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Abstract— In this paper, we report on our efforts toward
developing a multiscale segmentation based video compression
algorithm aimed at very low bit-rate applications such as video
teleconferencing and video phones. We introduce novel techniques
for multiscale segmentation based motion compensation and
residual coding. Our region based forward motion compensation
strategy (in terms of direction of motion vector, which is from
the previous frame to the current frame) regulates the size and
number of regions used, by pruning a multiscale segmentation
of video frames. Since regions used for motion compensation
are obtained by segmenting the previously decoded frame, the
shape of the regions need not be transmitted to the decoder.
Furthermore, our hierarchical motion compensation strategy
refines an initial region level, coarse motion field to obtain a
dense motion field which provides pixel level motion vectors. The
refinement procedure does not require any additional information
to be transmitted. This motion compensation technique effectively
addresses the problem of dealing with “holes” and “overlapping
regions” which are inherent to forward motion compensation.
Residual coding is performed using a novel method which exploits
the fact that the energy of the residual resulting from motion
compensation is concentrated ina priori predictable positions.
We will show that this residual coding technique can also be
extrapolated to improve the performance of coders using a block
based motion compensation strategy. A fusion of these concepts
leads to a gain of 2–3 dB in peak signal-to-noise ratio, apart from
significant perceptual improvement, over a generic video coding
algorithm using a block based motion compensation strategy
(such as H.261 or H.263) for a variety of test sequences.

Index Terms—Hierarchical motion compensation, low bit-rate
video compression, multiscale segmentation, residual coding.

I. INTRODUCTION

V IDEO sequences are characterized by spatial and tem-
poral redundancies which have to be exploited by any

effective video compression algorithm. Video compression, as
implemented in most popular coders, is a two step procedure.
The first step, called motion compensation, consists of pre-
dicting the current frame using motion information from the
previously decoded frame(s). The previously decoded frame
from which motion compensation is attempted can either
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precede or succeed the current frame in display order. Motion
compensation is aimed at exploiting the temporal redundancies
in the video sequence. In the second step, the residual, which
is the difference between the actual video frame and the frame
resulting from motion compensation, is partially transmitted
according to bit-rate restrictions. Typical algorithms reported
in literature focus on utilizing spatial redundancies for effective
residual coding. In order to limit the effect of progressive
degradation which results from this two step procedure, a
refresher frame, which is intra-coded without using motion
compensation, is periodically transmitted.

In this paper we will propose novel implicit, multiscale,
image segmentation based motion compensation and residual
coding strategies which result in both subjective (perceptual)
and objective peak signal-to-noise ratio (PSNR) improvements
when compared with a generic block based algorithm. Our
video compression algorithm is aimed at low bit-rate applica-
tions where the performance degradation resulting from block
based algorithms is typically unacceptable. Although post pro-
cessing schemes for dealing with errors resulting from block
based motion compensation exist, such algorithms typically
result in a blurring of the decoded image. Examples of low bit-
rate applications of interest include video teleconferencing and
video phones. Furthermore, the techniques that we develop,
effectively address some of the problems inherent to video
coding with arbitrarily shaped regions and hence can find
independent application in other object based video coding
strategies.

In the rest of this section, we will review a few relevant
motion compensation and residual coding strategies from
literature and introduce the proposed approach.

A. Related Previous Work

Many strategies for performing video compression have
been explored in the past decade [1]. Standards aimed at
different bit-rate requirements have been proposed, which
range from the moving picture experts group (MPEG) standard
[2], [3] aimed at relatively high bit-rate applications such as
data storage in compact discs to the H.261 and H.263 standards
[4], [5] which are aimed at low bit-rate applications such as
video conferencing and video telephony. Design of low bit-
rate video coders is typically more challenging as video quality
becomes noticeably poor at low bit-rates thus increasing the
problems involved in the design of a compression mechanism
which can deliver an acceptable level of perceptual quality.
Thus, many of the current papers in literature, which propose
novel video compression strategies, tend to focus on low bit-
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rate applications. Although many algorithms claim improved
PSNR performance at low bit rates, the applicability of PSNR
as a reliable measure for perceptual quality is questionable
at such bit rates. We attribute this to the fact that most
algorithms use block based motion compensation strategies,
with a possibility for variable block size in recent coders [5],
[6], which cause significant block artifacts resulting in a loss in
perceptual quality, if adequate residual coding is not performed
after motion compensation due to bit-rate restrictions. This is
indeed the case at the bit rates used in video telephony and
teleconferencing.

Motion compensation has been studied extensively both for
video compression [6], [7], [8] and general video analysis
[9], [10], [11], [12]. The most common form of motion
compensation used in a video compression setting is block
based, backward (in terms of direction of motion vector,
which is from the current frame to the previous frame) motion
compensation and its variations. The MPEG-1 and H.261
standards split the image to be coded into 1616 blocks and
find the best backward motion vector1 for each block, within
a specified search range. The H.263 standard allows for a 16

16 block to be split into four 8 8 blocks, the criterion
for choice between the larger and smaller blocks being left
to the specific implementation of the encoder. The MPEG-2
standard allows for a 16 16 block to be split into two 16

8 blocks, the split being allowed in the vertical direction.
The reason behind allowing a split in the vertical direction,
but not in the horizontal direction, is that the horizontal
motion is much larger than vertical motion in typical video
sequences. Recent algorithms have also explored allowing a
quad-tree splitting procedure to vary the size of the blocks
used for motion compensation. Schuster and Katsaggelos [6]
show how to perform a quad-tree partitioning by allocating the
optimal number of bits to partitioning, motion compensation,
and residual coding in a rate-distortion setting. However, as
noted before, block based compensation typically results in
a peaky distribution of the residual error, with high residual
concentration at block edges and image edges. At low bit
rates, when adequate residual coding cannot be performed, this
results in perceptually unacceptable performance. The usual fix
for this situation is to use a pre- or post-processing filter which
smoothes the block artifacts [13], [14]. Such filtering typically
leads to a blurring of the true image edges in addition to a
reduction of the block artifacts.

