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Abstract 

 This paper is concerned with the problem of 
dynamically reconstructing the 3D surface of an object 

undergoing non-rigid motion. The problem is cast as 

reconstructing a continuous optimal 3D hyper-surface 

in 4D space-time from a set of calibrated video 
sequences. The imaging model of video cameras in 4D 

space-time is derived and a photo-inconsistency cost 

function is defined for a hyper-surface in the 4D space-

time. We use a 4D node-cut algorithm to find a global 

minimum of the cost function and obtain the 

corresponding optimal hyper-surface. Experimental 
results show that the proposed algorithm is effective in 

recovering continuously changing shapes and exhibits 

good noise resistance.  

1. Introduction 

Volumetric model representation has become a 

popular choice recently for 3D reconstruction from 

multiple view images [1]. This is because it greatly 

simplifies the correspondence problem which is 

otherwise quite complicated in the multiple view case. 

The volumetric representation also lends itself to novel 

optimization methods such as graph cut based methods 

[2, 3]. These methods can give a global optimal 

reconstruction in polynomial time. In this paper, we 

propose an extension of a graph cut based 3D 

reconstruction algorithm [3] to 4D space-time domain, 

i.e., to reconstruct a continuously changing 3D surface 

(not necessarily in rigid motion) from a set of video 

sequences captured by several fixed cameras. There are 

two major reasons that motivate this extension: 1. 

Applications such as facial motion analysis or medical 

imaging of live organs prefer that the 3D 

reconstruction be performed continuously over a 

period of time. 2. Reconstruction in 4D space-time can 

make use of the temporal coherence to help better 

regularize the solution and overcome noise. 

                                                          
 * The support of National Science Foundation under grant ECS 02-
25523 is gratefully acknowledged. 

Most of the multiple view 3D reconstruction 

algorithms deal with static scenes. Directly applying 

these algorithms to each frame of the video sequences 

is not always appropriate since the temporal constraints 

are neglected, and consequently, the reconstructed 

shape may not be continuous in time. One remedy to 

this is to treat the space and time domain uniformly 

and define a 4D reconstruction problem. Previous work 

has shown that joint use of both space and time offers 

noticeable advantages. Through analogy to the 2D 

planar motion case, Hall-Holt and Rusinkiewicz [4] 

extend structured light scanning to 4D space-time, and 

design a space-time code based on the rules used in 3D 

scanning. The method can extract the structure of a 

moving object in real time. Matheny and Goldgof [5] 

extend the spherical harmonic representation of object 

shape to 4D space-time and use it to represent object 

shape undergoing non-rigid motion. They also show 

that 4D spherical harmonics provide an improved 

model for the motion of the left ventricle of the heart. 

The 4D space-time reconstruction problem has 

received more attention in the field of medical image 

processing, where volume sequences (data already in 

4D form) such as continuous-time MRI or SPECT are 

available. Deformable models [6, 7, 8] are often used 

to segment and track the non-rigid motion of the object 

of interest. In [7], a mesh model is constructed at each 

time step and the corresponding mesh points are 

connected to enforce the temporal constraints. One of 

the problems in these methods is that the results are 

usually obtained by local optimization methods which 

require a good initial estimate. Another issue is that the 

connected mesh points do not necessarily correspond 

to any fixed points on the object and the temporal 

constraints are only of mathematical meaning. 

In this paper, we formulate the dynamic 3D surface 

reconstruction problem from calibrated video cameras 

as a hyper-surface reconstruction problem in the 4D 

space-time from video sequences (which can be 

viewed as 3D image data). This formulation naturally 

enforces the time continuity constraint. We use 4D 

node capacitated graph cut, which is an extension of 

the method used in [3] to find a globally optimal 

hyper-surface in 4D space-time that best explains the 

captured video sequences. 
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The paper is organized as follows: Section 2 

presents our formulation that converts the dynamic 3D 

surface reconstruction problem into a hyper-surface 

reconstruction problem in 4D space-time. Section 3 

describes the 4D node capacitated graph cut algorithm. 

Section 4 presents some experimental results. Section 5 

gives the conclusion.   

