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Abstract

Action recognition is an important computer vision

problem that has many applications including video in-

dexing and retrieval, event detection, and video summa-

rization. In this paper, we propose to apply the Fisher

kernel paradigm to action recognition. The Fisher ker-

nel framework combines the strengths of generative and

discriminative models. In this approach, given the tra-

jectories extracted from a video and a generative Gaus-

sian Mixture Model (GMM), we use the Fisher Kernel

method to describe how much the GMM parameters are

modified to best fit the video trajectories. We experiment

in using the Fisher Kernel vector to create the video rep-

resentation and to train an SVM classifier. We further

extend our framework to select the most discriminative

trajectories using a novel MIL-KNN framework. We

compare the performance of our approach to the cur-

rent state-of-the-art bag-of-features (BOF) approach on

two benchmark datasets. Experimental results show

that our proposed approach outperforms the state-of-

the-art method [8] and that the selected discriminative

trajectories are descriptive of the action class.

1 Introduction

Human action recognition and classification is a very

challenging computer vision problem due to subject dif-

ferences, cluttered background, occlusion, or appear-

ance variation. The same action performed by two dif-

ferent persons may look completely different. One of

the popular approaches to action classification in videos

is to represent the videos using bag-of-feature (BOF)

histograms and to classify the videos using non-linear

Support Vector Machines (SVM). This approach starts

by extracting descriptors from the videos and clustering

them to form visual word clusters that define the vo-

cabulary. A video is then represented as a histogram of

visual word occurrences.

In this paper, we go beyond the traditional BOF

framework and propose to represent videos using

fisher kernel vectors. The Fisher kernel paradigm has

been shown excellent performance in image classifi-

cation [5], detecting protein homologies [4], speech

recognition, handwriting recognition [6], etc. However,

to the best of our knowledge, it has yet to be applied

to the field of action recognition in videos. The Fisher

kernel framework combines the advantages of gener-

ative and discriminative models. The BOF approach

suffers from high dimensionality of the feature vectors

thus leading to high computation needed in forming the

vocabulary. The Fisher kernel framework solves this

problem by representing the vocabulary using Gaussian

Mixture Models (GMM) where each Gaussian repre-

sents a word in the vocabulary. However, unlike the

BOF approach that merely assigns descriptors to the

nearest visual word, the Fisher kernel approach retains

information about the fitting error of the best visual

word by computing the gradient vector of the descrip-

tors. Due to the additional fitting error information, a

smaller number of Gaussians, i.e., smaller vocabulary

size is usually sufficient to represent the videos. An-

other advantage of using the Fisher kernel framework

is that it transforms data that are of variable size into a

fixed length vector where the size of the vector is depen-

dent on the number of parameters in the model. In con-

trast to most existing action recognition methods that

use interest points to extract features from videos, we

extract dense motion trajectories [8] from videos and

use these trajectories to train the GMM and extract the

Fisher kernel features.

Extracting dense trajectories from video creates an

ambiguity in deciding which trajectories are important

in describing the action present in the video. To over-

come this ambiguity, we use a multi-instance learning

(MIL) based approach. Instead of using singleton tra-

jectory samples, MIL analyzes groups of trajectories

describing a single video (i.e. video bags). A video

bag is labeled as positive if at least one of the trajec-

tory instances is positive, and negative if all instances

are negative. MIL learns which instances (trajectories)
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in the positive bags are positive (action trajectories). In-

stances with high confidence scores are selected to be

discriminative trajectories that best represent the video.

To counteract noise in the training samples, Berg et

al. [9] proposed a hybrid of the nearest neighbor clas-

sification method and support vector machines (SVM-

KNN) for the task of multi-class image classification.

Inspired by this work, we extend the method to com-

bine nearest neighbor classification methods and mul-

tiple instance learning (MIL). We propose to train an

MIL based SVM using the collection of nearest neigh-

bors (MIL-KNN), where every video is represented as a

bag of trajectories. Using this framework, we select the

discriminative trajectories in a video sample.

2 Video Representation

Our framework is general and can be applied to any

video descriptor including interest point based descrip-

tors. For our purposes, we adopt trajectory-based rep-

resentation as we believe trajectories contain more dis-

criminative information on motion and action in videos.

2.1 Trajectory-based representation

Trajectories are efficient in capturing object motions

and actions in videos. In our experiments, we use dense

trajectories that are obtained by tracking densely sam-

pled points using optical flow fields [8]. Feature points

are sampled along a dense grid and are tracked for a

fixed number of frames. Trajectories are formed by con-

catenating tracked feature points in frame sequences.