Segmentation based motion compensation schemes have
also been explored in some detail in literature. Such schemes
can be classified into methods which use motion field seg-
mentation [15], [16] and those which use intensity based
segmentation [17], [18], [19]. Motion field segmentation par-
titions the image into regions based on a criterion of similarity
in motion. The assumption behind such a scheme is that
groups of pixels which have similar motion over the past few
frames will continue to move in a similar fashion in successive
frames. Such assumptions lead to large errors when the implicit
smoothness assumption on motion is violated and lead to little
or no advantage over block based methods when averaged

1The criterion used for finding the best matched motion vector is that of
minimizing the mean squared error.

over the entire video sequence. Intensity based segmentation
partitions the image based on grey scale homogeneity and does
not make assumptions on the smoothness of motion. Since
the scale, at which segmentation is performed, determines the
size (and hence the number of the regions) generated, this has
a direct effect on the amount of motion related information
generated. At low bit rates it becomes important to optimize
the number of bits spent on motion information. However, it
is not clear as to what is the “optimal grey level homogeneity
scale” at which segmentation is to be performed and how to
control the process of segmentation based upon a choice of
scale. Recent work [19] proposes to use multiscale segmen-
tation derived from a morphological processing framework.
This method still requires the transmission of segmentation
information to the decoder which results in an unacceptable
amount of overhead at the bit -rates targeted in this paper.

Apart from the difficulties considered above, a major draw-
back of previous segmentation based schemes is that the
segmentation information needs to be explicitly encoded. This
typically results in an unacceptable amount of overhead at
low bit rates. A possible solution to this problem might be
to use forward motion compensation2 in which segmentation
is performed on the previously decoded frame and forward
motion vectors are calculated for regions [17]. However, the
difficulty with such an approach is that all of the pixels
in the frame to be coded cannot be predicted; the leftover
pixels result from “holes” (where no prediction is available)
or “overlapping regions” (which are covered by more than
one translated region). Yokoyama [17] proposes an ad hoc
solution in which such regions are predicted by interpolating
or averaging the motion vectors from known locations. Such
an approach results in large prediction errors in the ambiguous
regions thus defeating the purpose of using a segmentation
based approach which is to maintain good perceptual quality.

Another motion compensation scheme of interest is the
pel recursion algorithm [7], [8]. Biemond and Looijenga
[7] formulated a recursive Wiener estimate. The recursive
equation is obtained by considering a Taylor series expansion
of the intensity image as a function of the motion vector to
be estimated. It is well known that the inherent linearization
due to Taylor series representation limits the applicability of
the algorithm to situations with small motion and where a
good initial estimate of motion is available. Pel recursion
typically results in fractional pixel accuracy motion vectors.
Since images consist of pixel values at discrete locations an
interpolation mechanism is needed to extend pel recursion to
the discrete setting. Nosratinia and Orchard [8] proposed a
scheme for obtaining an optimal linear interpolant by solving
a linear least squares formulation in a causal neighborhood.
We will use a modified version of these ideas in our motion
compensation algorithm.

Most of the previous video compression algorithms adapted
techniques native to still image compression to do residual
coding [2], [4], [20]. Such an approach is far from optimal
since it does not exploit the redundancies introduced by

2In the terminology of this paper, the forward in forward motion compen-
sation refers to the direction of motion vectors, which map a region/block in
the previous frame to the current frame.
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the fact that the residual is synthetically generated through
the process of motion compensation. Block discrete cosine
transform (DCT) coding, with 8 8 blocks, is typically the
most common residual coding formulation and is used in all
standard implementations. Although other schemes involving
vector quantization [20] have been explored, they are not as
popular. Vector quantization in particular requires a good code
book for obtaining high performance. However, the design
of a generic code book is difficult due to (a) local minima
problems of the popular design algorithms (such as K means)
and (b) variability of the video content. Many DCT-based
implementations [6], [17] code the residual in only selected
8 8 blocks to meet bit-rate restrictions.

B. Video Compression with Implicit Segmentation

In the proposed approach we start with a multiscale segmen-
tation of the previous frame provided by the algorithm in [21],
[22]. A scale parameter in the segmentation algorithm controls
the grey level homogeneity of the regions into which the
image is partitioned. At a coarse scale the image is partitioned
into a few large, relatively inhomogeneous regions while at
a fine scale we obtain more homogeneous regions at the
expense of a decrease in the size of the individual regions. The
algorithm provides segmentation at as many different scales as
are naturally present within the image, ranging from coarse to
fine. A significant feature of the algorithm is that a parent-
child relationship is preserved across the different scales of
segmentation (see Fig. 1). In other words, a region at a coarse
scale of segmentation can only split into smaller regions at
finer scales. No new regions which partake of more than one
region at a coarse scale can form at finer scales. This results
in a tree structured representation for multiscale segmentation.
To draw a parallel, we obtain exactly the same kind of
representation as the popular quad-tree segmentation, which is
used extensively in lossy compression literature, except that we
obtain arbitrarily shaped regions in the place of square blocks.

The hierarchical, multiscale segmentation based motion
compensation scheme effectively addresses many issues which
have made previously proposed segmentation based coders
[17], [23], [24], [25] unattractive for video compression. We
use a forward motion compensation strategy instead of the
conventional backward motion compensation and therefore
avoid sending the segmentation related information to the
decoder. In this sense, the segmentation information that we
use is implicit. Forward motion compensation, however, poses
its own challenges as “holes” and “overlapping regions” exist
in the motion compensated image. Thus the motion field after
forward motion compensation is typically sparse. We call this a
“coarse motion field.” We propose a novel strategy which uses
partial backward motion compensation followed by a modified
pel recursion algorithm to fill in the motion information in
such unpredictable regions. After this procedure, the motion
field covers every pixel in the frame to be coded and hence it
is dense. We call this a “dense motion field”. The hierarchical
process of first computing a coarse motion field followed by
a dense motion field results in improved robustness in the
motion estimates.