2. Problem Formulation 

In this section, we will formulate the dynamic 3D 

reconstruction problem as that of finding a hyper-

surface in 4D space-time that is consistent with all the 

input data. As a simpler case, we first consider a 

dynamic shape reconstruction problem in 2D space. 

2.1. Dynamic 2D shape reconstruction 

Fig. 1 The imaging of a line object moving in 
3D space-time domain 

Suppose a moving curve (line) object is confined to 

a 2D plane X-Y, as shown in Fig. 1. The object is 

imaged by fixed line cameras which are the 2D version 

of the usual pin-hole cameras in 3D space. The image 

plane of a line camera is a line in the plane, and every 

point in 2D plane can be mapped on to the line using 

projective transform. With several line cameras at 

different locations, we can reconstruct the 2D shape of 

the object using triangulation. 

Now let us consider the problem in 3D space-time 

domain. If we stack together the line images captured 

by the line cameras at each time step, we can form a 

2D video. The 2D video can be thought of as captured 

by a 2D image plane parallel to the time axis (Fig.1). 

The moving object also forms a continuous surface in 

the 3D space time. Instead of reconstructing the line 

shape in 2D at each frame, we can view the problem as 

reconstructing a continuous surface in 3D space-time 

using a set of 2D images. 

2.2 Projective Transform in 4D space-time 

Analogous to the 3D space-time, a moving surface 

of a 3D object forms a 3D hyper-surface embedded in 

4D space-time domain, and should be continuous for a 

physically plausible object. The video cameras 

continuously capture the light rays reaching their 

image planes for a period of time. Stacking these 

images (frames) together yields a 3D volume that can 

be used for 4D reconstruction. We denote the 3D 

volume by )',','( tyxI , where )','( yx  are the 

coordinates on the image plane and 't  is the local time 

of camera. The projective relationship between a point 

),,,( tzyx  in 4D and the pixel )',','( tyx  on the 3D 

image volume can be modeled as the extrinsic and 

intrinsic transform. The extrinsic transform is: 
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where f  is the focal length of the camera. 

The camera paremeters R , T  can be obtained 

through calibration. For the simplicity of following 

analysis we also assume the cameras are synchronized 

and 00 =t  for all the cameras. 

2.3. Optimal condition for the reconstruction 

We formulate the 4D space-time reconstruction 

problem as finding a continuous hyper-surface that 

optimally explains our observations. We use the same 

photo inconsistency value as proposed in [3]. For a 

point p  in 4D space-time, the photo inconsistency 

value )( pC  is defined as: 

0)()( cSstdpC += , where 

}...1,)(|)({ njqpqIS jjjj === π            (3) 

and 
jπ  is the projective transform from 4D space-time 

to the j
th

 observed image volume, 
0c  is a small positive 

constant value (to avoid zero capacitated nodes in the 

construction of graph cut algorithm given in section 3) 

and )(•std  is the standard deviation of a set of 

intensity values. We assume the object has a 

lambertian surface. If there is no occlusion, the photo 

inconsistency value reaches minimal when a point is 

on the true hyper-surface. An optimal hyper-surface Γ
should therefore minimize the sum of )( pC  on the 

t

x

y

Curve object 

with non-

rigid motion 

Line camera 

2D Image 

plane of the 

line camera 

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04) 
1051-4651/04 $ 20.00 IEEE 



surface, i.e., minimize the cost function: 

Γ∈

=Γ
p

dSpC )(minarg                       (4) 

3. 4D Node Capacitated Graph Cut 

Fig. 2  4D connectivity of the grid points 
To solve the minimization problem in (4), we first 

discretize the 4D space-time using a 4D grid. We 

propose to use 4D node capacitated graph cut (4D 

node-cut), which is an extension of the 3D node-cut 

proposed in [3], to find the global minimum. A node-
capacitated graph is constructed whose nodes are grid 

points in the 4D space-time. Each node connects to its 

neighboring points via 8 edges (Fig. 2). The weight of 

each node is its photo inconsistency value )( pC .

