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Abstract

R ecently, various non-liner te chniques for sgmen-
tation have been proposed based on non-parametric
density estimation. These appr oachesmodel image
data as clusters of pizels in the combined range-
domain space, using kernel based techniques to rep-
resent the underlying, multi-modal Probability Den-
sity Function (PDF). In Mean-shift based segmenta-
tion, pizel clusters or image segments are identified
with unique modes of the multi-modal PDF by map-
ping e ach pizel to a mde using a convergent, iter ative
process. The advantages of such appr oachesinclude
flexible modeling of the image and noise processes and
conse quent obustness in segmentation. A n imprtant
issue is the automatic selection of scale parameters -
a problem far from satisfactorily addr essed. In this
paper, we prop ose a regression-based model which ad-
mits a realistic fr amework to ch@se sc ale p aameters.
Results on real images are presente d.

1 Introduction

A popular segmentation framework is to model im-
age data as clusters of pixels in the combined range-
domain space [1, 3]. If the image pixels are as-
sumed to be dra wnindependently from an underly-
ing multi-modal probability densit yfunction (PDF)
and different modes of the PDF are iden tified with
different segments, the segmentation algorithm would
just need to iden tify eac h pixel with ainique mode.
Mean-shift procedure (proposed by Fukunaga [5]) it-
erativ ely shifts eah pixel to it’s respective mode. In
[3], Comaniciu and Meer analyzed the properties of
the mean-shift algorithm and proved its convergence
for a specific class of kernels (that includes the Gaus-
sian and Epanechnikov kernels). The algorithm is non-
linear but simple, fast and gives visually good results.
Due to the underlying flexible model, it can be applied
to a v ariet y of images and noise processes.

Our paper is based on tw orelated observations:
Firstly ,the knowledge that images are functions de-
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fined on the spatial domain is not used by Comaniciu
and Meer [3]. Secondly, an automatic and appropriate
choice of scale parameters is a problem that is far from
satisfactorily addressed. We propose to address both
the problems by modeling the image in the w avelet
domain - this leads to a good choice of scale parame-
ters and also admits a dyadic multi-scale segmentation
framework.

In the next Section, we present the motivation for
the proposed model to be used for segmentation. In
Section 3, we present the kernel-based density estima-
tor for the proposed model and derive expressions for
asymptotically optimal scale parameters. In Section 4,
w e presett our algorithms for scale selection and the
consequent mean-shift segmentation process. In Sec-
tion 5, we present results on real images and round off
with discussions about future work in Section 6.

2 Model

In [3], the image is modeled in joint range-domain
space; image pixels are assumed to be drawn indepen-
den tly from an underlying PDF model defined on the
joint space. The mean-shift procedure shifts each pixel
to one of the modes of the underlying PDF. Naturally,
the parameters for the mean-shift algorithm need to
be selected for an optimal estimate of the underlying
PDF. The asymptotically optimal scale parameters, in
the Mean Integrated Square Error (MISE) sense, de-
pend upon the yet-to-be-estimated PDF, or at least
it’s average properties. One popular approach (for
it’s relativ esimplicity) is to use a plug-in estimate,
where optimal bandwidth parameters are found with
respect to a (plug-in) family of PDFs like the mul-
tivariate Gaussian. In the statistics domain, several
other methods (more sophisticated and computation-
ally intensiv e)have been suggested but plug-in esti-
mates remain an attractive choice. We refer the reader
to [7, 8] for further details.

Image data is highly non-Gaussian - as an example,
we consider the Sailboat image in Figure 2(a) and de-
pict the marginal PDF for the intensity variable (Fig-
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Figure 1: For Sailb oatimage, marginal histo gmm of
(a) raw intensity values, and, (b) residuals of LL pro-
jection using the db2 wavelet.

ure 1(a)). Evidently, w eshould be considering the
join t PDF instead of the marginal PDF since the data
is not spatially stationary. Even so, this example and
the histogram is typical of the usual image data and
suffices for the current discussion. Non-gaussianity is
evidently the norm, reflected in the fact that the image
PDF is often estimated to be a multi-modal density
function. Any estimate based on the Gaussian plug-in
is likely to yield unsatisfactory results. Comaniciu and
Meer [4] propose an empirical estimate using a locally
Gaussian assumption.