Fig. 1. Illustrating the parent child relationship between regions at the coarse
scale and a fine scale segmentation of the image.

Another novel feature in our motion compensation algo-
rithm is its ability to control the number of regions in the
implicit segmentation used for motion compensation, thus
allowing adaptive control of the amount of motion information
transmitted to the decoder. The key idea behind this rate
control mechanism derives from the multiscale nature of the
segmentation algorithm [21], [22] which provides us with
multiple scales of segmentation, thus allowing us to pick
and choose the size and number of regions which form the
implicit segmentation of the image used for motion com-
pensation.

Our residual coding strategy also differs radically from the
typical scheme used in most video compression algorithms
[2], [3], [4], [5], [6]. Previously proposed residual coders
typically consider the residual to be an image and therefore
employ strategies native to still image compression algorithms.
However, such strategies are in essence not exploiting the
fact that the residual is not a natural image but synthetically
generated by the process of motion compensation. Practical
experiments on video sequences revealed that most of the
residual ( 90%) is concentrated in a tiny portion of the
image ( 10%). Furthermore, the parts of the image where
most of the residual energy is concentrated can be reliably
predicted using the locations of the edges in the previously
decoded image and the region based motion vectors. It may
be noted that in this observation, the location of high residual
energy concentration can be pre-predicted, and is not tied
to a particular motion compensation scheme. Therefore, our
residual coding strategy naturally extends to block based
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motion compensation schemes used in all of the standards
[2], [3], [4], [5].

C. Overview

The next section describes our segmentation based motion
compensation scheme in detail. The residual coding strategy
is outlined in Section III. Specific details regarding the choice
of various parameters and other implementation details are
presented in Section IV. Results and a discussion of their
implications are presented in Section V.

II. M OTION COMPENSATION

In this section we will outline the motion compensation
strategy used within our video compression algorithm which
has four major components:

1) a multiscale segmentation algorithm which is used to
segment the previously transmitted frame;

2) coarse motion field generation: a forward motion com-
pensation strategy which forms an initial prediction for
the frame to be encoded using forward motion vectors
which represent the translation of regions from the
previous frame to the current frame;

3) dense motion field generation: a strategy for filling
in the “holes” and “overlapping regions” where mo-
tion information from the forward motion compensation
strategy was either not available or is ambiguous. This
involves using motion vectors in the backward direction
for relatively large regions where a prediction is not
available and a modified pel recursion algorithm [7],
[8] to fill in the motion compensated prediction of the
current frame for the rest of the pixels;

4) a computationally inexpensive rate control strategy
which uses segmentation at multiple scales, which
differ in the number and size of regions into which the
image is partitioned, to regulate the amount of motion
information transmitted.

As noted in the introduction, the forward motion compen-
sation strategy typically generates a coarse motion field which
does not provide an intensity estimate for each pixel in the
frame to be coded. Thus we may think of the third step in
the above list as refining this coarse motion field to obtain
a dense motion field which provides reliable initial intensity
estimates for all the pixels in the frame to be coded. An
advantage of this hierarchical motion compensation strategy
is that the coarse motion field results in the generation of
reliable motion estimates for initializing the pel recursion
algorithm used in generating the dense motion field. As noted
in [7], pel recursion works best when the initial estimate of
the motion is good, so that the linearization implied by the
Taylor series expansion is validated. We also modify the pel
recursion algorithm along the lines of [8] to obtain reliable
intensity estimates by finding the causally optimal interpolant.
Further details are provided in Section II-C.

In the rest of the section details of the segmentation
algorithm (Section II-A), coarse motion field generation
(Section II-B), dense motion field generation (Section II-C),
and the rate control mechanism (Section II-D) are provided.

A. Multiscale Segmentation Algorithm

The objective of segmentation is to partition the image
into regions which are intrinsically similar and extrinsically
dissimilar (with respect to all adjacent regions) in terms of
grey level homogeneity. Multiscale segmentation aims at fa-
cilitating image segmentation at all geometric and photometric
scales at which structure is present in the image. Previous
compression algorithms used clustering or region growing
[16], [17], [25], in order to achieve segmentation. These
approaches produce errors in the resulting segmentation e.g.,
in the edge locations and in the delineation of regions e.g., in
their homogeneity. A recent transform [21] which possesses
desirable properties of multiscale segmentation, forms the
basis of the segmentation algorithm used in this paper. In
its continuous form, the transform maps a continuous two-
dimensional (2-D) grey scale image into a family of
attraction force fields , as follows:

where domain , , and
. The transform has a similar form

for a discrete image. It analyzes the intensities present in a
neighborhood of the pixel, and produces a force vector for each
pixel in the image. This force field makes the regions explicit
in such a way as to make their extraction easy. Associated
with each pixel is a homogeneity scale, which reflects the
homogeneity of the region into the pixel groups and a spatial
scale which controls the neighborhood over which the
transform is applied. The spatial scale parametercontrols
the spatial distance function , and the homogeneity scale
parameter controls the homogeneity distance function .
Considering the various desirable properties for the distance
functions it has been found that the optimum form is that
of a box-car window (other forms, such as a 2-D Gaussian,
are computationally expensive and yield little or no advantage
over the simpler box-car window)

where

else

By using a spatially invariant and computing the optimal
, the transform can be applied to image segmentation.

