ 

(1) 
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or letting Or--- (~/r, O) 

p( 4X,j), x,: e a~l o) -- (1/2rr) exp - ~ - G ( , ,  p) , (2) 

where 

1 In H(exp(X/-Z"]" ) tU) , , )  2 
N ~,tj e~x 

71 1 X 114x,j)ll H(exp(X/-Z'-i - h , j ) , *  . (3) 
+ ~ p  h U E~x 

To compute/,(z(Au),  Xtj E fax) we integrate p(z(Aaj), 2%j E fax[0 ) over 0 by using 
a prior probability density 0(0): 

p(~(x,,), x,, E fax) =fp(,(X,,),x,j~axlO)p(O)dO. (4) 

Substituting (2) in (4) we have 

p(z(X,j),X,jes exp a(O) p(O)dO. (5) 

Expanding a(O) in Taylor's series in O about O = 0, where 

6 = max ~ ( o ) ,  
o 

we have 

Since 

LHS of (5) = f exp  a (# )  + [vo~(o)],~. a(o - ~) 

+ (o  - 6 ) ~  v~ ,~a(O) lo .~ (o  - ~ )  + - . .  ]r(O)dO. (6) 

G(O) = lnp(z(ht j ) ,  hij E f~x 10) + const (independent of 0). 

is the maximum likelihood estimate of O defined in Eq. (2.6) and (2.7). 
By using the definition of 0 the linear term in the exponent vanishes. Thus the 

LHS of (6) reduces to 

fe"P[ ( I ]  - -  0. ,  +. 
[ 1 ~m/2 [ N 2 _ + 

1 
x + O O / N  ). (8) 
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Observing that 

I ] G(O)  = - l n ~ +  ( 1 / N  z) ~ InllH(expX, FZ 1 X o ( i + j ) , ~ ) l [  2"+" 1 
Aq ~f~x 

and 

and defining 

) 1 / 2  - -  O ( 1 )  (de t [  V~,0j(G(O)) ] , .  ~ ,  

a ( N )  -- 0 .5(N2 + N21n2~r)  + InN ,  

b ( m )  = (m  + 1)ln2~r 

we arrive at Theorem 2. 

A P P E N D I X  II 

LEMMA. The dacobian of the transformation from the observation set (y (s ) ,  s ~ ~ )  
to the finite Fourier transform ( z (Xo) ,A 0 E ~x)  is uniO,. 

Proof. For  simplicity, we consider a 4 • 4 case. We have 

g(~ij)  = ( m )  - I  2 exp( -ff~- 1Xo( is  l+ j sa ) ) y ( s l , s2 ) .  
s~f~a 

For a 4 • 4 case, N = 4, 

and 

In matrix notation,  

f~s = ( i , j  ) 1 < i , j  < 4 

' 4 ' l < i , j < 4  

z ~ JW, 

where z and Y are vectors of finite Fourier  t ransforms and observations a r ranged  
in lexicographic order. The  matr ix  J (16 • 16) can be writ ten as 

I A 

e - ' V " ~ ( ~ / 2 )  A 
J 

(1 /4)  / e -  v-'-7 (2 ~'/2)A 
/ 

L e - ~ (3~'/2)A 

e - V'~(,r/2) A 

e - ~ (3"/2)A 

e - ~ (" /2 )A  

e - ~ (3#/2)A 

e - v'-27 (2 ,,/2) A 

e - V-z7 oq2)A 

e - v'-~7 2'~A 

e - v ~  O,~/2)A 

e - ~ (3'r/2)A 

e - V'z7 (3~/2) A 

e - ~ (3~'/2)A 

e - ~ ( 3" /2 )A  
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where 

A = 

e _ ~ - T , ,  e-V'~-ic3w/2) e_~'L-i '2~ e - ' , / ~ ( , ~ / 2 )  ] 

e - ~ (3,r/2) e - V-sT (,,/2) e - x/zT (3~r/2) e - V ' ~  (,,/2) / 

e _ V'-ST 2~r e - V'-si (3 ~r/2) e _ V-'Z'T ~r e _ V'z"i (~r/2) [ 

e - v ~  ( ~ / 2 )  e - ~ ( , , / 2 )  e - V - ~  (~r/2) e - ~ ( ,r /2)  j 

Using Kronecker product notation, 

J---B XA 

where 

B = e - ~ (2w/2)A. 

Hence 

det B --- det A. 

From a theorem regarding the characteristic roots of Kronecker products [21] the 
characteristic roots of A • B are atb/, where ai are the characteristic roots of A and 
b~ are the characteristic roots of B. Hence, 

d e t J  = (1 /4)  16 

= 1  

by direct evaluation of det A. 

I~ aibj-- (1/4)16(detA)4(detB) ' 
I <i , j<4 
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