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Low Bit-Rate Video Coding with
Implicit Multiscale Segmentation

Seung Chul Yoon, Krishna Ratakonda, and Narendra Atrglow, IEEE

Abstract—In this paper, we report on our efforts toward precede or succeed the current frame in display order. Motion
developing a multiscale segmentation based video compressioncompensation is aimed at exploiting the temporal redundancies
algorithm aimed at very low bit-rate applications such as video in the video sequence. In the second step, the residual, which

teleconferencing and video phones. We introduce novel techniques. the diff bet th tual video f d the f
for multiscale segmentation based motion compensation and IS the dilierence between the actual video frame an € Irame

residual coding. Our region based forward motion compensation resulting from motion compensation, is partially transmitted
strategy (in terms of direction of motion vector, which is from according to bit-rate restrictions. Typical algorithms reported
the previous frame to the current frame) regulates the size and in literature focus on utilizing spatial redundancies for effective
number of regions used, by pruning a multiscale segmentation \egjqa| coding. In order to limit the effect of progressive
of video frames. Since regions used for motion compensatlond dati hich Its f this t t d

are obtained by segmenting the previously decoded frame, the egradation whic r_esu_ S_ rom this Wc_) step pr_oce ure_, a
shape of the regions need not be transmitted to the decoder. refresher frame, which is intra-coded without using motion
Furthermore, our hierarchical motion compensation strategy compensation, is periodically transmitted.

refines an initial region level, coarse motion field to obtain a In this paper we will propose novel implicit, multiscale,
dense motion field which provides pixel level motion vectors. The image segmentation based motion compensation and residual

refinement procedure does not require any additional information di trateqi hich It in both subiecti tual
to be transmitted. This motion compensation technique effectively C0diNg strategies which result in both subjective (perceptual)

addresses the problem of dealing with “holes” and “overlapping and objective peak signal-to-noise ratio (PSNR) improvements
regions” which are inherent to forward motion compensation. when compared with a generic block based algorithm. Our
Residual coding is performed using a novel method which exploits video compression algorithm is aimed at low bit-rate applica-
the fact that the energy of the residual resulting from motion  4jnns where the performance degradation resulting from block

compensation is concentrated ina priori predictable positions. . - .
We will show that this residual coding technique can also be Pased algorithms is typically unacceptable. Although post pro-

extrapolated to improve the performance of coders using a block C€ssing schemes for dealing with errors resulting from block
based motion compensation strategy. A fusion of these conceptsbased motion compensation exist, such algorithms typically

leads to a gain of 2-3 dB in peak signal-to-noise ratio, apart from result in a blurring of the decoded image. Examples of low bit-
significant perceptual improvement, over a generic video coding a1a gpplications of interest include video teleconferencing and
algorithm using a block based motion compensation strategy id h Furth the techni that d |
(such as H.261 or H.263) for a variety of test sequences. vi eolp ones. Furthermore, the tec n'ques. at we ev_e op,
. ] . . . effectively address some of the problems inherent to video
_Index Terms—Hierarchical motion compensation, low bit-rate  qqing with arbitrarily shaped regions and hence can find
video compression, multiscale segmentation, residual coding. - L . - - .
independent application in other object based video coding
strategies.
|. INTRODUCTION In the rest of this section, we will review a few relevant

IDEO sequences are characterized by spatial and te%c_)tion compgnsation and residual coding strategies from

Vporal redundancies which have to be exploited by afjerature and introduce the proposed approach.

effective video compression algorithm. Video compression, as ]

implemented in most popular coders, is a two step procedufe. Related Previous Work

The first step, called motion compensation, consists of pre-Many strategies for performing video compression have

dicting the current frame using motion information from théeen explored in the past decade [1]. Standards aimed at

previously decoded frame(s). The previously decoded frardiferent bit-rate requirements have been proposed, which

