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ABSTRACT

An alternative to scalable predictive coding of first order
Gauss-Markov processes is proposed in this paper. It is
shown that conventional scalable predictive coding is in-
herently suboptimal. An alternative to scalable predictive
coding, which achieves the rate-distortion performance of
predictive coding for first-order Gauss-Markov processes is
then proposed. The proposed approach is posed as a vari-
ant of the well-known Wyner-Ziv problem. By using coset
codes with nested lattices, the present paper proves that the
proposed approach achieves the predictive coding bound
asymptotically at ail scales while simultaneously providing
the functionality of scalable coding.

1. INTRODUCTION

Predictive coding is a commonly used technique for effi-
cient removal of temporal redundancy in video and audio
compression systems. In the case of video, the alternative
for removal of temporal redundancy is the use of 3D sub-
band coding. However, 3D subband coding suffers from
poor compression, introduces artifacts in the reconstructed
video, requires high computation and has significant latency
(due to the large number of video frames that need to be ac-
cumulated before compression). Owing to these drawbacks.
predictive coding remains the most viable means of remov-
ing temporal redundancy from video streams.

In addition to removal of redundancy, layered coding
(also called scalable coding) is an important requirement of
any streaming system aimed at reliable coding and trans-
mission ot audio/video data over the Internet. A multime-
dia communication session over the Internet benefits from
a compressed mokiimedia stream that can be decoded at
multiple bit cates by serving users with vast variations in
their available bandwidth simultaneously. Current day im-
age compression standards such as JPEG and JPEG-2000
have options that allow the generation of an embedded rep-
resentation of the media being compressed. These standards
remove spatial redundancy in images efficiently, while al-
lowing partial decoding of the compressed stream, thus achiev-
ing scalable coding/decoding. Video compression, on the
other hand, not only requires removal of spatial redundancy,
but also temporal redundancy. As mentioned above, this is
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often accomplished by predictive coding. The problem of
video compression becomes especially difficult, if the stip-
ulation of scalable encoding/decoding is also made along
with efficient removal of temporal redundancy via predic-
tive coding. The only approach that addresses this problem
in an information theoretic setting is the work of Rose and
Regunathan [1], however, their scheme does not achieve
the rate-distortion bound. To the best of our knowledge,
there are no algorithms in literature that achieve the rate-
distortion performance of predictive coding while simulta-
necusly oftering the functionality of scalability.

The generation of a predictively encoded scalable stream
is a difficult task due to the problem of predictive mismatch.
Scalable encoding implies that each source symbol can be
reconstructed to multiple fidelities. Further, if the source
stream is predictively encoded, the reconstruction of each
source symbol is used as a predictor for future source sym-
bols. However, since there are multiple possible reconstruc-
tions of a scalably coded source symbol, there are multiple
possible predictors for future symbols. The difficulty lies in
choosing a good predictor from these multiple predictors.
In order to achieve good compression, it is desirable to use
the highest fidelity reconstruction of each source symbol as
a predictor for future symbols, however, it is not necessary
that the same predictor will be available while decoding. On
the other hand, if a low fidelity reconstruction of a source
sample is used as the predictor, this predictor will always be
available while decoding (because of the scalability prop-
erty, a low fidelity reconstruction can be obtained from a
high fidelity reconstruction). Unfortunately though, in this
case, compression efficiency is sacriticed by the use of an
inferior predictor.

[n this paper, we propose an alternative to scalable pre-
dictive coding that inherits the advantages of predictive cod-
ing, and at the same time, mitigates the multiple predictors
problem mentioned above, The key observation made is
that predictive coding can be posed as a variant of the well-
known Wyner-Ziv side-information problem (2], Section
2 introduces the problem of scalable predictive coding in
a formal way. We efaborate on the link between predic-
tive coding and the Wyner-Ziv problem in Section 3. Moti-
vated by this, we use coset-codes (which achieve the Wyner-
Ziv bound asymprotically) to design a predictive scalable
coder for first-order Gauss-Markov processes. Section 4
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proves that the proposed encoding strategy asymplotically
achieves the rate-distortion performance for predictive cod-
ing of these processes at all scales. Finally, conclusions are
presented in Section 5.