We assume that the object shape in 3D space can be 

represented by a depth image, where z is the depth 

direction. The object shape in 4D can be expressed as: 

),,( tyxDz =                              (5) 

Suppose the object depth remains confined to a given 

range, i.e., ],[ 21 zzz ∈ . We can then treat those nodes 

at
1zz =  as forming the S (source) plane, and the 

nodes at 
2zz =  as forming the T (target) plane (Fig. 3), 

and use S-T minimum cut algorithm to find a sub-

graph with minimum sum of weights such that by 

removing this sub-graph, the original graph will be 
divided into two disconnected parts, each of which 

contains either S-plane or T-plane. 

Fig. 3  The S and T planes in the 4D graph 
This S-T node capacitated graph cut problem can be 

converted to edge capacitated graph cut problem and 

solved efficiently [3]. In order to disconnect S-plane 

from T-plane, each point ),,( tyx  in the depth image 

will have at least one corresponding node in the 

separating sub-graph. The z value of the corresponding 

node is the estimated depth for the point. If there are 
more than one corresponding nodes, we use the 

average z value of these nodes. 

4. Experimental Results 

We tested our 4D node-cut algorithm on two 

synthetic data sets. Synthetic data with known ground 
truth was used to allow quantitative evaluation of the 

reconstruction. The Wave data set consists of four 

image sequences (each containing 10 frames) of a 

wave surface viewed from four different cameras 

positioned as a 2x2 rig. The wave surface is 

propagating outward and there is a moving shadow 
caused by a rod moving across the light source. The 6th

frame of the top left camera is shown in Fig. 4 (a). The 

corresponding reconstruction at the time of frame 6 

using 3D node-cut (Fig. 4(b)) and using 4D node-cut 

on the entire sequence (Fig. 4(c)) are also shown. The 

Root Mean Square Error (RMSE) of the reconstructed 
depth at each frame is shown in Fig. 6(a). The error of 

the quantized version of the ground truth, which is the 

best possible depth representation using the same 

volume grid, is also shown for comparison. In the 

sequence, the moving shadow appears from frame 4 to 
frame 8. The dark shadow in the image creates a 

featureless area and thus a low )( pC  (ambiguous) 

neighborhood in the 3D volume. The normal 3D node-
cut algorithm fails in this case. However, by taking the 

time continuity into account, 4D node-cut algorithm 

finds a global optimal sequence of surfaces directly in 

the 4D space, thus alleviating the ambiguity problem. 

The Morphing Head data set consists of three image 

sequences (each containing 8 frames) of a human head 
model morphing from one expression to another. A flat 

gray moving patch is added to occlude the 3D model in 

frame 4 and 5 (Fig. 5(a) shows two of the three views 

at frame 5). Since the patch is outside the 3D 

reconstruction volume, it should be considered as noise 

and removed. The reconstruction results for both 4D 
node-cut on these sequences and 3D node-cut on each 

frame set are shown in Fig. 5(b). 3D node-cut creates a 

noticeable artifact on the nose of the face, while 4D 

node-cut gives a much better result. In Fig. 6(b), the 

RMSE of the estimated depth also shows that 4D node-

cut gives a lower error in the presence of occlusion. 

5. Conclusion 

We have formulated the dynamic 3D shape 

reconstruction problem as hyper-surface reconstruction 

in 4D space-time and proposed to use 4D node-cut 
algorithm to find the optimal solution. The 

experimental results show that 4D space-time node-cut 

algorithm exhibits better noise resistance than 

reconstruction methods that work solely in space 

domain. 

S plane t1 t2

T plane 

…

t1 t2 t3

…

Edges between 

frames t1, t2
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(a)                                                  (b)                                                   (c) 
Fig. 4 (a) Frame 6 of one input sequence in the Wave data set. (b) The reconstruction by 3D node-

cut at frame 6. (c) The reconstruction for frame 6 by 4D node-cut over the entire data set. 

(a)                                                                            (b) 
Fig. 5 (a) Two images corresponding to frame 5 in Morphing Head data set. (b) The reconstructed 

surface by 4D node-cut (left) and 3D node-cut (middle) compared with ground truth (right) 
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(a)                                                                      (b) 
Fig. 6 RMSE of the estimated depth for Wave data set (a) and Morphing Head data set (b)
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