The selection of an optimal is equivalent to using the
appropriate amount of spatial information to identify regions
based on homogeneity. Further details may be obtained in [22],
[26]. Results of a typical multiscale segmentation using the
transform of the image Lena are given in Fig. 2.

B. Coarse Motion Field

In Section II-A we saw how to construct the multiscale
segmentation of a given image. Selecting the right scale of
segmentation for motion compensation will be explained in
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(a)

(b)

Fig. 2. (a) Actual image and (b) different scales of segmentation given by the multiscale segmentation algorithm. (c) and (d) Different scales
of segmentation given by the multiscale segmentation algorithm.

Section II-D. Given a segmentation at some specified scale of
the previous image, we will describe in this section how to
obtain a coarse forward motion field which generates a partial
prediction of the intensities in the frame to be coded. We would
like to ascribe a forward motion vector to each region in the
previous image, within a prescribed search range, so as to
minimize the mean squared error.

The first question to settle is whether to use a simple
translational motion model to depict the region motion or
to use a more complicated model such as the affine model.
Since real motion of the region can be better captured using
an affine model, we expect to obtain a better fit with such a
model. On the other hand, we would have to pay the extra
cost of sending additional rotational motion parameters for
each region which might lead to a unacceptable overhead in
very low bit-rate situations. In practice, we found that using
an affine motion model is not justified for relatively simple

(c)

(d)

sequences like Miss America. Since the primary application
of our video compression strategy is in video teleconferencing
which is characterized by very low bit rates and relatively
simple motion, we chose to use translational motion vectors.
In order to apply our algorithm to more complicated sequences,
it would be optimal to use some strategy to switch between
the affine motion model and the translational motion model
on either a per frame or per region basis. Further details of
such an optimal switching strategy are beyond the scope of
this paper.

In order to find the translational motion vector for each
region, we use a full search over all motion vectors within a
specific range. To be more specific, a region in the segmen-
tation of the previous frame is moved around within a search
window in the current frame and that motion vector is chosen
which yields the minimum mean squared error. In the cases
where parts of the region overflow the edges of the frame to
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be coded we do not use those parts of the region which fall
outside the image to predict the intensities in the frame to
be coded. Thus the translational motion vector that we find
minimizes the mean squared error only within the frame to
be coded.

If a region has a motion vector which maps it to such a
location in the frame to be coded which is already covered
due to the motion of other regions, transmitting the motion
vector of that region to the decoder is not necessary. In our
implementation, we have a boolean flag for each region which
is either set to one or zero to depict whether the motion vector
of the region is going to be transmitted to the decoder or not.

It is to be noted that the coarse motion field that we generate
using this algorithm will have holes and overlapping regions.
Prediction of the intensity values at such locations will be
dealt with during the generation of the dense motion field in
the next section.

C. Dense Motion Field

Pixels in the frame to be coded which cannot be accurately
predicted using the coarse motion field (holes and overlapping
regions) are themselves connected groups of pixels; each such
connected group of ambiguous pixels is called a secondary
region in our terminology. Obtaining a prediction of the
intensities of the pixels in the secondary regions would lead
to a pixel-wise dense motion field.

There are two coding strategies that we envisage using
to predict the intensities of pixels in secondary regions. The
first strategy involves using a backward motion vector for a
given secondary region which minimizes the mean squared
prediction error. Another strategy is to utilize a modified
pel recursion algorithm to find the motion vectors for the
pixels within the secondary regions. It is to be noted that
the requirements for good performance of the pel recursion
algorithm viz., applicability of a Taylor series approximation
and good prior estimates for the motion vector are satisfied in
our case, since we apply the pel recursion algorithm at only
a few, well spread out locations within the image; the image
intensities at other locations having been predicted using the
coarse motion field. This is contrary to the application of the
pel recursion algorithm in literature [7], [8] whence it has been
used as a stand alone algorithm which performs all the motion
prediction. The pel recursion algorithm will be discussed in
more detail in Section IV.

Experimental evidence suggested that using a backward
motion vector typically leads to a better motion prediction
of the intensities when compared with the prediction obtained
with the pel recursion algorithm to predict the intensities of
pixels within secondary regions. However, the disadvantage
of using a backward motion vector is that it has to be
transmitted to the decoder. On the other hand the pel recursion
algorithm does not need any information to be transmitted to
the decoder. Thus, it would be better to use backward motion
compensation for large secondary regions while resorting to
the pel recursion algorithm for relatively small secondary
regions. Another advantage of using the pel recursion only for
small portions of the image is that we can avoid the excessive

iterative computation and matrix inversion which pel recursion
requires.

We classify secondary regions into two classes for compres-
sion purposes: secondary regions that are size-wise large are
called class-one secondary regions and those which are size-
wise small are called class-two secondary regions. The choice
of an exact size threshold for affecting this classification will
be discussed in Section IV.

Fig. 3 illustrates the process of obtaining the dense motion
field from the coarse motion field. The dark regions correspond
to the locations of pixels where the intensity prediction using
the coarse motion field is either not available or is ambiguous.
It is seen that backward motion compensation eliminates the
large secondary regions while pel recursion takes care of the
small (and typically widely scattered) secondary regions.

D. Rate Control for Motion Compensation

Since the application of choice for our video compression
algorithm is teleconferencing, we assume that each frame is
assigned the same number of bits (approximately) i.e., the
bit rate is equally divided among various frames. Note that
a strategy which distributes the bit rate unequally a mong
different frames would lead to temporal fluctuations in the
bit rate, which in turn leads to difficulties in real time display
of the video at the decoder.

In order to convey the motion compensation information,
we have to transmit the motion vectors generated during the
process of construction of the coarse and dense motion fields
to the decoder. As noted in Section II-C we do not need to
transmit any information regarding the pel recursion motion
estimation to the decoder. Also, segmentation is always carried
out on the previously decoded frame; thus no segmentation
information needs to be transmitted to the decoder. Hence our
rate control strategy should make sure that the number of bits
spent on transmitting motion related information to the decoder
should be optimally balanced with the number of bits spent on
residual coding (to be covered in Section III).