from which motion compensation is attempted can eithesinge from the moving picture experts group (MPEG) standard
[2], [3] aimed at relatively high bit-rate applications such as
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rate applications. Although many algorithms claim improvedver the entire video sequence. Intensity based segmentation
PSNR performance at low bit rates, the applicability of PSNRartitions the image based on grey scale homogeneity and does
as a reliable measure for perceptual quality is questionallet make assumptions on the smoothness of motion. Since
at such bit rates. We attribute this to the fact that mo#te scale, at which segmentation is performed, determines the
algorithms use block based motion compensation strategisize (and hence the number of the regions) generated, this has
with a possibility for variable block size in recent coders [5]a direct effect on the amount of motion related information
[6], which cause significant block artifacts resulting in a loss igenerated. At low bit rates it becomes important to optimize
perceptual quality, if adequate residual coding is not performéite number of bits spent on motion information. However, it
after motion compensation due to bit-rate restrictions. Thisis not clear as to what is the “optimal grey level homogeneity
indeed the case at the bit rates used in video telephony awa@le” at which segmentation is to be performed and how to
teleconferencing. control the process of segmentation based upon a choice of
Motion compensation has been studied extensively both ferale. Recent work [19] proposes to use multiscale segmen-
video compression [6], [7], [8] and general video analysimtion derived from a morphological processing framework.
[9], [10], [11], [12]. The most common form of motion This method still requires the transmission of segmentation
compensation used in a video compression setting is bladformation to the decoder which results in an unacceptable
based, backward (in terms of direction of motion vectosmount of overhead at the bit -rates targeted in this paper.
which is from the current frame to the previous frame) motion Apart from the difficulties considered above, a major draw-
compensation and its variations. The MPEG-1 and H.2@&hck of previous segmentation based schemes is that the
standards split the image to be coded intox186 blocks and segmentation information needs to be explicitly encoded. This
find the best backward motion vectdor each block, within typically results in an unacceptable amount of overhead at
a specified search range. The H.263 standard allows for al@® bit rates. A possible solution to this problem might be
x 16 block to be split into four 8 8 blocks, the criterion to use forward motion compensatfom which segmentation
for choice between the larger and smaller blocks being left performed on the previously decoded frame and forward
to the specific implementation of the encoder. The MPEG+Rotion vectors are calculated for regions [17]. However, the
standard allows for a 16& 16 block to be split into two 16 difficulty with such an approach is that all of the pixels
x 8 blocks, the split being allowed in the vertical directionin the frame to be coded cannot be predicted; the leftover
The reason behind allowing a split in the vertical directiorpixels result from “holes” (where no prediction is available)
but not in the horizontal direction, is that the horizontabr “overlapping regions” (which are covered by more than
motion is much larger than vertical motion in typical videmne translated region). Yokoyama [17] proposes an ad hoc
sequences. Recent algorithms have also explored allowingadution in which such regions are predicted by interpolating
quad-tree splitting procedure to vary the size of the blocks averaging the motion vectors from known locations. Such
used for motion compensation. Schuster and Katsaggelos §&]approach results in large prediction errors in the ambiguous
show how to perform a quad-tree partitioning by allocating thegions thus defeating the purpose of using a segmentation
optimal number of bits to partitioning, motion compensatiohased approach which is to maintain good perceptual quality.
and residual coding in a rate-distortion setting. However, asAnother motion compensation scheme of interest is the
noted before, block based compensation typically results pel recursion algorithm [7], [8]. Biemond and Looijenga
a peaky distribution of the residual error, with high residudV] formulated a recursive Wiener estimate. The recursive
concentration at block edges and image edges. At low kiyuation is obtained by considering a Taylor series expansion
rates, when adequate residual coding cannot be performed, tiishe intensity image as a function of the motion vector to
results in perceptually unacceptable performance. The usualldix estimated. It is well known that the inherent linearization
for this situation is to use a pre- or post-processing filter whiatue to Taylor series representation limits the applicability of
smoothes the block artifacts [13], [14]. Such filtering typicallghe algorithm to situations with small motion and where a
leads to a blurring of the true image edges in addition togood initial estimate of motion is available. Pel recursion
reduction of the block artifacts. typically results in fractional pixel accuracy motion vectors.
Segmentation based motion compensation schemes h8imce images consist of pixel values at discrete locations an
also been explored in some detail in literature. Such schenieterpolation mechanism is needed to extend pel recursion to
can be classified into methods which use motion field setite discrete setting. Nosratinia and Orchard [8] proposed a
mentation [15], [16] and those which use intensity basestheme for obtaining an optimal linear interpolant by solving
segmentation [17], [18], [19]. Motion field segmentation pam linear least squares formulation in a causal neighborhood.
titions the image into regions based on a criterion of similaritye will use a modified version of these ideas in our motion
in motion. The assumption behind such a scheme is th@tmpensation algorithm.
groups of pixels which have similar motion over the past few Most of the previous video compression algorithms adapted
frames will continue to move in a similar fashion in successitechniques native to still image compression to do residual
frames. Such assumptions lead to large errors when the implanding [2], [4], [20]. Such an approach is far from optimal
smoothness assumption on motion is violated and lead to litdece it does not exploit the redundancies introduced by

or no advantage over block based methods when averaged
2|n the terminology of this paper, the forward in forward motion compen-
1The criterion used for finding the best matched motion vector is that efition refers to the direction of motion vectors, which map a region/block in
minimizing the mean squared error. the previous frame to the current frame.
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the fact that the residual is synthetically generated through
the process of motion compensation. Block discrete cosine
transform (DCT) coding, with 8< 8 blocks, is typically the
most common residual coding formulation and is used in all
standard implementations. Although other schemes involving
vector quantization [20] have been explored, they are not as
popular. Vector quantization in particular requires a good code
book for obtaining high performance. However, the design
of a generic code book is difficult due to (a) local minima ‘
problems of the popular design algorithms (such as K means)
and (b) variability of the video content. Many DCT-based
implementations [6], [17] code the residual in only selected
8 x 8 blocks to meet bit-rate restrictions.

COARSE SCALE

parent

B. Video Compression with Implicit Segmentation
In the proposed approach we start with a multiscale segmen-

tation of the previous frame provided by the algorithm in [21], <
[22]. A scale parameter in the segmentation algorithm controls FINE SCALE ’
the grey level homogeneity of the regions into which the
image is partitioned. At a coarse scale the image is partitioned
into a few large, relatively inhomogeneous regions while at
a fine scale we obtain more homogeneous regions at the
expense of a decrease in the size of the individual regions. The
algorithm provides segmentation at as many different scales as
are naturally present within the image, ranging from coarse to
fine. A significant feature of the algorithm is that a parentsig. 1. lllustrating the parent child relationship between regions at the coarse
child relationship is preserved across the different scales SGf'® and @ fine scale segmentation of the image.
segmentation (see Fig. 1). In other words, a region at a coarse
scale of segmentation can only split into smaller regions atAnother novel feature in our motion compensation algo-
finer scales. No new regions which partake of more than orithm is its ability to control the number of regions in the
region at a coarse scale can form at finer scales. This residtplicit segmentation used for motion compensation, thus
in a tree structured representation for multiscale segmentatiaiowing adaptive control of the amount of motion information
To draw a parallel, we obtain exactly the same kind dfansmitted to the decoder. The key idea behind this rate
representation as the popular quad-tree segmentation, whicbastrol mechanism derives from the multiscale nature of the
used extensively in lossy compression literature, except that segmentation algorithm [21], [22] which provides us with
obtain arbitrarily shaped regions in the place of square blocksultiple scales of segmentation, thus allowing us to pick
The hierarchical, multiscale segmentation based motiand choose the size and number of regions which form the
compensation scheme effectively addresses many issues wimaplicit segmentation of the image used for motion com-
have made previously proposed segmentation based cogemssation.
[17], [23], [24], [25] unattractive for video compression. We Our residual coding strategy also differs radically from the
use a forward motion compensation strategy instead of ttypical scheme used in most video compression algorithms
conventional backward motion compensation and therefd®, [3], [4], [5], [6]. Previously proposed residual coders
avoid sending the segmentation related information to tiypically consider the residual to be an image and therefore
decoder. In this sense, the segmentation information that emmploy strategies native to stillimage compression algorithms.
use is implicit. Forward motion compensation, however, poselowever, such strategies are in essence not exploiting the
its own challenges as “holes” and “overlapping regions” exigict that the residual is not a natural image but synthetically
in the motion compensated image. Thus the motion field aftgenerated by the process of motion compensation. Practical
forward motion compensation is typically sparse. We call thisexperiments on video sequences revealed that most of the
“coarse motion field.” We propose a novel strategy which usessidual ¢90%) is concentrated in a tiny portion of the
partial backward motion compensation followed by a modifieichage (10%). Furthermore, the parts of the image where
pel recursion algorithm to fill in the motion information inmost of the residual energy is concentrated can be reliably
such unpredictable regions. After this procedure, the motignedicted using the locations of the edges in the previously
field covers every pixel in the frame to be coded and hencediégcoded image and the region based motion vectors. It may
is dense. We call this a “dense motion field”. The hierarchichke noted that in this observation, the location of high residual
process of first computing a coarse motion field followed bgnergy concentration can be pre-predicted, and is not tied
a dense motion field results in improved robustness in th® a particular motion compensation scheme. Therefore, our
motion estimates. residual coding strategy naturally extends to block based

children
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motion compensation schemes used in all of the standadlsMultiscale Segmentation Algorithm