In this paper, w etakea different approach. We
first note that in our domain of application, images,
w eare dealing with functions (scalar, or vector as
in color images) defined on the 2-D spatial domain.
Hence, the data should be modeled as such. Excellent
non-parametric frameworks, like wavelets, are already
available. Good approximations can be generated for
the underlying regression function using these repre-
sen tations. Secondly, deviations from the estimated
regression function can be used to develop a model for
the noise process. If the first observation is valid, then
the noise model should be more accurate and the noise
PDF easier to estimate.

As an example, consider Figure 1(b), where we plot
the (intensit y) histogram of tlesidual image when
the Sailboat image is projected onto the LL sub-band
using Daubechies’ db2 wavelet. Clearly, the residuals
can be more easily and realistically modeled than the
complete Sailboat image in the spatial domain (Fig-
ure 1(a)). It has been shown that the Generalized
Gaussian Distribution (GGD) is a good model for the
residuals (in Figure 1(b)) [6].

Hence, we model the image data as,

I(t) = r(t) +e(t) (1)

where t is a vector representing the spatial location,
I(-), and €(-) are noisy image and the additive noise
respectively while r(-) is the clean image irradiance
function that w eseek to model using the regression
framework. We note that for parameter estimation
purposes, it is sufficient if r(-) can be approzimated by
the regression model and likewise, the residuals can be
approximated by GGD. In other words, the regression
need not yield a piecewise smooth curve separated by
jumps at the segment boundaries.

In the next Section, we propose a kernel-based den-
sity estimator for the above model and derive expres-
sions for asymptotically optimal scale parameters.

3 Analysis

Let us define a 3-tuple z = [v,tT]T = [v,z,y]T €
R3. Then, we define a kernel based estimator for the
conditional PDF of I given the spatial location t =

[z,y]" as

fl\t( t) =

2|H|D ZZK zzJ’ —z)) (2)

i=1 j=1

where H is a non-singular 3 X 3 bandwidth
matrix and K : R® — R is a kernel
such that it is non-negative, has a unit area
(frs K(z)dz = 1), zero mean ([.,zK(z)dz =
0), and unit covariance ( fR3 zzTK( Ydz = I).

= m2|H| Ez 1 Zy 1 fR Zl] - Z)) dI can be
treated as a normalization constant

The non-linear nature of the estimate does not
permit an exact analysis. T ocarry out an asymp-
totic analysis, we assume that the number of samples,
n = m?2, tends to infinity via a successive refinement
of the sampling grid. Consequently, {r(t;;)} repre-
sent theunderlying function r(t) more and more ac-
curately. We assume that the noise samples are inde-
pendent and identically distributed irrespective of the
grid size. Forthe ease of bandwidth estimation, w e
also assume that H = diag(hr, bz, hy).

Imposing the condition that ||diag(hz, bz, hy)|| = 0
and ndet(H) — oo as n — oo, the estimate f(-)
can be made consistent i.e. the asymptotic integrated
mean square error (AIMSE) goes to zero as the num-
ber of samples approaches infinity (via refinement of
the grid). It can be verified that,

AIMSE = /biasz(v,x,y) +/Var(u,x,y) =
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where R(g) £ J 9(2)* dz and,

20’(”7'7771/) é azfe\z,y(v - T(J?,y)|$,y)

2b(v, 7,y) 2 2 foja.y (v — 7(2,9)|7,Y)
= 02f - (Bo7)? — 2(8e0: f) - Opr — Oef - O2r + D2 f