2. SCALABLE PREDICTIVE CODING

Consider the non-scalable encoding of the output of a real-
valued source with memory § = {vx}32, using one-step
predictive encoding. Given the reconstruction of source sym-
bol vz_1 (denoted Tg_1), symbol vy is encoded by gener-
ating the innovation ¢; = vg—E[vg[Tr_1], where E[] de-
notes the expectation operator. Symbeol £ is lossily com-
pressed to yield £, which is communicated to the decoder
losslessly. The decoder reconstruction of vy is given by
Ty =tx+E[vg|Bi_1]. Thus, the decoder reconstruction Tt
serves as a predictor which is used for encoding symbol ;.

Next, consider an encoder connected to multiple decoders
via proxy nodes (such as routers). Each decoder is directly
lined to a proxy node through a low-delay lossless link.
However, the available bandwidth on each link may differ
and vary with time. The proxy nodes are connected to the
encoder using a low-delay, lossless link with a large band-
width. The encoder wishes to predictively encode the pro-
cess {vy } and communicate it to the decoders such that each
decoder can utilize its available bandwidth as best as possi-
ble. In such a scenario, the non-scalable predictive encod-
ing approach mentioned above will not serve well, as each
decoder will operate at the same (fixed) bandwidth (equal
to the smallest instantancous bandwidth among all link at
the transmission instant). This would lead to under utiliza-
tion of resources. In such a scenario, it is desirable to de-
sign a system such that each decoder can decode {vy} to
the best possible fidelity, given its instantaneous bandwidth
constraint, This goal can be accomplished by using scalable
predictive coding; at time k. a decoder with large instan-
taneous bandwidth subscribes to a large number of layets
and is able to reconstruct v to a lower distortion as com-
pared to a deceder with small instantaneous bandwidth at
time k. This scenario models muiticasting to users on het-
erogeneous links over the Internet. [t also demonstrates the
tunctional advantages of layered coding. We allude to this
example as an application of layered coding throughout the
paper.

Next, consider the scalabke predictive ceding of {v}32.
for transmission over the aforementioned setup. The recon-
struction of source symbot v (denoted as T) takes one of
multiple possible values from a set Ry. For clarity, we con-
sider a two-layer reproduction of each source sample vy,
exlensions to a larger number of layers is straightforward.
Denote the base layer reconstructions of vy as ﬁz and the
enhancement layer reconstruction of vy as U5. Therefore
R, = {42,57}. If the encoder had precise knowledge of
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%y, tor each decoder, one-step predictive coding and decod-
ing could be performed identically as above. However, this
is not always the case for scenarios such as multicasting (as
mentioned above) or server based streaming of stored media
{where encoding and transmission processes are performed
independently of each other). In fact, it is straightforward
to see that if conventional predictive coding is used, the set
of possible predictors for a source symbol grows exponen-
tially with time index k. Thus, optimal predictive coding
cannot be performed in these scenarios. The proposed algo-
rithm, on the other hand, avoids the exponential growth of
predictors.

In practice, scalable predictive coding is performed as
follows: symbol vy, is encoded by generating the innovation
ti = v — E[vi}52_,]. Symbol ¢ is lossily coded to gener-
ate two layers ‘t}; and ?,i the base layer and the enhancement
layer, respectively. A coarse reconstruction of ¢ is got from
%, while a fine reconstruction of ¢ is got by adding ?‘; to
t;. The decoder reconstructs the coarse and fine descrip-
tions of vy as 5% = & + Ebefo%_,| and 7% = ¥ + 2} We
note that this encoding mechanism is inherently suboptimal
~even it 35 _, is available ar the decoder, #_, is used as the
predictor for ve. In this paper, we present an alternative to
this encoding scheme based on coset codes that asymptoti-
cally achieves the rate-distortion performance of predictive
coding.

2.1. Rate-distortion calculations

Consider the problem of predictively encoding a zero-mean
first-order Gauss-Markov process zx = pzg_1 + 2. where
Elr}] = o Elz}] = o2, p* = 1 — o3/l Theen
coder compresses £ by computing the innovation t;
xy — E[zg|Tx_1] = & — pFx—1 and compressing it tossily.
It can be shown that with a squared error distortion mea-
sure, the predictive coding rate-distortion function for this
process is given by:

a2 4p?D -
D

Rpc(D) 0< D<ol

DZO‘,i

1log
0

{1}

Next, consider a two-layer scalable predictive coding
system, as described above. Let D; denote the base layer
distortion and let Dy denote the enhancement layer distor-
tion (Da < Dq). [t can be shown that in this scenario, if
base layer decoding is performed for all =y, then the cor-
responding base-layer R-D function R*(D1) = Rpe(Dy).
If enhancement layer decoding is performed for all xy, the
R-D function is given by:

al+p*Dy

D
0

R°(D,, D) = 0< Dy < Dy <o

Dy > o2 (

3 log

2

)



Since D2 < Dy, R*(Dy, D2} > Rpc(D4). Thus, con-
ventional scalable predictive coding is inherently subopti-
mal.