As noted earlier, segmentation of the previous frame with
a multiscale segmentation algorithm gives us segmentation of
the image at all photometric and geometric scales at which
is structure present within the frame. In other words, for each
value of the grey level homogeneity scale , we can obtain a
segmentation of the image. Using a fine scale of segmentation
would mean that the region size would be small and hence
the number of regions in the segmentation of the image would
be large. This would mean that we need to transmit a large
number of motion vectors if we segment the previous image
at a fine scale. On the other hand, each region would be highly
homogeneous thus leading to a small residual. The opposite
would be the case if we segment the image at a coarse scale
i.e., the amount of motion information would be small but the
residual would be larger. This leads us to the conclusion that
there is an optimal at which the segmentation of the pre-
vious image would be optimal. The rate control strategy thus
reduces to choosing an optimal scale for segmenting the image.

Since motion compensation is applied to those frames of the
video sequence where many of the objects within one frame
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Fig. 3. Dense motion field generation: starting with the secondary regions in the frame to be coded (which are black), the figure illustrates that
class-one secondary regions are predicted by backward motion compensation and then the remaining class-two secondary regions are predicted using
the modified pel recursion algorithm.

are common to the next frame, one would expect that the
value of at which we obtain optimal rate control would be
similar for nearby frames. Thus, if we know the correct scale of
segmentation for the previous motion compensated frame, we
would expect that the correct scale for the next image would be
either the same or slightly different. This observation leads to a
drastic reduction in the amount of computation needed to find
the optimal scale for transmitting the motion compensation
information.

Although is in general a real number, only certain
discrete values of are of interest as the segmentation of
the image changes only at these values. In other words, if
we start with a large (corresponding to a coarse scale of
segmentation) and decrease it gradually, regions at the coarser
scale would subdivide into finer regions only for certain
discrete values of . The segmentation algorithm reported
in [26] can automatically select these discrete values ofat
which there is a significant change in the segmentation of the
image. Let , represent the discrete values of arranged
in ascending order of magnitude with increasing values for the
subscript (larger implies coarser scale).

Given the grey level homogeneity scale at which
the previous motion compensated image was segmented, we
additionally check only the two adjacent values i.e.,
and at which there was a significant change in the
segmentation of the image. For these three scales viz., ,

, we can perform motion compensation and resid-
ual coding (as described in the next section) constrained by
the number of bits allocated to the current frame and select
that scale of segmentation which leads to the least mean
squared error (and hence best PSNR). This approach cannot
be used for the first motion compensated frame in the video
sequence or for the first frame after a refresher frame. In
these cases we do a full search through all possible. As
stated before, the number of such scales is finite (typically
5–10 in practice) because the segmentation algorithm of [26]
chooses the most appropriate scales for generating the hier-
archical representation automatically. In practice, we found
that an upper limit on the total number of motion vectors

to be transmitted is also required to constrain the algorithm
from transmitting too much motion information and little or
no residual information. Although PSNR optimality would
sometimes lead to the conclusion that transmitting little or
no residual information leads to better quality video, we
found that transmitting some residual is important in removing
perceptually annoying artifacts.

It is to be noted that the above rate control strategy is not
optimal in the sense that we do not fully explore all possible
segmentation scales. However, we found that the tremendous
increase in computational complexity which results from such
processing is not validated by a corresponding improvement
in perceptual quality.

III. RESIDUAL CODING

The residual coding scheme that we propose exploits the
fact that the residual has been generated through a process of
motion compensation in order to better code the residual. It
will be seen that the proposed scheme can be extended to block
motion compensation and any transform based residual coding
scheme along similar lines, although we apply it only in the
context of our hierarchical motion compensation strategy and a
DCT based residual coding scheme in our paper. Since block
motion compensation forms a basis for many popular video
compression schemes in literature, we will explain how our
scheme may be extended to that situation wherever necessary.

The key point which aids the proposed scheme is that we
are compressing a residual generated by amotion compensated
video streamand not still images as generally assumed by
most residual coding schemes. Thus we expect that the residual
image error will be concentrated in certain areas of the image.
These areas can be predicted, given that we know the motion
compensation scheme.

We conducted experiments on practical data which sug-
gested that 80–90% of the residual energy is concentrated in
predictable locationswhich form about 10% of the frame to
be coded. These experiments were conducted using the region
based motion compensation scheme and some of the standard
sequences used for testing video teleconferencing applications
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(such as Miss America and Claire). The predicted regions are
found by using the rules outlined in the Section III-A.

The residual coding scheme proposed in this paper makes
use of the above key observation to improve the performance
of any transform based residual coder. We first generate
an image mask predicting the location of residual energy
concentration. Now we assume that the residual exists only
in the predicted locations and is zero at other locations. So we
are free to vary the values of the pixels at such locations, where
residual is predicted to be zero, to obtain transform coefficients
which lead to a better quality of the coded image. Since the
decoder can also generate the same mask, decoding is possible.
It may be noted that wedo not needany further information
to be transmitted in order to implement the proposed scheme.

The question to be answered is: how should the “free pixels”
be chosen? For DCT or wavelets, the free pixels need to be
chosen so that most of the energy is concentrated in the low
frequencies. In other words we would like to use the freedom
given in the choice of the free pixels to maximally pack the
energy in the low frequencies of the transform domain. This
problem has been addressed recently by us in a general context
[27]. We had proposed an iterative algorithm which leads to
an optimal choice of the coefficients, which we will use in the
context of generating the residual.