(2], 131, [4], [5]- The objective of segmentation is to partition the image
_ into regions which are intrinsically similar and extrinsically
C. Overview dissimilar (with respect to all adjacent regions) in terms of

The next section describes our segmentation based motiay level homogeneity. Multiscale segmentation aims at fa-
compensation scheme in detail. The residual coding strategijtating image segmentation at all geometric and photometric
is outlined in Section llI. Specific details regarding the choicecales at which structure is present in the image. Previous
of various parameters and other implementation details ax@mpression algorithms used clustering or region growing
presented in Section IV. Results and a discussion of thgl6], [17], [25], in order to achieve segmentation. These

implications are presented in Section V. approaches produce errors in the resulting segmentation e.g.,
in the edge locations and in the delineation of regions e.g., in
II. MOTION COMPENSATION their homogeneity. A recent transform [21] which possesses

. . . . . . _desirable properties of multiscale segmentation, forms the
In this section we will outline the motion compensation . . . . .

ti]ass of the segmentation algorithm used in this paper. In
i

strategy used within our video compression algorithm whic . .
) ) S continuous form, the transform maps a continuous two-
has four major components: . . . . .
; _ i o dimensional (2-D) grey scale imadgéz,y) into a family of
1) a multiscale segmentanon alggrlthm which is used tQ4.otion force field® [z, y, 0,(z,y), 0s(z, )], as follows:
segment the previously transmitted frame;
2) coarse motion field generation: a forward motion con® [z, v, o,4(x,v), os(z, y)]
pensation strategy which forms an initial prediction for [ T
the frame to be encoded using forward motion vectors - RdQ[AI’ 79(2,y)] - da (7,05 (2, 1)) ||7]] dw dv
which represent the translation of regions from the . . .
previous frame to the current frame; Wr}er_e}; = domallr‘{I(a:,y)_l]:,hr t: (Uf_ x)’th (w _.y){’ apd
3) dense motion field generation: a strategy for fillin _d|' (w,z{) N (U’w?J' T ransthormtas .? simrar Ot”'_‘
in the *holes” and “overlapping regions’ where moJor & discrete image. It analyzes the intensities present in a

tion information from the forward motion compensatior?eighborhOOd of the pixel, and produces a force vector for each
gxel in the image. This force field makes the regions explicit

strategy was either not available or is ambiguous. Thi h i ke thei tracti A iated
involves using motion vectors in the backward directiolf!. SUCh & way as o make their extraction easy. Associate
ith each pixel is a homogeneity scalg, which reflects the

for relatively large regions where a prediction is nof’ ) .2 . .

available and a modified pel recursion algorithm mhomogenelty of the region into the pixel groups and a spatial

[8] to fill in the motion compensated prediction of theécale s Wh'Ch cpntrols the n_e|ghborhood over which the
current frame for the rest of the pixels; transform is _apphed. The_ spatial scale parameféecqntrols

4) a computationally inexpensive rate control strate € spatial distance functiof(-), anq th(_a homogenel_t y scale
which uses segmentation at multiple scales, whi rameter, controls_the hom_ogene|ty dlsta_nce functdytj-_).
differ in the number and size of regions into Wh,iCh th onsidering the various desirable properties for the distance
image is partitioned, to regulate the amount of motio nctions it has been found that the optimum form is that
information transmitlted of a box-car window (other forms, such as a 2-D Gaussian,

. . . . are computationally expensive and yield little or no advantage
As noted in the introduction, the forward motion compe P y exp y d

. . S Tover the simpler box-car window)
sation strategy typically generates a coarse motion field which

does not provide an intensity estimate for each pixel in the dy(Al,o,) ~ Bar(o,)
frame to be coded. Thus we may think of the third step in dy(r,05) ~ By (o)
the above list as refining this coarse motion field to obtain
a dense motion field which provides reliable initial intensityhere
estimates for all the pixels in the frame to be coded. An 1, |z|<y
advantage of this hierarchical motion compensation strategy Ba(y) = {0, else
is that the coarse motion field results in the generation of . . . . . .
reliable motion estimates for initializing the pel recursion BY USINg a spatially invariant, and computing the optimal
algorithm used in generating the dense motion field. As not&e’ the trqnsform can t.’e applled tq 'mage segmentatlon.
in [7], pel recursion works best when the initial estimate o-F € selgctlon of an °pt'm?‘l’5, IS eq“'?’a'e”t _to using the
the motion is good, so that the linearization implied by th@PPropriate amount _Of spatial |nf0rmat|on to |dent|_fy regions
Taylor series expansion is validated. We also modify the p i"sed on homogene|ty. Further_ details may be ol_)tame(_j in [22],
recursion algorithm along the lines of [8] to obtain reIiabIJsZG]' Resulis of a typical multlscalg segmematlon using the
intensity estimates by finding the causally optimal interpolarff2nsform of the image Lena are given in Fig. 2.
Further details are provided in Section II-C. ) i

In the rest of the section details of the segmentatidhy Coarse Motion Field
algorithm (Section II-A), coarse motion field generation In Section II-A we saw how to construct the multiscale
(Section 1I-B), dense motion field generation (Section II-Cgegmentation of a given image. Selecting the right scale of
and the rate control mechanism (Section 1I-D) are providedsegmentation for motion compensation will be explained in
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Fig. 2. (a) Actual image and (b) different scales of segmentation given by the multiscale segmentation algorithm. (c) and (d) Different scales
of segmentation given by the multiscale segmentation algorithm.