3. PREDICTIVE CODING AS THE WYNER-ZIV
PROBLEM

In [2], Wyner and Ziv introduced the problem of encoding
of a continuous random variable X with correlated side-
information ¥ available only at the decoder. Consider two
continuous valued correlaied Gaussian random variables X
and Y. The decoder has knowledge of Y, but the encoder
only knows the joint statistics of X and Y. The encoder
wishes to compress X as best as it can, even though it does
not know Y. The encoder accomplishes compression of X
by leveraging the correlation between X and Y. For X, Y
jointiy Gaussian, it was shown in [2] that the rate-distortion
function for the Wyner-Ziv problem, denoted by Rw z (D),
is

2
oxi¥
D

Rwz(D) = Rxy(D) =

Llog
Q

0<D <ok
Dzo%y Q)

where 0%, is the variance of the random variable X |Y and
D is the squared error distortion measure.

Next, we show that Equations (1) and (3) are equiva-
lent. In Equation (3), if we substitute ¥ with pZr_; (Fp—y
is the reconstruction of zx_3) and X with g, crfm, =
J:uiﬁ_1 =02+ p°D. Alsa, 0 < D < 0%,y in Equa-
tion (3) implies D < 02 + p?D = D < o2/(1 - p?) =
D < 2. Making these substitutions in Equation (3), we
see that Equations (1) and (3) are the same. Thus, any code
that achieves the WZ bound for Gaussian side-information
problems, should also achieve the rate-distortion function
of a predictively coded first-order Gauss-Markov process.
Fortunately, there are codes that achieve the WZ bound for
Gaussian sources. Of course, it is not apparent what bene-
fit framing predictive coding as the WZ problem will have.
However, as we shall see, if the process {zx}32, is scalably
predictively coded using the WZ approach, it is possible to
achieve the predictive coding rate-distortion bound for both,
the base and the enhancement layers. As discussed earlier,
this is not the case if {Z,}22 | {s scalably predictively coded
using the conventional approach (as described in Section 2).

4. SCALABLE PREDICTIVE CODING USING
COSET CODES

This section describes the proposed algorithm for scalable
predictive coding. Zamir and Shamai [3] have shown that
nested lattice codes achieve the WZ bound for correlated
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Gaussian sources asymptotically. Further details of their ap-
proach can be found in [3, 4]. We modify their solution for
the problem of scalable predictive coding.

4.1. Preliminaries

The proposed coding algorithm uses nested lattices to en-
code the source process. An n-dimensional lattice A is de-
fined by a set of n basis vectors g1, ga, - - . , g in K. Each
lattice point is generated as a linear combination of these
basis vectors with integer coefficients, ie. A = {p = Ga:
a€ 2", G = [gilge] .- i8]
The nearest neighbor quantizer @(-) : B® — A is de-
fined as
Q(x) = argmin||x — p|| @
pEA
where x € R™. The basic Voronoi region V = {x : Q(x) =
0,x € R"}. The volume of the basic Voronoi cell and
its second moment are denoted by V' = [, dz and o =
7 Ji; ||z||?de, respectively. The normalized second mo-

ment of lattice A is denoted by G = 02/V"/2 [51. The*

mod A" operation on x € R™ is defined as

x mod A = x — Q(x) (5)

Thus, x mod A is the quantization error when x is quan-
tized on lattice A.

A pair of n-dimensional lattices (A1, Az) is nested if
p € Ay = p € A{. We denote a pair of nested lattices
as Az € A;. This implies that the corresponding generator
matrices Gy and G2 are related as Gy = G, J, where J
is an n x n matrix with integer entries and det (J) > 1.
For n-dimensional lattices Ay and A, with A C Ay, the
volume of the basic Voronoi cells [S] are related as Vo /V; =
det(3) = (Gqo/G)*™, where Gy, Gy are the normalized
second moments of lattices Ay, Aq, respectively.