A. Generating the Residual Energy Prediction Mask

The first step in implementing the proposed scheme would
be to find the residual energy prediction mask locating the
positions in the error image where the energy is concentrated.
This depends on the motion compensation scheme employed,
as different motion compensation schemes lead to a different
distribution of residual error. Furthermore, the procedure for
generating the prediction mask should be repeatable at the
decoder without the transmission of any information.

As already observed, for a block based motion compensation
scheme the pixels that cause most of the error lie at:

• the edges of the blocks with nonzero motion vectors. It is
well known [28] that residual energy is large at the edges
of a block whose motion has been predicted using full
search block motion estimation;

• the image edge locations in the previous decoded frame.
Block motion compensation does not compensate for a
region boundary which passes within a block, thus leading
to large errors at places where there are edges in the
previous image. These edges can be detected using a
simple edge detection algorithm like the Laplacian or
Canny edge detectors;

• the predicted location of image edges in the frame to be
coded (i.e., translated versions of image edge locations in
the previous frame to the current frame).

For region based motion compensation, we can similarly
conclude that most of the error would be concentrated at:

• the edges of the translated regions in the frame to be
coded. Since the actual affine motion of the region was
approximated with a translational motion vector, large
error occurs at the region edges;

(a) (b)

Fig. 4. Constraint sets for residual coding: (a) in the spatial domain the
values where residual is predicted to be large (indicated by one) should not be
changed and (b) in the DCT domain of the block, all coefficients lying outside
a sub-block containing the DC coefficient should be zero (such coefficients
which are constrained to be zero are indicated by a zero in the figure).

• the holes and other ambiguous regions which are filled
in with the modified pel recursion algorithm during the
formation of the dense motion field;

• the image edges in the previous frame also contribute to
some error although to a lesser degree when compared
with the block motion compensation strategy. Unlike the
case of block based segmentation, where we needed to
use a separate edge detection algorithm to locate these
edges, we can use the segmentation of the previous image
(which is used in motion compensation) to determine the
edge locations directly.

B. Iterative Algorithm

Once the mask predicting the error locations is found as
described in the previous section, we can obtain the optimal
values of the “free pixels” by using an iterative algorithm.
For the sake of convenience, we assume that we are coding
the residual of an 8 8 block using the popular DCT based
residual coding scheme. Let the prediction mask for this block
be , the residual be , and the operator
represent the 8 8 DCT operator, whereand represent the
coordinates of an arbitrary pixel within the block. is a
binary mask with one representing positions of high residual
energy and zero representing positions of low residual energy.
Two natural constraints which restrict the values of the free
pixels are as follows (see Fig. 4).

1) The constraint set constrains the residual at pixels
where the residual energy is high (as given by )
to their actual value. Mathematically,

if .
2) The constraint set is aimed at packing most of the

residual energy in the low frequency coefficients in the
DCT domain. So we consider to be the set of all
blocks with high frequency DCT coefficients equal to
zero. To be precise, all the coefficients outside a sub-
block [see Fig. 4(b)] containing the DC coefficient are
constrained to be zero in the DCT of the block. This is
reminiscent of the constraint used in [18]. Mathemati-
cally, if .
The choice of a particular value for was not found
to be crucial and will be discussed in Section IV.
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It is to be noted that the constraint sets and do
not intersect in general. We are interested in searching for
a solution in which is closest to in the mean squared
sense. In other words, we would like to find that distribution
of free pixels which maximally packs the residual energy
in the low frequency coefficients in the DCT domain. Such
a solution can be obtained by solving the problem in the
projection on convex sets formalism [29]. Searching for a
solution involves alternately projecting on to and and
stopping the iterative process after a final projection on to
the set upon convergence. We chose to stop the algorithm
after a fixed number of iterations.

C. Switched Residual Coding Strategy

In the previous two sections we described a residual coding
strategy which is applicable to each 88 block and a DCT
based transform coder. Note that the primary assumption in
designing this strategy is that the residual energy in places
where is negligible i.e., most of the energy
is concentrated at such positions as predicted by the mask.
However this may not be satisfied in practice, as the reliability
of the segmentation, which in turn determines reliability of
the prediction mask, is itself dependent on the quality of
the previously coded image which degrades with time if a
refresher frame is not transmitted. Thus we obtain better
performance if we use the usual DCT based decoding scheme
for some blocks. In order to account for this problem we use
a boolean flag to determine which scheme we are using to
code each DCT block. Results comparing the advantage of the
proposed method over the usual DCT based coding scheme
for different quantization step sizes (assuming a uniform
quantizer) are presented in Section V.

IV. I MPLEMENTATION DETAILS

In this section we will specify the choice of various control
parameters used in Sections II, III, as well as the scheme
used for initializing and formulating the modified pel recur-
sion algorithm of Section II-C. The reason for repeating the
derivation of the pel recursion algorithm is that in our case,
we exploit additional features which arise due to differences in
problem setting. In Section IV-C, we will explain the decision
statistic for sending refresher frames (I-frames) periodically.

A. Modified Pel Recursion Algorithm

We start by expressing the intensity value of the frame to
be predicted as the value of the previous image at a location
shifted by the motion vector estimate. Let be the image
to be predicted and be the previous image, where the
subscript denotes the temporal position of the frame within
the video sequence. If is the motion vector at the
location within the image to be predicted, we can write

(1)

If is the motion vector estimate at iteration ,
we may write the displaced frame difference as

(2)

Now, using (1) we can write the displaced frame difference as

(3)
By using the Taylor series expansion of the image
around the location , we obtain

(4)

where is the approximation error term due to
linearization. Thus, using (3) and (4) leads to the following
recursive update in terms of the displaced frame difference

(5)

Assuming that the same motion vector works in some neigh-
borhood of pixels around the current pixel, we can formulate
a set of equations that the motion vector needs to satisfy

(6)

where

and is the error vector at
the th iteration.