Section 1I-D. Given a segmentation at some specified scalesgfguences like Miss America. Since the primary application
the previous image, we will describe in this section how tof our video compression strategy is in video teleconferencing
obtain a coarse forward motion field which generates a partighich is characterized by very low bit rates and relatively
prediction of the intensities in the frame to be coded. We wousimple motion, we chose to use translational motion vectors.
like to ascribe a forward motion vector to each region in thi@ order to apply our algorithm to more complicated sequences,
previous image, within a prescribed search range, so asittevould be optimal to use some strategy to switch between
minimize the mean squared error. the affine motion model and the translational motion model
The first question to settle is whether to use a simpten either a per frame or per region basis. Further details of
translational motion model to depict the region motion auch an optimal switching strategy are beyond the scope of
to use a more complicated model such as the affine mod#is paper.
Since real motion of the region can be better captured usingn order to find the translational motion vector for each
an affine model, we expect to obtain a better fit with suchragion, we use a full search over all motion vectors within a
model. On the other hand, we would have to pay the extspecific range. To be more specific, a region in the segmen-
cost of sending additional rotational motion parameters ftation of the previous frame is moved around within a search
each region which might lead to a unacceptable overheadwimdow in the current frame and that motion vector is chosen
very low bit-rate situations. In practice, we found that usinghich yields the minimum mean squared error. In the cases
an affine motion model is not justified for relatively simplevhere parts of the region overflow the edges of the frame to



1120 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 7, OCTOBER 1999

be coded we do not use those parts of the region which fairative computation and matrix inversion which pel recursion
outside the image to predict the intensities in the frame tequires.
be coded. Thus the translational motion vector that we findWe classify secondary regions into two classes for compres-
minimizes the mean squared error only within the frame &on purposes: secondary regions that are size-wise large are
be coded. called class-one secondary regions and those which are size-
If a region has a motion vector which maps it to such wise small are called class-two secondary regions. The choice
location in the frame to be coded which is already covered an exact size threshold for affecting this classification will
due to the motion of other regions, transmitting the motiope discussed in Section IV.
vector of that region to the decoder is not necessary. In ourFig. 3 illustrates the process of obtaining the dense motion
implementation, we have a boolean flag for each region whitibld from the coarse motion field. The dark regions correspond
is either set to one or zero to depict whether the motion vector the locations of pixels where the intensity prediction using
of the region is going to be transmitted to the decoder or nolhe coarse motion field is either not available or is ambiguous.
It is to be noted that the coarse motion field that we generdtas seen that backward motion compensation eliminates the
using this algorithm will have holes and overlapping regionfarge secondary regions while pel recursion takes care of the
Prediction of the intensity values at such locations will bemall (and typically widely scattered) secondary regions.
dealt with during the generation of the dense motion field in

the next section.
D. Rate Control for Motion Compensation

. _ Since the application of choice for our video compression

C. Dense Motion Field algorithm is teleconferencing, we assume that each frame is

Pixels in the frame to be coded which cannot be accuratelgsigned the same number of bits (approximately) i.e., the
predicted using the coarse motion field (holes and overlappibiy rate is equally divided among various frames. Note that
regions) are themselves connected groups of pixels; each sacktrategy which distributes the bit rate unequally a mong
connected group of ambiguous pixels is called a secondatijfferent frames would lead to temporal fluctuations in the
region in our terminology. Obtaining a prediction of thebit rate, which in turn leads to difficulties in real time display
intensities of the pixels in the secondary regions would lead the video at the decoder.
to a pixel-wise dense motion field. In order to convey the motion compensation information,

There are two coding strategies that we envisage usimg have to transmit the motion vectors generated during the
to predict the intensities of pixels in secondary regions. Thmocess of construction of the coarse and dense motion fields
first strategy involves using a backward motion vector for @ the decoder. As noted in Section II-C we do not need to
given secondary region which minimizes the mean squargensmit any information regarding the pel recursion motion
prediction error. Another strategy is to utilize a modifiegstimation to the decoder. Also, segmentation is always carried
pel recursion algorithm to find the motion vectors for theut on the previously decoded frame; thus no segmentation
pixels within the secondary regions. It is to be noted thatformation needs to be transmitted to the decoder. Hence our
the requirements for good performance of the pel recursicate control strategy should make sure that the number of bits
algorithm viz., applicability of a Taylor series approximatiorspent on transmitting motion related information to the decoder
and good prior estimates for the motion vector are satisfiedshould be optimally balanced with the number of bits spent on
our case, since we apply the pel recursion algorithm at ongsidual coding (to be covered in Section IlI).
a few, well spread out locations within the image; the image As noted earlier, segmentation of the previous frame with
intensities at other locations having been predicted using thenultiscale segmentation algorithm gives us segmentation of
coarse motion field. This is contrary to the application of thime image at all photometric and geometric scales at which
pel recursion algorithm in literature [7], [8] whence it has beeis structure present within the frame. In other words, for each
used as a stand alone algorithm which performs all the motivalue of the grey level homogeneity scéte, ), we can obtain a
prediction. The pel recursion algorithm will be discussed isegmentation of the image. Using a fine scale of segmentation
more detail in Section IV. would mean that the region size would be small and hence

Experimental evidence suggested that using a backwdhng number of regions in the segmentation of the image would
motion vector typically leads to a better motion predictiobe large. This would mean that we need to transmit a large
of the intensities when compared with the prediction obtainedimber of motion vectors if we segment the previous image
with the pel recursion algorithm to predict the intensities @it a fine scale. On the other hand, each region would be highly
pixels within secondary regions. However, the disadvantajemogeneous thus leading to a small residual. The opposite
of using a backward motion vector is that it has to bwould be the case if we segment the image at a coarse scale
transmitted to the decoder. On the other hand the pel recursi@n, the amount of motion information would be small but the
algorithm does not need any information to be transmitted tesidual would be larger. This leads us to the conclusion that
the decoder. Thus, it would be better to use backward motitrere is an optimab, at which the segmentation of the pre-
compensation for large secondary regions while resorting ¥mus image would be optimal. The rate control strategy thus
the pel recursion algorithm for relatively small secondameduces to choosing an optimal scale for segmenting the image.
regions. Another advantage of using the pel recursion only forSince motion compensation is applied to those frames of the
small portions of the image is that we can avoid the excessivieleo sequence where many of the objects within one frame
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Backward Motion Compensation Modified Pel Recursion Algorithm