4.2. Propoesed approach

We describe the proposed approach tor a two-layer encod-
ing system, i.e. each source sample can be decoded to two
fidelity levels. The proposed lattice coding algorithm uses
two pairs of unbounded lattices AS, Af, i = 1,2, such that
Af € R® and AY € R™. Lattices A§, A§ denote the channel-
coding lattices and lattices Af, AJ denote the source coding
lattices. Any source sample x is quantized onto Af using the
nearest neighbor quantizing functions Q#(-) + B* — Al
Simitarly, the quantization function for the channel coding
lattices Af is denoted by Q¢(-) : R* — AL The basic
Voronoi cell, volume of the basic Voronoi cell, second mo-
ment and normalized second mement of A¥ lattices are de-
tined as V{, V7, o % and G respectively, fori = 1,2, The



corresponding quantities for the channel coding lattices are
defined as V£, V7, o5 2 and G respectively, fori = 1,2.

Consider the two-layer scalable predictive coding of a
vector zero-mean first-order Gauss-Markov process xz
PXi_1 + 2 withx;, € R* and z, € B™; Efxxt] = o21,;
Elz2t] = 021, where I, denotes an n x n identity ma-
trix. Let dy and dy (such that d; > d3) denote the desired
per symbol expected squared-error distortion for layer 1 and
layer 2, respectively.

The lattice pairs (A§, Af) and (A§, A3) are chosen such
that they satisty the following properties:

LAFC AL =12

el =+d;,i=1,2

Ul 0f = /(14 p*)di + 02 +¢, i =1,2, wheree > 0
is an arbitrarily smatl number.

IV Pr{Q%(z*) # 0} < &, i = 1,2, wherez* € R™ is
zero-mean Gaussian with variance ({1 + p?)d; + o2).

V As the dimensionality of the lattices n — oo, G —

L

1 &
3re and G = 5=

to a sphere.

, i.e. the shape of V{ and Vf tends

The reader is reterred to {3, 4] tor a discussion on the
existence of such lattices.

4.2.1. Encoding algorithm

It is desired that at time k, each decoder have the choice of
decoding vector x; to one of two fidelity levels, dy or dy.
In order to accomplish this task, the encoder could simply
quantize x; onto the two lattices A and A and transmit
the index of the quantizer output to the decoder. If at time
k, the decoder had adequate bandwidth to receive Qf(xx).
it could decode x;. to distortion d) and if it had adequate
bandwidth to receive Q4(xx), it could decode x4 to distor-
tion do. However, by encoding/decoding in this manner, the
correlation between x; and Xx_y, the decoder reconstruc-
tion of x;_1, is not exploited to improve the compression
efficiency of the system. Lattices Af and A§ accomplish
this task of improving the compression efficiency.

Consider the communication of @f(xy) using the lat-
tice pair {A$,A]). [nstead of transmitting Q7 (x) to the
decoder, d} = @Qj(xx)mod Af is transmitted to the de-
coder, Because of the “mod " operation, when the decoder
receives dl, the only knowledge it has of Qf(xy) is that
Q¢{x;) is from the set C = {p +d}. : p € A{}. The de-
coder leverages its knowledge of X,_1 to ascertain which
member of € 18 Q4 (xx). Let dmin(AS) denote the small-
est distance between any two lattice points of A, A little
thought reveals that if it can be ensured that |{@§(xg) —
pRr_1|| < dmin(A$)/2, the decoder can unambiguously
decode @5(x) as the point nearest to pXj—y in the set C
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[4]. In general though, the condition ||Q¥ (x;) — pXk-1]|<
dpmin(A$)/2 cannot be ensured. However, based on typical-
ity arguments, as the dimensionality of the lattices A§ and
Af tends to oo, it can be shown that for Gaussian sources,
the above mentioned condition can be ensured with prob-
ability arbirrarily close to one. Similarly, @5(x¢) can be
communicated to the decoder by transmitting d3 = Q§{xx)
mod Aj. To facilitate switching between the two layers, a
third description d3 = @a(x; — @1(x;)) alse needs to be
generated.

Hence, the proposed enceder works as follows: the en-
coder generates three descriptions at each time step k. A
subset of these descriptions is required for decoding x to
a particular fidelity level, the elements of the subset depend
on the desired distortion to which x. is to be decoded and
the distortion to which x;_;, the predictor vector for x;, was
decoded.

The three descriptions for x;, are:

L d} = Qi(xx)mod Af
2. d} = Qa(xx)mod Aj
3. df = Qalxy — Qulxs))

At time k, each decoder requests its proxy node for a
subset of the above three descriptions generated by the en-
ceder at time k. The subset requested depends on the band-
width available on the proxy-decoder link at time & and the
fidelity to which x4 ; was decoded by the decoder.