The shape of the trajectories, which essentially de-

scribe the motion in the videos, is described by the

sequence of their displacement vectors. The sequence

is further normalized by the sum of the magnitudes of

the displacement vectors. In addition to the shape of

the trajectory, the trajectories are further described us-

ing descriptors computed within the space-time volume

around each trajectories [8]. The descriptors include

HOG (histogram of oriented gradients) [2], which de-

scribes the appearance in the volume, HOF (Histogram

of optical flow), which describes the local motion infor-

mation within the trajectory volume, and MBH (motion

boundary histogram) [3], which describes the relative

motion between pixels. The final trajectory descriptor

is a concatenation of the shape, HOG, HOG, and MBH

descriptor vectors.

2.2 Fisher Kernel Framework for Trajectories

Given a training set of videos belonging to multiple

classes of actions, we aim to learn a classifier that ac-

curately discriminates between the action classes. Each

video is composed of a different number of trajectory

descriptors. In this sense, each video can be viewed as

a bag of trajectories. In this paper, we propose to ap-

ply the Fisher kernel paradigm [4] to represents bags of

trajectories in the training set. To do this, we require

a universal, parametric probability distribution that de-

scribes the trajectories in the training set. We choose

this distribution to be a (generative) Gaussian Mixture

Model (GMM) on the trajectory descriptors. From this

GMM, Fisher kernel features can be extracted for each

video and a (discriminative) Support Vector Machine

(SVM) can be learned in a supervised manner.

We denote video X = {xt, t = 1 . . . T}, where

xt is a D-dimension trajectory descriptor vector and T

the number of trajectories in the video. Let λ be the

set GMM parameters such that λ = {wi, µi,Σi, ∀i =
1 . . . N}, where N represents the number of Gaussian

components and wi, µi, and
∑

i denote the weight,

mean vector, and covariance matrix of the ith Gaussian

in the mixture respectively.

In the Fisher kernel framework, X is described by

the gradient vector ∇λ log p(X|λ). The basic notion

behind the Fisher kernel principle is that the gradi-

ent vector of the log-likelihood describes the fitting

error of the model parameters in describing the data

and provides information on the direction in which the

model (GMM) parameters need to be modified to best

fit the data. We define L(X|λ) as the log-likelihood of

X with respect to the GMM with parameter λ where

L(X|λ) = log p(X|λ) =
∑T

t=1 log p(xt|λ). Here,

the likelihood that xt is generated by the GMM is

p(xt|λ) =
∑N

t=1 wipi(xt|λ), where

pi(x|λ) =
exp

(

− 1
2 (x− µi)

TΣ−1
i (x− µi)

)

(2π)D/2|
∑

i |
1/2

. (1)

The probability that xt is generated by Gaussian

component i is denoted as γ(i) where

γ(i) =
wipi(xt|λ)

∑N
j=1 wjpj(xt|λ)

. (2)

In Eq. (3), we calculate the elements of the Fisher

kernel vector of X , where a
d denotes the dth compo-

nent of vector a. For simplicity, we take the covariance

matrices of the GMM to be diagonal.
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(σd
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σd
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(3)

The final Fisher kernel vector of X is the concatena-

tion of the partial derivatives with respect to the mean

and standard deviation parameters. Given that D is the

dimension of the trajectory descriptor vectors and N

the number of Gaussian components, the size of the

gradient vector is thus 2DN . In our implementation,
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the values of D and N are in the order of 100, hence

the dimensionality of the gradient vector is in the order

of 10, 000 . This high-dimensional vector contains dis-

criminative information used to train an SVM classifier.

Next, we give a summary of our Fisher Kernel clas-

sification method, denoted as FK-SVM. Given a train-

ing set, we extract dense trajectories from the training

videos. We describe trajectories in each video using the

descriptors mentioned above. We further reduce the di-

mensionality of the feature vectors using PCA. These

features are then used to train a universal GMM. Then,

we compute the gradient vector of every training video

with respect to the GMM parameters. These Fisher ker-

nel vectors are then used to train a non-linear SVM

classifier. Given a new test sample, we compute the

Fisher kernel vector of the test sample with respect to

the trained GMM model. This vector is then classified

by the learned classifier.

2.3 Discriminative Trajectories

We extend our FK-SVM framework to perform tra-

jectory selection and find the most discriminative trajec-

tories in a video sample. To do this, we train a Multi-

ple Instance Learning (MIL) based Support Vector Ma-

chine using only the nearest neighbors of a video sam-

ple. We denote this approach as FK-MIL-KNN. Given

a new test video, we compute its Fisher kernel vector,

which is used to find its K-nearest neighbors in the

training videos. Only these K training samples are used

to classify the test sample. If the K nearest neighbors

of the test sample have all the same action label, the

test sample is given the same label. Otherwise, we train

a binary MIL for every action present in the K train-

ing samples. Every video is a bag and the trajectories

extracted from the video are instances of the bag. The

bags are labeled positive or negative depending on the

action model being trained. The given test sample is

labeled according to the action model with the highest

bag accuracy. The MIL approach allows us to find the

discriminative instances (trajectories) in a bag (video).