Fig. 3. Dense motion field generation: starting with the secondary regions in the frame to be coded (which are black), the figure illustrates that
class-one secondary regions are predicted by backward motion compensation and then the remaining class-two secondary regions are predicted using
the modified pel recursion algorithm.

are common to the next frame, one would expect that the be transmitted is also required to constrain the algorithm
value of ¢, at which we obtain optimal rate control would befrom transmitting too much motion information and little or
similar for nearby frames. Thus, if we know the correct scale ab residual information. Although PSNR optimality would
segmentation for the previous motion compensated frame, a@metimes lead to the conclusion that transmitting little or
would expect that the correct scale for the next image would be residual information leads to better quality video, we
either the same or slightly different. This observation leads tdeund that transmitting some residual is important in removing
drastic reduction in the amount of computation needed to fipgérceptually annoying artifacts.
the optimal scale for transmitting the motion compensation It is to be noted that the above rate control strategy is not
information. optimal in the sense that we do not fully explore all possible
Although ¢, is in general a real number, only certairsegmentation scales. However, we found that the tremendous
discrete values ob, are of interest as the segmentation dhcrease in computational complexity which results from such
the image changes only at these values. In other wordspfpcessing is not validated by a corresponding improvement
we start with a larges,, (corresponding to a coarse scale ot perceptual quality.
segmentation) and decrease it gradually, regions at the coarser
scale would subdivide into finer regions only for certain [ll. RESIDUAL CODING

discrete values ob,. The segmentation algorithm reported The residual coding scheme that we propose exploits the
in [26] can automatically select these discrete values,0ht fact that the residual has been generated through a process of
which there is a significant change in the segmentation of thgytion compensation in order to better code the residual. It
image. Leto,;, represent the discrete values @f arranged || be seen that the proposed scheme can be extended to block
in ascending order of magnitude with increasing values for thgotion compensation and any transform based residual coding
subscripti (larger o, implies coarser scale). scheme along similar lines, although we apply it only in the
Given the grey level homogeneity scale, ) at which context of our hierarchical motion compensation strategy and a
the previous motion compensated image was segmented, WeT based residual coding scheme in our paper. Since block
additionally check only the two adjacent values i€,.—1  motion compensation forms a basis for many popular video
and o 41 at which there was a significant change in theompression schemes in literature, we will explain how our
segmentation of the image. For these three scaleswjz..1, scheme may be extended to that situation wherever necessary.
04,k Og,k+1 WE Can perform motion compensation and resid- The key point which aids the proposed scheme is that we
ual coding (as described in the next section) constrained & compressing a residual generated hyotion compensated
the number of bits allocated to the current frame and selegdieo streamand not still images as generally assumed by
that scale of segmentation which leads to the least meast residual coding schemes. Thus we expect that the residual
squared error (and hence best PSNR). This approach caringige error will be concentrated in certain areas of the image.
be used for the first motion compensated frame in the vid@hese areas can be predicted, given that we know the motion
sequence or for the first frame after a refresher frame. ¢ompensation scheme.
these cases we do a full search through all possifleAs We conducted experiments on practical data which sug-
stated before, the number of such scales is finite (typicaljjested that 80-90% of the residual energy is concentrated in
5-10 in practice) because the segmentation algorithm of [Afikdictable locationsvhich form about 10% of the frame to
chooses the most appropriate scales for generating the hie-coded. These experiments were conducted using the region
archical representation automatically. In practice, we fourhsed motion compensation scheme and some of the standard
that an upper limit on the total number of motion vectorsequences used for testing video teleconferencing applications
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(such as Miss America and Claire). The predicted regions are

- : : . 11111000 11110000

found by using the rules outlined in the Section IlI-A. 11000111 11100000
The residual coding scheme proposed in this paper makes 11111000 11000000
use of the above key observation to improve the performance 11111100 10000000
of any transform based residual coder. We first generate | | y ;1 1 90 0 00000000
an image.mask predicting the location of .residualienergy 11111110 00000000O0
concentration. Now we assume that the reS|duaI.eX|sts oy 559111100 00000000
in the predicted locations and is zero at other locations. So we 00000111 000000GDO

are free to vary the values of the pixels at such locations, where

residual is predicted to be zero, to obtain transform coefficients @ (®)

which lead to a better quality of the coded image. Since tii@. 4. Constraint sets for residual coding: (a) in the spatial domain the

decoder can also generate the same mask, decoding is pOSS\fﬁlféa.s where residual is predicted to be large (indicated by one) should not be
. ! changed and (b) in the DCT domain of the block, all coefficients lying outside

It may be noted that welo not needany further information 4 sub-block containing the DC coefficient should be zero (such coefficients

to be transmitted in order to implement the proposed schenich are constrained to be zero are indicated by a zero in the figure).

The question to be answered is: how should the “free pixels”
be chosen? For DCT or wavelets, the free pixels need to be
chosen so that most of the energy is concentrated in the low
frequencies. In other words we would like to use the freedom
given in the choice of the free pixels to maximally pack the
energy in the low frequencies of the transform domain. This
problem has been addressed recently by us in a general context
[27]. We had proposed an iterative algorithm which leads to
an optimal choice of the coefficients, which we will use in the
context of generating the residual.

the holes and other ambiguous regions which are filled
in with the modified pel recursion algorithm during the
formation of the dense motion field;

« the image edges in the previous frame also contribute to
some error although to a lesser degree when compared
with the block motion compensation strategy. Unlike the
case of block based segmentation, where we needed to
use a separate edge detection algorithm to locate these
edges, we can use the segmentation of the previous image
(which is used in motion compensation) to determine the
edge locations directly.