Before describing the decoding procedures, we calcu-
late the per-symbol encoding rates R; of df, 7 = 1,2,3.
The encoding rate Ry is given by

Ry

(6)

s — 4 1) +0 (%) + G(eXT)

Equation (7) is got from Equation (6) by substituting
conditions II, 11l and ¥V for ¢ = 1. Thus, as n — oo, the
rate of transmission of d}: can be made arbitrarily close to

2 2z
iy ).
1

The calculation of R is similar to that of R;. Thus, R»
is given by

log (

1

2, .2
R, = Elog (U—w—" +pods

e . 1) ‘o (%) +LO(). )

Next, we calculate Rz. We note that Ry is the rate of
encoding the quantization error x; — @5 {xx) quantized on



lattice A3. From high resolution quantization theory, it is
known that in the limit as d; — 0, the quantization error
X, — 5(x;) tends to a uniform distribution over the ba-

sic Voronoi region V{ of lattice Af. As the dimensionality -

n of lattice A} = oo, from condition V, we note that the
shape of V! tends to a sphere. From the asymptotic Gaus-
sianity of a unitorm distribution over a sphere, we note that
X — @4 (x) tends 10 a Gaussian distribution with variance

(ef)%. Thus, Ry is given by
d
1 —).
o (dz)

af
Ry = log (a—;) =

The decoding procedures are described in the following
Section.

1

3 ©)

4.2.2. Decoding algorithm

The decoder reconstruction of symbol xy, (denoted X, ) takes
values from the set Ry, = {R2, %5}, where X% = Q¥(xy)
and X; = Q3(xx). As mentioned earlier, the subset of
descriptions that the decoder retrieves from the proxy at
time k depends on the bandwidth available on the decoder-
proxy link at time k and the decoder reconstruction of X, .
The decoder could reconstruct Xy, to distortion d; or da.
The bandwidth required tor either case depends on whether
X1 was reconstructed to d; or dy. Hence, there are four
scenarios, corresponding to the distortion to which x;, and
xj_1 are decoded. Each of these is considered individually
below.

Case [: %1 = fi_l. K = i}’g — Consider the case
when symbol xg_; was decoded to distortion dy and the
decoder wishes to reconstruct x; to dy as well. Therefore,
Xy = iz_l. In this case, the decoder requests the proxy
for symbol d}, and reconstructs X using d}, and ii_l (the
base layer reconstruction of xz—1). Symbol Xi is given by

¥ i %2_, —pll- 10
Xy arg del“ﬁ‘xk_l pll (10

PEA{+d,

As shown in [4], Equation (10) can be rewritten as

b
e = pRo_, + (X, mod A5 — g% ) mod AS (1D

= pRE_y + (X} ~ p%}_,) mod Af. (2

Conditioned on correct decoding (i.e. X ﬁz), the
expected per symbol squared distortion of X is the second
moment of the lattice Af, di. Next, we show that the prob-
ability of incorrect decoding tends to zero asymptotically,
as the dimensionality of the lattices A{ and Af — oo and
dy — 0. The probability of decoding failure is given by
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Pr(Ry # %]) = PripR}_, + (Xf — p%}_,) mod A} # 0)
= Pr((®} - p%}_,) mod A§
# (if - w’fi_l))
= Pr{Q§(X} — o%}_,) # 0}

= Pr((%] — p%}_,) ¢ V¥). (13)

In order to compute this probability, we compute the dis-
tribution of X — pX%_,. Itis noted that as d; — 0, for any
v € R, the distribution of v mod A{ tends to an inde-
pendent uniform distribution over V{. Further, as n = oo,
from condition V, V{ tends to a sphere. From the asymptotic
Gaussianity of a uniform distribution over a sphere, we note
that the distribution of v mod A? tends to a Gaussian distri-
bution with mean zero and variance dy. Another assumption
that is often made is that v med A$ is independent of v [6].
Hence, asymptotically,

Q1(xk) - pQF (x4-1)

Xy — X mod A: — PXp_1

+p{xx_1 mod A{}

%k — X; mod A] + p{Xx_1 mod Af}
N(0,0% + (1 + p)d1), (14)

X~ Py

where A (g, 02) denotes the normal distribution with mean
1 and variance o2, Let 2" ~ N(0,02 + (1 + dy)g?) Thus,
Pr((R% — p%2_,) ¢ V$) = Pr(z” ¢ V). From property LV,
Pr(z" ¢ Vf) < e. Hence, asymptotically, the probability of
error can be made arbitrarily close to 0.