QC(U,x,y) é a;fe\z,y(v - r(x,y)|$,y)
=02f - (8y7r)? — 2(0c0y f) - Oyr — Oc f - 857’ + 8Zf (4)

Optimal bandwidth matrix is sought by minimizing
the above expression, which is a non-trivial problem.
Hence, w esuggest an upper-bound for AIMSE and
compute parameters to minimize the upper bound. By
applying Cauchy-Sc hw artz,ewget,

AIMSE < (hillall + hZ[1Bll + A3 llcll)®
AzAyR(K)

nhihah, 5)

The bandwidth parameters that minimize the up-
per bound in Equation (5) are,

. [ AeAyR(K) /BTl | s
hl(vﬂxay) = 12||a||3 n v
X [ AzAyR(K)/Tlalllel] T _1
h.l‘(’U?m?y) = 12||b||3 n 7
[AeAyR(K)/TallTON] T s
* —_ 7
hy(v,x,y) - 12“0“3 n

and consequently,
AIMSE* (v, z,y)

g [ArAyR(E) ||a||||b||||c||] t 6

12

This particular choice of bandwidth bounds the er-
ror, which goes to zero at the optimal rate as the num-
ber of samples increase to oco.

4 Scale-guided Segmentation

Humans view signals and the information they con-
vey at various scales - but not simultaneously. When
the signal is processed to reveal information at a cer-
tain scale, analysis at a larger scale is dwnte, and
signal information at smaller scales is viewed as finer
details or noise for the analysis at the chosen scale. We
adopt this philosophy for the purpose of segmentation.

Thus, at any spatial resolution, an estimate of the
regression function is obtained, as also an estimate of
the noise realization. From these estimates, we obtain
the bandwidth parameters for the kernel-based PDF
estimator in Equation (2). Mean-shift procedure is
used to map each pixel to the mode of the estimated
multi-modal PDF, thereby yielding the transformed
data. This transformed data is then segmented. Be-
low, we give the proposed algorithm.

4.1 Algorithm

1. R egession Estimate: Let 6(t) be a smoothing
function (integral equal to 1 and con erges to 0
at infinity). We denote the smoothing function at
scale s as 0,(t) = 16(%). Then, we approximate
the smoothed image by 75(t) = I;(t) = I x 04(t).
The derivative of the regression estimate are given
by convolution of I(t) with wavelets that are com-
ponents of V05(t) and V¢VI6(t). As an exam-
ple, wetake6,(t) = N(0,s2I), the symmetric
Gaussian function.

2. Bandwidth Estimation: We estimate the noise at
scale s by é:(t) = I(t) —7s(t) = I % (6 — 05)(t).
It has been noted (and as is evident from Figure
(1)) that the difference signal can be modeled as a
Generalized Gaussian Distribution (GGD). GGD
is a parameterized family of distributions. The
functions (a(+), b(+), c(-) and d(-)) are easily com-
puted in terms of these parameters as explained
in Section 4.2.

3. Mean Shift: We consider kernels such that
K (z) = k(||=]|?) where k() is convex. Then, defin-
ing a transformation M : R® — R3 such that for

any p = [v,z,y]7,

> zik (1H " (25— D)IIP)
25 K (I1H= (25 — p)|I?)

M(p) = (7)

It follows from (Theorem 2 in [3]) that the se-
quence {p} defined by pr+1 = M(px) in Equa-
tion (7) converges to a local mode of the PDF
defined in Equation (2). Thus, the mean-shift
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Figure 2: (a) Sailb at image: size 512 x 512 (b) segmented image with overlayed boundaries (hr,hg, hy,v) =

(6.2, 8,8, 64)

process when applied to each image pixel, maps
it to it’s corresponding mode.

4. Segmentation: Edges betw een t w pixels are de-
tected if the normalized distance betw een the t o
pixels p; and p;, H 2(M(p;) — M(p;)) > 1
Even tually and optionally, w ediscard small re-
gions of size less than . A reasonable choice for
v = hy X hy.