A. Generating the Residual Energy Prediction Mask

The first step in implementing the proposed scheme would
be to find the residual energy prediction mask locating th& Iterative Algorithm

positions in the error image where the energy is concentratedqnca the mask predicting the error locations is found as

This'depends on the motion cqmpensation scheme em_D'W&Qscribed in the previous section, we can obtain the optimal
as different motion compensation schemes lead to a differef ,es of the “free pixels” by using an iterative algorithm.
distribution of residual error. Furthermore, the procedure f@f,; the sake of convenience. we assume that we are coding
generating the prediction mask should be repeatable at {ig resjqual of an 8« 8 block using the popular DCT based
decoder without the transmission of any information. residual coding scheme. Let the prediction mask for this block
As already observed, for a block based motion compensatign P(i,7), the residual beR(i,), and the operatod(.)
scheme the pixels that cause.most of the errpr lie at: represent the & 8 DCT operator, wheréand; represent the
* the edges of the blocks wlth nonzero.motlon vectors. It ioordinates of an arbitrary pixel within the block(-,-) is a
well known [28] that residual energy is large at the edgasinary mask with one representing positions of high residual
of a block whose motion has been predicted using fudhergy and zero representing positions of low residual energy.

search block motion estimation; Two natural constraints which restrict the values of the free
* the image edge locations in the previous decoded framgxels are as follows (see Fig. 4).

Block motion compensation does not compensate for 1) The constraint se€’;
region boundary which passes within a block, thus leading ~ | here the residual energy is high (as given By, -))
to large errors at places where there are edges in the 5 their actual value. Mathematically; = {I(-,) :
previous image. These edges can be detected using a I(i,5) = R(i.5) if P(i,j) = 1}.
simple edge detection algorithm like the Laplacian or 2)
Canny edge detectors;

« the predicted location of image edges in the frame to be

coded (i.e., translated versions of image edge locations in  |5cks with high frequency DCT coefficients equal to

the previous frame to the current frame). zero. To be precise, all the coefficients outside a sub-
For region based motion compensation, we can similarly  lock [see Fig. 4(b)] containing the DC coefficient are
conclude that most of the error would be concentrated at: constrained to be zero in the DCT of the block. This is
« the edges of the translated regions in the frame to be reminiscent of the constraint used in [18]. Mathemati-
coded. Since the actual affine motion of the region was  cally, C> = {I(-,-) : D(I)(é,4) = 0if (i +5 > M)}.
approximated with a translational motion vector, large The choice of a particular value fa¥/ was not found
error occurs at the region edges; to be crucial and will be discussed in Section IV.

constrains the residual at pixels

The constraint sef» is aimed at packing most of the
residual energy in the low frequency coefficients in the
DCT domain. So we considef, to be the set of all
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It is to be noted that the constraint sefs and C, do Now, using (1) we can write the displaced frame difference as
not intersect in general. We are interested in searching for . ) ) ) . _
a solution inC; which is closest taC, in the mean squared g(z’j) = Da(i = dipj = dj) = s (i = 70, — ).
sense. In other words, we would like to find that distributio . . . . .(3.)
of free pixels which maximally packs the residual energ%y using the Ta)_/lor‘serltla_slexpanls_ltin of the wn_dgel(z,j)
in the low frequency coefficients in the DCT domain, Suchound the locatiorfi — d;™", j — d;™"), we obtain
a solution can be obtained by solving the problem in the Li1(i—di,j — dj)

projection on convex sets formalls_m [29]. Searching for a  _ Lo a(i— dt - d;fl) — (d; - A=t d; — dgfl)
solution involves alternately projecting on €, and C, and o ? - o J
stopping the iterative process after a final projection on to X VI (i —di 5 —di ) o1, ) 4)

the setC; upon convergence. We chose to stop the algorith\%ere o

after a fixed number of iterations (i,4) is the approximation error term due to

linearization. Thus, using (3) and (4) leads to the following

recursive update in terms of the displaced frame difference
C. Switched Residual Coding Strategy E(, ) P P

In the previous two sections we described a residual coding L. 1 1
strategy which is applicable to each»88 block and a DCT B0 j) = —(di —di,dj —d;7)
based transform coder. Note that the primary assumption in X VIk_l(i — dﬁ_l,j — dé_l). (5)

designing this strategy is that the residual energy in places . . . )
where P(i,j) = 0 is negligible i.e., most of the energyAssumlng that the same motion vector works in some neigh-

is concentrated at such positions as predicted by the malRrhood ofn pixels around the current pixel, we can formulate
However this may not be satisfied in practice, as the reliabilify St ©f equations that the motion vector needs to satisfy

of the segmentation, which in turn determines reliability of

the prediction mask, is itself dependent on the quality of 7' =G d - dt) 4 vt (6)
the previously coded image which degrades with time if a
refresher frame is not transmitted. Thus we obtain bettohere Z! = [E'(i1,j1)E (i2,52) ... E(in, jn)l', G°F

performance if we use the usual DCT based decoding schefWdr—1(i1 — di *,j1 — di )V I_1(ia —di ™4 o — dit) ..

for some blocks. In order to account for this problem we useér _; (i, — dﬁ_l,jn — dé_l)]’ and V1 is the error vector at

a boolean flag to determine which scheme we are usingtte (I — 1)th iteration.

code each DCT block. Results comparing the advantage of thét is a straight forward exercise to solve the above equation
proposed method over the usual DCT based coding schensing stochastic linear estimation [30], to obtain the biased
for different quantization step sizes (assuming a uniforminimum variance estimate as

gquantizer) are presented in Section V. PR R (Gz—ﬂQz—l—le—l N 1—1)_1Gz—1’Qz—1—1Zz.
V. IMPLEMENTATION DETAILS @)