Finally, consider 2 decoder which decodes {x;}22, w0
distortion dy for all k. From Equation (7), asymptotically,
as d; —+ 0. and the dimensionality of the lattices n — o0, it
is possible to achieve a per-symbol rate of transmission, B

arbitrarily close to
(2550 )

1
R= 3 log 4

Equation (15) and Equation (1) are almost the same.
The small loss in rate at small values of ”?';‘1'24‘ is due to
the eftect of setf-noise [4]. As shown by De Buda [7], a
similar loss in capacity is observed when lattice decoding is
performed on bounded lattices. Thus, in the limitasd; = 0
and n —+ o0, the proposed algorithm approaches the rare-
distertion performance of predictive coding for decoding at
layer 1.

Case I: Xy = X_,, X = X} ~ Next, consider the
case when the decoder reconstruction of the predictor vec-
tor X1 = Xj_,, (ie. the decoder reconstructs xg_y to
distortion dz), and wishes to decode x;, 1o distortion dg as
well. In this case, the decoder requests the proxy for dj.
The decoding rule, the disiortion of the reconstructed vee-
tor X;; and the proof that Pr(X, # x£) — 0 is similar to

(15)




the case when the predictor and the current symbol are de-
coded to distortion d; with quantities defined tor the lattice
pair (A{, A3) replaced by those for the lattice pair (A§, A3).
The per-symbol rate of transmisston in this case is given by
Equation (8).

We note that the asymptotic performance of a decoder
decoding at layer 2 also approaches the rate-distortion per-
formance of predictive coding. Moreover, this is simulta-
neously achieved with asymptotically optimal performance
for a decoder decoding at layer 1. [t is also noted that this
is not possible with conventional scalable predictive coding.
As mentioned in the Introduction, achieving the same per-
formance with conventional layered predictive coding re-
sults in an exponential growth in the number of predictors
with time. Ao alternative strategy to achieve the predictive
coding distortion-rate bound would be to use two indepen-
dent encoding loops operating at distortion levels d; and o).
However, if this were done, it would not be possible for a
decoder to switch between the two encoders due to the prob-
lem of predictive mismatch. As shown in Cases Il and IV
below, the proposed approach offers the decoders the option
of switching between the twa distortion levels, thus achiev-
ing scalability.

Case III: %y = R4 _,. ¥ = X5 — Next, consider the
case when a decoder had adequate bandwidth, so as to be
able to decode xj— to distortion d;, but wishes to decode
x; to distortion dz. In this case, the decoder requests the
proxy for coefficients d}, and d. It decodes x; to distor-
tion dy as shown above. It then refines X = 1?2 by adding
di to it. Thus, x; is reconstructed to distortion dy. From
Eguations (7) and (9), the transmission rate required to ac-

of+ (1+ )

complish this is
( da )

R=R + Ry = Elog

Case IV: Ry_y = Xf_,, X; = R~ Lastly, consider
the case when X,_; = x{_; (i.e. the predictor is decoded
to distortion ds) and the decoder wishes to decode x; to
distortion dy. In this case, the decoder requests the proxy
for cl}c and decodes x; in a manner similar to Equation (10),

(7

(16)

X arg min

2 —pll
pw“ﬁllp t—1 — pll

Asymptotically, Pr(X; = %) — 1, since the “distance”
of X2 _, from X is smaller than that of & _, from %t and
we have already shown that the probability of decoding er-
ror tends to zero when X5 _, is used for deceding.

To summarize, we have shown that using the proposed
approach, in the limit as d; — 0, da — 0 (Such that the
ratio dy /ds is fixed) and n — o0, the performance of the
proposed algorithm approaches the rate-distortion function
of predictively coded first-order Gauss-Markov processes.
Also, the performance of the proposed approach is superior
to that of conventional scalable predictive coding, which is
inherently suboptimal.
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5. CONCLUSIONS

[n summary, the proposed approach achieves the distortion-
rate lower bound for predictive coding, while achieving the
functionality of layered coding. We note that even though
the optimality of the proposed approach was proven using
lattices, it might be easier to build practical systems based
on the proposed idea using other approaches such as trel-
lis based approaches [8], since these have lower decoding
complexity as opposed to lattices, or training based code-
book designs, since they offer more design flexibility as
compared to lattices.

[t should be noted that the sum total of the transmission
rate from the encoder to the proxy is By + Rz + Rz per
source symbol. This is greater than the rate of transmission
for conventional scalable predictive coding. However, the
rate of ranmssion on the decoder-proxy link is reduced to
that of the rate-distorion function for predictive coding.
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