It is a straight forward exercise to solve the above equation
using stochastic linear estimation [30], to obtain the biased
minimum variance estimate as

(7)

The usual practice is to assume that and (the
covariance matrices) to be of the form (variance)(identity
matrix). At this juncture it may be pointed out that in our
case we can specify a different form for , since the
pixels in the neighborhood can come through different pro-
cesses viz., forward motion compensation, backward motion
compensation, or pel recursion. Since the reliability of the
estimates in these three processes is quite different, we expect
them to have different reliability in estimation. Thus
can be thought of as a general diagonal matrix, rather than a
scaled identity matrix. The per-frame estimates of the three
variances which determine can be transmitted to the
decoder with a negligible increase in bit rate. In our current
implementation, we restrict ourselves to using the scaled
identity matrix approximation for to avoid additional
computational complexity.

Typical algorithms for pel recursive estimation use only
pixels from acausal neighborhoodof the current pixel. This is
necessitated by the fact that all the pixels in the current frame
were being processed using the pel recursion algorithm. In
preliminary versions of the algorithm we used a causal window
to obtain the neighboring motion values to be used within
our algorithm. However, we note that no such restriction is
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necessaryin our case. In fact, we can use the nine nearest
neighbors whose motion vectors have already been determined
by previous processing, looking in a 55 window containing
the current pixel at its center.

Pel recursion leads to fractional pixel accuracy motion
vectors. Since the previous image from which motion com-
pensation is discrete, we need an interpolating mechanism.
Nosratinia and Orchard [8] show how to find the optimal
interpolant by making the assumption that the optimal inter-
polant will have the same form in a causal neighborhood. It is
again to be noted that causality is notnecessaryin our setting,
although one may use a causal neighborhood for processing
simplicity. We note that each motion vector, if it is fractional,
refers to four nearest intensities in the previous frame. If we are
processing pixels in a causal neighborhood, letrepresent
the 4 matrix of intensity values from the previous frame,
each row of the matrix corresponding to the four nearest
intensities pointed to by the motion vector corresponding to
each pixel. Let be the 1 4 vector corresponding to the
optimal interpolant which is to be determined. Finally, let
be the vector of intensities of the pixels in the current
frame. Thus, finding the optimal interpolant reduces to solving
the equation . Thus, the least squares solution is
found by using the pseudo-inverse of and is given by

.

B. Control Parameters

In Sections II and III we differed the specification of a few
control parameters which are important for implementation.

1) Maximum number of motion vectors (Section II-C): We
regulate the maximum number of motion vectors so
that we ensure transmission of some amount of residual
information. Although we optimize the amount of mo-
tion information with the amount of residual transmitted
within a PSNR setting, we found that transmitting some
residual information is important in reducing perceptual
artifacts although it might not be optimal from a PSNR
perspective. To this end, we limit the maximum amount
of motion information transmitted to 75% of the bit rate.

2) Size threshold for classification of secondary regions
(Section II-C): We found that most of the secondary
regions are typically small or large; the number of
secondary regions with medium size is small. Thus a
choice for the classification threshold is not crucial. We
avoid computationally expensive optimization strategies
and choose a threshold of 16 pixels i.e., all the regions
which are smaller than 16 pixels are classified into
class-two secondary regions and those larger than 50
pixels are classified into class-one secondary regions.
It is to be noted that this threshold is dependent on
the resolution of the frame. The specification of 16
corresponds to QCIF resolution. The threshold needs
to be scaled appropriately for higher resolution video
formats.

3) Quantization step size for residual coding (Section III):
We found that larger quantization step sizes work better
at lower bit rates. Experimental results for residual

coding that will be shown in Section V correspond to
two different quantization step sizes of 16 and 32. Later
on, we will show overall algorithm performance for only
a step size of 16.

4) Low frequency threshold (Section III-B): The parameter
was used to determine which subset

of coefficients of a block of 8 8 DCT were classified
as low frequency coefficients. We found that
or typically resulted in good performance. For
the experimental results presented in this paper we used

.

C. Refresher Frames

For video teleconferencing applications, a refresher frame
needs to be sent at shot changes or if the number of motion
compensated frames exceeds a threshold. The threshold on the
number of consecutive motion compensated frames without a
refresher is set to 128. We use a histogram based thresholding
criterion to decide when a shot change has occurred. In this
context we define the action measure between theth and

th video frames to be

where is the histogram of theth frame. A shot change is
said to occur whenever the action measure crosses a particular
threshold and a refresher frame is sent. However, the value
of threshold needs to adapt to the shot content. Letand

be the mean and variance of the action measure, when
the statistics are computed over the lastframes (
in practice). The threshold is then set to . Note
that a large leads to missed shot detections while a small
value for leads to many false alarms. Following [31], we
use a value of five for , which was found to work well in
practice. Note that this problem of shot detection can also
be formulated in a Neyman–Pearson hypothesis testing frame
work, assuming Rayleigh distributions with differing variances
for the action measure under different hypothesis. However,
we found that the improvements were marginal, if any, using
this approach. We attribute this to the fact that the simple
adaptive thresholding scheme results in accurate shot detection
in most cases.

V. RESULTS

A. Comparison with a Generic Block Based Coder

In this section we will compare the performance of the
proposed coder with a generic block based coder as used in
the H.261 or the H.263 standards [4], [5]. All performance
comparison is performed on the luminance component of
the video frames. In order to make an objective comparison,
we used the same quantization strategies to quantize DCT
coefficients for both the coders. We used a uniform quantizer
with a quantization step size of 16 for the AC coefficients and
a step size of 1 for the DC coefficient. The Huffman codes for
motion vectors and DCT coefficients were the same for both
the coders. These coding tables were derived directly from
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(a)

(b)

(c)

Fig. 5. Comparative results at 1280 bits per luminance frame.X axis: frame number andY axis: PSNR. The graphs on the right corresponding to a frame
rate of 7.5 Hz (every fourth frame is coded) and those on the left correspond to a frame rate of 30 Hz. Dashed line: block based scheme. Solid line: proposed
region based scheme. (a) Car phone sequence, (b) Miss America sequence, and (c) Susie sequence.



