Sub-Band Energy Constraints For Self-Similarity Based Super-Resolution

Abhishek Singh and Narendra Ahuja
University of Illinois at Urbana-Champaign
Email: asingh18@illinois.edu, n-ahuja@illinois.edu

Abstract—In this paper, we propose a new self-similarity based single image super-resolution (SR) algorithm that is able to better synthesize fine textural details of the image. Conventional self-similarity based SR typically uses scaled down version(s) of the given image to first build a dictionary of low-resolution (LR) and high-resolution (HR) image patches, which is then used to predict the HR patches for each LR patch of the given image. However, metrics like pixelwise sum of squared differences (L_2 distance) make it difficult to find matches for high frequency textured patches in the dictionary. Textural details are thus often smoothed out in the final image. In this paper, we propose a method to compensate for this loss of textural detail. Our algorithm uses the responses of a bank of orientation selective bandpass filters to represent texture instead of the spatial variation of intensity values directly. Specifically, we use the energies contained in different sub-bands of an image patch to separate different types of details of a texture, which we then impose as additional priors on the patches of the super-resolved image. Our experiments show that for each patch, the low energy sub-bands (which correspond to fine textural details) get severely attenuated during conventional L_2 distance based SR. We propose a method to learn this attenuation of sub-band energies in the patches, using scaled down version(s) of the given image itself (without requiring external training databases), and thus propose a way of compensating for the energy loss in these sub-bands. We demonstrate that as a consequence, our SR results appear richer in texture and closer to the ground truth as compared to several other state-of-the-art methods.

1. Introduction

The single image super-resolution (SR) problem involves estimating pixels in a high-resolution (HR) image from the smaller number of pixels available in its given, low-resolution (LR) version. Being fundamentally ill-posed, priors or regularizers are a key component in addressing this problem.

Over the last few years, learning based priors have demonstrated considerable success on this problem [5], [13], [4], [6], [12], [2]. In general, these priors exploit some form of statistical regularity in properties (such as gradient distributions, patch recurrence, etc.) of natural images, which is learnt from training data. A popular class of such methods seeks similar patches across scales of the given image to build a database of LR-HR patch pairs. This database or dictionary is then used to predict the HR patch corresponding to each patch of the given image [2], [6], [4]. Such self-similarity methods find their roots in fractal image coding from the 1990s [1]. More recently, such methods have also been justified as priors by studies on the internal statistics of natural images which suggest that patches from natural images tend to recur within and across scales in the same image [15].

These recent studies have also shown that the likelihood of finding a good match for a patch falls, as the gradient content of the image increases [15]. This suggests that textural details like hair, animal fur etc, often find suboptimal matches, using a self-similarity approach. This problem can be partly attributed to the limitation in using distance metrics such as pixel-wise sum of squared difference (L_2 distance) for matching textural patches. The L_2 distance between two patches is largely determined by the high contrast and prominent structures (macrostructures) in the patch, and is less sensitive to the fine details (microstructures) of the patch. Indeed, this problem manifests itself in the final results of patch based SR reconstruction methods - poor patch matches lead to inconsistent explanations of pixels in textural regions, and fine textural details or microstructures are thus averaged out.

In this paper, we propose a solution to the above problem. We argue that the L_2 distance by itself is not a sufficient criterion to find suitable matches for textural patches. Indeed, metrics based on pixelwise differences have been rather unsuccessful in applications such as texture classification or texture retrieval. On the other hand, texture descriptors based on responses to a multi-orientation bank of bandpass filters have been effective for such tasks [8], [14], [11]. In the SR application at hand, we therefore combine the conventional L_2 distance based patch matching procedure with additional prior constraints on the energies of the different orientation selective sub-bands of the patch. We observe through experiments in this paper that for each patch, the low energy sub-bands (which correspond to fine textural details) get severely attenuated during conventional L_2 distance based SR. Based on this observation, we propose a method to learn this attenuation of sub-band energies in the patches, using scaled down version(s) of the given image itself (without requiring external training databases), and thus propose a way of compensating for the energy loss in these sub-bands of each patch. More specifically, we propose the use of scaling coefficients to boost the sub-bands of the patch that constitute the fine textural details (microstructures). As a consequence, our SR results appear richer in texture and more natural as compared to state-of-the-art methods, as shown by our experiments.