We select those trajectory instances that are labeled as

positive and have high instance confidence score. We

observe that these discriminative trajectories hold se-

mantic meaning for each action class. In fact, these

learned trajectories can be used to build more sophis-

ticated discriminative action models; however, we leave

this for future work.

3 Experimental Results

In this section, we validate the performance of our

proposed framework by applying it to two action recog-

nition benchmark datasets: Weizmann [1] and KTH [7].

The first dataset contain actions performed in front of a

uniform background using static camera, while the sec-

ond dataset is more challenging due to some change

in scale and background. The Weizmann dataset [1]

contains 90 video clips showing nine different peo-

ple performing ten actions including running, walk-

ing, skipping, jumping-jack, jumping-forward-on-two-

legs, jumping-in-place-on-two-legs, galloping- side-

ways, waving-two-hands, waving-one-hand and bend-

ing. The KTH dataset [7] contains six types of human

actions: boxing, handclapping, handwaving, jogging,

running, and walking. Each human action is performed

several times by 25 subjects in four different scenarios:

outdoors, outdoors with scale variation, outdoors with

different clothes, and indoors.

To extract the trajectories from the video samples,

we used the original dense trajectories source code [8].

We experimented with different trajectory lengths and

sampling set size. Short trajectory length is preferrable

as short trajectories are better at representing repeti-

tive movements such as boxing or handwaving. We re-

port on experiments performed using trajectory length

to L = 15 and dense sampling step size W = 10.

We used the default parameters to compute the descrip-

tors (HOG, HOF, and MBH), the parameters were set as

N = 32, nσ = 2, nτ = 3. We randomly sampled 100
trajectories per video clip.

We systematically evaluated our trajectory represen-

tation with a set of experiments. We first tested our FK-

SVM method on the Weizmann dataset. The Weizmann

dataset was filmed in a controlled environment. Using

a leave-one-out setup, our FK-SVM method achieved

100% classification accuracy on this dataset.

Next, we compared the performance of our FK-SVM

method to the BOF method [8]. Wang et al. [8] ex-

tracted dense trajectories from every video sample and

used a standard bag-of-features approach to construct

the video descriptors. They randomly selected a sub-

set of the training features where for each feature type

(trajectory shape, HOG, HOF, MBH), they constructed

a codebook. The number of visual words per descrip-

tor was set to 4000. The histograms of visual word oc-

curences are used as video descriptors. The descriptors

were then used to train a non-linear SVM classifier. In

fact, the BOF approach is a special case of the Fisher

Kernel approach where only the gradient with respect

to the weight parameters are considered. In our FK-

SVM method, we take the derivatives with respect to

the means and standard deviations, thus expanding the

BOF descriptor to a higher dimensional vector. For our

experiments, we used 100 Gaussian components when

training our GMM. The classification accuracy for the

two datasets are presented in Table 3. The KTH dataset

is more challenging as the videos were taken at var-

ied scales and backgrounds. The results show that our

method is comparable or in some cases better than the

BOF method. However, our approach reduces training
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Weizmann KTH

KLT-BOF-SVM [8] - 93.4

DT-BOF-SVM [8] - 94.2

KLT-FK-SVM 95.3 91.20

DT-FK-SVM 100 95.37

Table 1. Classification accuracy of the BOF (DT-

BOF-SVM and KLT-BOF-SVM) and proposed

Fisher Kernel (DT-FK-SVM and KLT-FK-SVM)

approaches on KLT and dense (DT) trajectories

computational time. Even though the videos are char-

acterized with high-dimensional vectors, small num-

ber of Gaussian components are needed during training

time. The results also show that using dense trajecto-

ries to construct the descriptor achieves better classifi-

cation accuracy than using KLT trajectories. This result

agrees with the results in [8] confirming that trajectories

obtained by the KLT tracker are often too sparse.

Next, we extended the FK-framework to perform tra-

jectory selection. We classified the test video samples

using the FK-MIL-KNN framework. Each sampled tra-

jectory is treated as an instance and all instances from a

video sample form a bag. As mentioned in the previous

section, all instances in a non-action bag are negative

samples, while only some instances in the action bags

are positive. From the positive samples, we can identify

which are the interesting and discriminative trajectories.

We select the top K = 5 trajectories from the FK-KNN-

MIL classification results. The trajectories are sorted

based on the classifier’s confidence score for a partic-

ular instance in a bag. Figure 1 and 2 show examples

of the top 5 trajectories for videos in the Weizmann and

KTH datasets respectively. The results show that the

discriminative trajectories accurately describe the mo-

tion in the action class.

4 Conclusion
In this paper, we propose to use Fisher Kernel to rep-

resent trajectory motion in video. We further extend our

framework by selecting the most discriminative trajec-

tories to describe the actions in the video. Experimen-

tal result on action recognition datasets show that our

method is comparable to existing BOF methods. The

selected discriminative trajectories can be used to as-

sist as instance prototypes in multiple instance learning

frameworks and to reduce noise in training data when

classifying action videos.
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