1126 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 7, OCTOBER 1999

(a) (b)

Fig. 6. Residual images from Miss America sequence(M = 2): (a) block based approach and (b) region based approach.

those proposed in the H.261 standard and therefore are more
optimal for the block based coder. Both coders used integer
precision motion vectors for the following experiments. We
found that using a half-pixel precision motion vector yielded
similar improvements in performance in both coders. Boolean
flags for the proposed compression strategy were directly
coded without any compression. No refresher frames were sent
during the encoding of the video sequences.

The frame bit rate was held (approximately) fixed for both
the coders at 1280 bits. This bit rate corresponds to a bit rate
of 9.6 kbps if every fourth frame is coded and a bit rate of 38.4
kbps if all the frames are coded, which are reasonable for video
teleconferencing applications. The reason for using fixed bit
rate for each frame, as explained before, is that variable bit rate
(at constant PSNR quality) tends to produce fluctuations in bit
rate which are unacceptable within a video teleconferencing
setup.

Fig. 5(a)–(c) shows the comparative performance of the
coders for typical video teleconferencing sequences (carphone,
Susie, and Miss America). In each case the graph on the right
corresponds to a frame rate of 30 Hz and the graph on the
left to a frame rate of 7.5 Hz (every fourth frame). It is seen
that the proposed coder out performs the block based coder
by about 2–3 dB consistently. Table I summarizes the average
quality for these cases.

In order to display images, we magnified them (since the
image resolution is small) by replacing each pixel with a
block of for magnification by a factor of (pixel
replication). Wherever necessary, we also display the original
image to allow for objective comparison in spite of the filtering
introduced by the Laser printer. Fig. 6 shows the difference
images magnification for a frame from the miss
America sequence. Fig. 7 shows a part of the Miss America
frame for both the approaches as well as the original .
These images were obtained by coding at 7.5 Hz (every
fourth frame). Fig. 8 shows a frame of the Susie sequence for
both the approaches as well as the original at 7.5 Hz. Fig. 9

TABLE I
AVERAGE PSNRFOR CODING THE Y -COMPONENT OF THESEQUENCES WITH THE

PROPOSED ANDBLOCK BASED APPROACHES AT1280 BITS/FRAME. (a) CODE

EVERY FOURTH FRAME (7.5 Hz) AND (b) CODE ALL FRAMES (30 Hz)

(a)

(b)

shows a frame of Susie sequence for both the approaches at
30 Hz.

The overall perceptual improvement due to the proposed
approach is quite evident. The improvement in performance
for the 7.5 Hz case is much more pronounced than for the
30 Hz case. This is to be expected, since a gain of 2 dB in
PSNR at higher quality does not lead to as much perceptual
improvement as the same PSNR differential at a lower quality.

B. Comparison of the Residual Coding Schemes

We also present results comparing our adaptive residual cod-
ing scheme with the usual block DCT based coding scheme. As
mentioned in Section III, both the schemes transmit quantized
DCT coefficients. Our method gains over the generic DCT
based coding scheme by cleverly utilizing the fact that the
positions of high residual concentration can be pre-predicted.
Since the prediction mechanism can break down for some
blocks, we propose to switch coding with our strategy with
the DCT based scheme (one bit needs to be transmitted).
Such a coder always performs better than the baseline block
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(a) (b) (c)

Fig. 7. Part of a frame from Miss America sequence(M = 4): (a) original, (b) block based approach, and (c) region based approach.

(a) (b) (c)

Fig. 8. Frame from Susie sequence(M = 2): (a) original, (b) block based approach (7.5 Hz), and (c) region based approach (7.5 Hz).

(a) (b)

Fig. 9. Frame from Susie sequence(M = 2): (a) block based approach (30 Hz) and (b) region based approach (30 Hz).

DCT scheme. Fig. 10 shows the improvement (in dB PSNR)
over the generic coder, when the quantization step size of
AC coefficients is 16 and 32. Note that this improvement was
obtainedonly due to improvement in residual coding. In other
words, both coders are coding exactly thesame residual blocks.
The block numbers are not correlated between the two graphs.
No refresher frame was sent in the simulations and the blocks
are taken from the first seven frames (approximately) for step
size 16 and the first five frames (approximately) for step size

32. It may be observed that the average advantage due to the
proposed method decreases as block number increases. This
occurs due to the fact that prediction degrades as the frame
number (and block number) increase due to lack of refresher
frames.

VI. CONCLUSION

In this paper, multiscale image segmentation is used to
develop a video compression algorithm for low bit-rate ap-
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(a)

(b)

Fig. 10. Comparative results for residual coding: the PSNR gain of the
proposed method over normal DCT based coding scheme per block number.
Quantization step sizes are (a) 16 and (b) 32.

plications. The key ideas of the scheme presented include
the following: a) the algorithm uses multiscale segmentation
and selects the segmentation at a scale which is optimal for
compression; b) a novel method is introduced to deal with
occluded regions which normally degrade the performance of
region based techniques; c) pel recursion and linear prediction
methods are employed to fine tune motion estimation; d)
region segmentation is performed on thepreviously decoded
frame (so we do not need to encode any segmentation infor-
mation); and e) residual coding exploits the fact that locations
of high residual energy concentration occupy small portions
of the image and area priori predictable. A fusion of these
important ideas leads to a gain of about 2–3 dB in PSNR
over the block matching algorithm for a variety of head-
and-shoulder sequences using a fully functional video coder
(when the bit rate is constrained to be the same for both
schemes).
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