4.2 Bandwidth Estimation

T oestimate the bandwidths in Equations (6), w e
need to compute a(-), b(-) and c().

. a():
B
2041‘(%)
model the variance and shape of the distribution
(8 = 1,2 give double-sided exponential and Nor-
mal distributions respectively). These parame-
ters [6] and a(-) are computed directly using the

moments of the histogram of residuals.

GGD for € is given by, f(v) =
exp(—|v|/a)? where parameters a and 3

e b(-) and c(-): In this paper w eassume that the
noise is i.i.d. and is independent of the sig-
nal. Hence, in the expressions for b(-) and c(-)
in Equations (4), second and fourth terms reduce
to zero. F urther, the third term is negligible (con-
firmed experimentally) as compared to the first.
Hencea b(U, T, y) ~ a(v) (I(ma y) *vzes (xv y))2 and
c(v,z,y) = a(v)(I(z,y) * V,05(z,y))>.

5 Results

We present results on tw oreal images. Depend-
ing upon the resolution (spatial scale) at which the
regression function is estimated, the parameters take
different values. This is akin to choosing the resolution
at which the image is viewed. In the MRA framework,
we can choose dyadic spatial scales and compute cor-
responding bandwidths.

T o compute the bandwidths, ve use robust estima-
tors. Thus, w euse mean absolute deviation (MAD)
instead of standard deviation for computing . More
importantly, to compute the mean of the absolute val-
ues of derivatives (to fourth pow ers) required in com-
puting ||b|| and ||c||, we only use values up to percentile
75. We do so as we do not want large edges to signif-
icantly alter the mean image gradient and curv ature
information.

We present estimated bandwidths for the two im
ages in Table (1) and segmentation results for s = 4 in
Figures (2) and (3). The segmentation results are ob-
tained by using the EDISON softw are [3. The param-
eters closely match thog obtained by hand-selection
(for best visual results) in [3]. Since the EDISON soft-
w areassumes h, = h,, w echoose the largest of the
tw o bandwidths for our results. This has an insignifi-
can t influence on the qualiy of the results.

6 Discussions

We note that by modeling the image as proposed
in this paper, w ecan design algorithms to automat-
ically compute bandwidths for the mean-shift algo-
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Figure 3: (a) Peppers image: size 512 x 512 (b) segmented image with overlayed boundaries (hr,hg,hy,v) =

(4.8,7,7,49)
Sailboat Peppers [4] D. Comaniciu, V. Ramesh, and P. Meer. The vari-
s | hr hz hy hr hy hy able bandwidth mean shift and data-driven scale
1144 29| 29 3.1 30| 35 selection. Computer Vision, Eighth Intl. Conf. on,
2|52 45| 4637 39| 49 pages 438-445, 2001.
4162 75| 7.7 48] 56] 7.1 [6] K. Fukunaga and L. D. Hostetler. The estimation
16 7.1 113.5] 130 | 62| 93 | 11.6 of the gradient of a density function, with applica-
32| 7.6|24.1|251 | 74 |17.7 | 21.6 ’

tions in pattern recognition. Info. Theory, IEEE

Table 1: Estimated bandwidth parameters T nns., 21:32-40, 1975.

[6] S. G. Mallat. A theory of multiresolution signal
decomposition: the wavelet represertation. PAMI,

rithm. There are two obvious directions in which the IEEE Trans., 11(7):674-693, July 1989.

authors are extending this work. Firstly, in evolving

adaptive bandwidth selection schemes that are sensi- [7] D. W. Scott. Multivatiate density estimation: the-
tive to local image information (like local noise vari- ory, pr actic e and visualizaion Wiley-Interscience,
ance (heteroscedastic case) and local image gradients). 1992.

Secondly, in developing a multi-scale segmentation al-

gorithm that determines and links structurally rele- [8] J. S. Simonoff. Smoothing methods in statistics.
vant image segmentations at all image resolutions. Springer, 1996.
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