In this section we will specify the choice of various control The usual practice is to assume th@f~! and Q'=! (the
K23

parameters used in Sections I, lll, as well as the schemgajance matrices) to be of the form (varianee)identity

used for initializing and formulating the modified pel recurfnatrix). At this juncture it may be pointed out that in our

sior_1 algorithm of Section IITC. The reason for rgpeating t'l‘?ase we can specify a different form fep’ !, since the
derivation of the pel recursion algorithm is that in our casgyyes in the neighborhood can come through different pro-
we exploit additional features which arise due to differences fusses viz., forward motion compensation, backward motion
problem setting. In Section IV-C, we will explain the decision., ynensation, or pel recursion. Since the reliability of the
statistic for sending refresher frames (I-frames) periodicallyogimates in these three processes is quite different, we expect
them to have different reliability in estimation. Thug!*
can be thought of as a general diagonal matrix, rather than a
We start by expressing the intensity value of the frame &ealed identity matrix. The per-frame estimates of the three
be predicted as the value of the previous image at a locatieariances which determin@~! can be transmitted to the
shifted by the motion vector estimate. Lig{ -, -) be the image decoder with a negligible increase in bit rate. In our current
to be predicted and,_+ (-, -) be the previous image, where thémplementation, we restrict ourselves to using the scaled
subscriptk denotes the temporal position of the frame withifdentity matrix approximation foiQ! ! to avoid additional
the video sequence. #f= (d;, d;)" is the motion vector at the computational complexity.
location (¢, 7) within the image to be predicted, we can write Typical algorithms for pel recursive estimation use only
. . . ixels from acausal neighborhoodf the current pixel. This is
It 9) = Iea (i = diy j = d). (1) Eecessitated by the facq[ that all the pixels in th% current frame
If (d;~*,d;"*) is the motion vector estimate at iteratibn 1, Were being processed using the pel recursion algorithm. In
we may write the displaced frame differeng¥i, j) as preliminary versions of the algorithm we used a causal window
o o el . a1 to obtain the neighboring motion values to be used within
B, 5) =L 4) — e (i=d7 5= d7). (2 oy algorithm. However, we note that no such restriction is

A. Modified Pel Recursion Algorithm
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necessaryin our case. In fact, we can use the nine nearest coding that will be shown in Section V correspond to
neighbors whose motion vectors have already been determined two different quantization step sizes of 16 and 32. Later
by previous processing, looking in 265 window containing on, we will show overall algorithm performance for only

the current pixel at its center. a step size of 16.

Pel recursion leads to fractional pixel accuracy motion 4) Low frequency threshold (Section 11I-B): The parameter
vectors. Since the previous image from which motion com- M (1 < M < 8) was used to determine which subset
pensation is discrete, we need an interpolating mechanism. of coefficients of a block of 8& 8 DCT were classified
Nosratinia and Orchard [8] show how to find the optimal as low frequency coefficients. We found thaf = 2
interpolant by making the assumption that the optimal inter-  or M = 3 typically resulted in good performance. For
polant will have the same form in a causal neighborhood. Itis  the experimental results presented in this paper we used
again to be noted that causality is m&cessaryn our setting, M = 3.
although one may use a causal neighborhood for processing
simplicity. We note that each motion vector, if it is fractionalC. Refresher Frames
refers to four nearest intensities in the previous frame. If we are,
processingV pixels in a causal neighborhood, ldtrepresent
the 4 x N matrix of intensity values from the previous frame
each row of the matrix corresponding to the four near
intensities pointed to by the motion vector corresponding
each pixel. Letp be the 1x 4 vector corresponding to the
optimal interpolant which is to be determined. Finally, tet
be the vector of intensities of th& pixels in the current
frame. Thus, finding the optimal interpolant reduces to solvin
the equationA¢ = h. Thus, the least squares solution is A(k) = Z|hk(i) — hig1 (1)]?
found by using the pseudo-inverse df and is given by f
¢ = (A/A)~1AD.

For video teleconferencing applications, a refresher frame
needs to be sent at shot changes or if the number of motion
tompensated frames exceeds a threshold. The threshold on the
eﬁﬂmber of consecutive motion compensated frames without a
Rfresher is set to 128. We use a histogram based thresholding
criterion to decide when a shot change has occurred. In this
context we define the action measure between itthe and

k + 1)th video frames to be

whereh is the histogram of théth frame. A shot change is
said to occur whenever the action measure crosses a particular
B. Control Parameters threshold and a refresher frame is sent. However, the value

In Sections Il and Ill we differed the specification of a fewOf threshold needs to adapt to the shot content. jLeind

control parameters which are important for implementationa be the mean and variance of the action measure, when
‘the statistics are computed over the lastframes (v = 10

1) Maximum number' of motion vectors (Segtion 11-C): We,, practice). The threshold is then set fo+ « . Note
regulate the maximum number of motion Vectors Syt 5 largex leads to missed shot detections while a small

that we ensure transmission of some amount of res'dl'\lf’éllue for o leads to many false alarms. Following [31], we

information. Although we optimize the amount of MOy se 5 value of five fory, which was found to work well in

tion information with the amount of residual transmitted, 5 tice  Note that this problem of shot detection can also
within a PSNR setting, we found that transmitting SOme formylated in a Neyman—Pearson hypothesis testing frame
res_|dual mformano_n IS important in r(_aducmg perceptu%ork, assuming Rayleigh distributions with differing variances
artifacts glthough _'t might not_be_ optimal from a PSNRy; the action measure under different hypothesis. However,
perspective. To this end, we limit the maximum amoune f5ng that the improvements were marginal, if any, using
of motion information transmitted to 75% of the bit ratepig approach. We attribute this to the fact that the simple

2) Size threshold for classification of secondary regiongy,ive thresholding scheme results in accurate shot detection
(Section 1I-C): We found that most of the secondary, most cases.

regions are typically small or large; the number of
secondary regions with medium size is small. Thus a
choice for the classification threshold is not crucial. We
avoid computationally expensive optimization strategies ) ) .
and choose a threshold of 16 pixels i.e., all the regiofls Comparison with a Generic Block Based Coder
which are smaller than 16 pixels are classified into In this section we will compare the performance of the
class-two secondary regions and those larger than pposed coder with a generic block based coder as used in
pixels are classified into class-one secondary regiotee H.261 or the H.263 standards [4], [5]. All performance
It is to be noted that this threshold is dependent azomparison is performed on the luminarn@é) component of
the resolution of the frame. The specification of 1éhe video frames. In order to make an objective comparison,
corresponds to QCIF resolution. The threshold needs used the same quantization strategies to quantize DCT
to be scaled appropriately for higher resolution videooefficients for both the coders. We used a uniform quantizer
formats. with a quantization step size of 16 for the AC coefficients and
3) Quantization step size for residual coding (Section Illa step size of 1 for the DC coefficient. The Huffman codes for
We found that larger quantization step sizes work bettarotion vectors and DCT coefficients were the same for both
at lower bit rates. Experimental results for residuahe coders. These coding tables were derived directly from

V. RESULTS
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Fig. 5. Comparative results at 1280 bits per luminance fralhexis: frame number andl” axis: PSNR. The graphs on the right corresponding to a frame
rate of 7.5 Hz (every fourth frame is coded) and those on the left correspond to a frame rate of 30 Hz. Dashed line: block based scheme. Solid tine: propose

region based scheme. (a) Car phone sequence, (b) Miss America sequence, and (c) Susie sequence.
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(b)

Fig. 6. Residual images from Miss America sequefidé¢ = 2): (a) block based approach and (b) region based approach.

those proposed in the H.261 standard and therefore are more TABLE |

timal for th lock r. Both r int d-HERAGE PSNRFOR CoDING THE Y -COMPONENT OF THESEQUENCES WITH THE
op . a 0 e block based code 0 . coders .used € PrOPOSED ANDBLOCK BASED APPROACHES AT1280 BTs/FRAME. (a) CobE
precision motion vectors for the following experiments. We  E ery FourTH FrAME (7.5 Hz) aND (b) CopE ALL FRAMES (30 Hz)
found that using a half-pixel precision motion vector yielded

similar improvements in performance in both coders. Boolean

Proposed | Block based

. : Miss Ameri . .

flags for the proposed compression strategy were directly 188 America 38.1 dB 35.4 dB
. . Susie 31.33 dB 28.17 dB

coded without any compression. No refresher frames were sent

during the encoding of the video sequences Car Phone 29.03 dB 27.06 dB

uring 9 q ’ Claire 36.26 dB 34.55 dB

The frame bit rate was held (approximately) fixed for both
the coders at 1280 bits. This bit rate corresponds to a bit rate @
of 9.6 kbps if every fourth frame is coded and a bit rate of 38.4
kbps if all the frames are coded, which are reasonable for video
teleconferencing applications. The reason for using fixed bit
rate for each frame, as explained before, is that variable bit rate
(at constant PSNR quality) tends to produce fluctuations in bit
rate which are unacceptable within a video teleconferencing ()
setup.

Fig. 5(a)—(c) shows the comparative performance of tisdows a frame of Susie sequence for both the approaches at
coders for typical video teleconferencing sequences (carphod@, Hz.

Susie, and Miss America). In each case the graph on the righfhe overall perceptual improvement due to the proposed
corresponds to a frame rate of 30 Hz and the graph on tRProach is quite evident. The improvement in performance
left to a frame rate of 7.5 Hz (every fourth frame). It is seefor the 7.5 Hz case is much more pronounced than for the
that the proposed coder out performs the block based codfrHz case. This is to be expected, since a gain of 2 dB in
by about 2-3 dB consistently. Table | summarizes the averdgg@NR at higher quality does not lead to as much perceptual
quality for these cases. improvement as the same PSNR differential at a lower quality.

In order to display images, we magnified them (since the

image resolution is small) by replacing each pixel with 8. Comparison of the Residual Coding Schemes

block of M x M for magnification by a factor o (pixel  \ve also present results comparing our adaptive residual cod-
replication). Wherever necessary, we also display the original scheme with the usual block DCT based coding scheme. As
image to allow for objective comparison in spite of the filteringnentioned in Section 111, both the schemes transmit quantized
introduced by the Laser printer. Fig. 6 shows the differeng®CT coefficients. Our method gains over the generic DCT

images(M(magnification = 2) for a frame from the miss based coding scheme by cleverly utilizing the fact that the

America sequence. Fig. 7 shows a part of the Miss Amerigasitions of high residual concentration can be pre-predicted.
frame for both the approaches as well as the origindl=4).  Since the prediction mechanism can break down for some
These images were obtained by coding at 7.5 Hz (evesjocks, we propose to switch coding with our strategy with

fourth frame). Fig. 8 shows a frame of the Susie sequence the DCT based scheme (one bit needs to be transmitted).
both the approaches as well as the original at 7.5 Hz. FigS@ich a coder always performs better than the baseline block

Proposed | Block based
Miss America | 39.06 dB 36.07 dB
Susie 33.67 dB 30.10 dB
Car Phone 30.14 dB 28.17 dB
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() (b) (c)

Fig. 7. Part of a frame from Miss America sequeridel = 4): (a) original, (b) block based approach, and (c) region based approach.

(b) (c)
Fig. 8. Frame from Susie sequencé&! = 2): (a) original, (b) block based approach (7.5 Hz), and (c) region based approach (7.5 Hz).

(b)
Fig. 9. Frame from Susie sequengét = 2): (a) block based approach (30 Hz) and (b) region based approach (30 Hz).

DCT scheme. Fig. 10 shows the improvement (in dB PSNRJ. It may be observed that the average advantage due to the
over the generic coder, when the quantization step size pbposed method decreases as block number increases. This
AC coefficients is 16 and 32. Note that this improvement w&$curs due to the fact that prediction degrades as the frame
obtainedonly due to improvement in residual codirlg other number (and block number) increase due to lack of refresher
words, both coders are coding exactly #ane residual blocks frames.

The block numbers are not correlated between the two graphs.

No refresher frame was sent in the simulations and the blocks VI. CONCLUSION

are taken from the first seven frames (approximately) for stepin this paper, multiscale image segmentation is used to
size 16 and the first five frames (approximately) for step sievelop a video compression algorithm for low bit-rate ap-
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Fig. 10. Comparative results for residual coding: the PSNR gain of t §7]
proposed method over normal DCT based coding scheme per block numbeér:

Quantization step sizes are (a) 16 and (b) 32.

plications. The key ideas of the scheme presented includé
the following: a) the algorithm uses multiscale segmentation
and selects the segmentation at a scale which is optimal &%l
compression; b) a novel method is introduced to deal with
occluded regions which normally degrade the performance of
region based techniques; c) pel recursion and linear predicti@pl
methods are employed to fine tune motion estimation; d)
region segmentation is performed on theviously decoded
frame (so we do not need to encode any segmentation infd#l
mation); and e) residual coding exploits the fact that locations
of high residual energy concentration occupy small portions]
of the image and ara priori predictable. A fusion of these
important ideas leads to a gain of about 2-3 dB in PSN
over the block matching algorithm for a variety of head-
and-shoulder sequences using a fully functional video codker
(when the bit rate is constrained to be the same for bo%“]
schemes).
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