In the next section, we present a stepwise summary of the proposed algorithm. The subsequent sections present details of the steps involved.

II. Algorithm Overview

Notation. We denote the given image to be super-resolved as I_0. By I_1 we denote the HR version of I_0, whose linear dimension, or scale, is larger by a factor of s. Similarly, we denote by I_{-1}, I_{-2} etc., the smaller versions of I_0, by scaling factors of $1/s, 1/2s$ etc., respectively. We denote the super-resolved image(s) obtained using our algorithm using a hat
Algorithm Summary. To obtain \(\hat{I}_1 \), from \(I_0 \), our proposed algorithm involves the following steps:

1) Using \(I_0 \), we first compute an intermediate HR image \(\tilde{I}_1 \) that is obtained by the conventional patch-similarity based SR approach, along the lines proposed earlier [15], [6], [4]. We present the general framework of such an algorithm in Fig. 1, and its details in Section III.

2) For each patch \(\tilde{p} \) of \(\tilde{I}_1 \), we compute the response of bank of \(R \) orientation selective bandpass filters, yielding the sub-bands \(\{ \tilde{p}^{(1)}, \tilde{p}^{(2)}, ..., \tilde{p}^{(R)} \} \). To selectively amplify the patch macrostructure vs. microstructure, we differentially scale the patch’s energy contents in different sub-bands by using the coefficients \(\{ \alpha^{(j)} \}_{j=1}^{R} \), to yield a transformed set of bandpass patches,

\[
\hat{p}^{(j)} = \alpha^{(j)} \tilde{p}^{(j)} \quad j = 1, 2, ..., R. \tag{1}
\]

We discuss our algorithm that learns these coefficients in Sections IV and V. The scaling coefficients \(\alpha^{(j)} \) allow us to impose sub-band energy constraints on each patch of the super-resolved image \(\hat{I}_1 \), to minimize the loss of textural detail in the patch.

3) The rescaled sub-bands \(\{ \hat{p}^{(j)} \}_{j=1}^{R} \) of each patch are recombined to yield the texture-enhanced patch \(\hat{p} \), and all such enhanced patches constitute the super-resolved image \(\hat{I}_1 \). Finally, we also then run a few iterations of the classical backprojection constraint [7], to ensure that the blurred and downsampled version of \(\hat{I}_1 \) matches the given LR image \(I_0 \). We elaborate on this step in Section VI.

A schematic summary of our algorithm is presented in Fig. 2. The details of each step follow.

III. PATCH-SIMILARITY BASED SR

The conventional patch-similarity based SR approach that we adopt to obtain \(\hat{I}_1 \) from \(I_0 \) follows similar steps as done in existing work [15], [6], [4], and is summarized in Fig. 1. Given the LR image \(I_0 \), we first obtain its downsampled version,

\[
I_{-1} = (I_0 * f_{psf}) \downarrow \tag{2}
\]

where \(f_{psf} \) is an assumed point spread function. We then create two sets of image patches \(L \) and \(H \), that contain patches from \(I_{-1} \) and their corresponding (bigger) patches extracted from \(I_{0} \), respectively. The sets \(L \) and \(H \) serve as our database of LR-HR training patches. To super-resolve the given image \(I_0 \) to \(\hat{I}_0 \), for every patch \(l \) of \(I_0 \), we look for its \(k = 5 \) most similar patches \(\{ l_i \}_{i=1}^{k} \) in the LR set \(L \), based on \(L_2 \) distances. Their corresponding HR patches \(\{ h_i \}_{i=1}^{k} \) from the set \(H \) serve as individual predictors for the patch \(l \). We average \(\{ h_i \}_{i=1}^{k} \) to estimate the HR patch \(h \) of \(l \) as follows,

\[
h = \frac{\sum_{i=1}^{k} w_i h_i}{\sum_{i=1}^{k} w_i}, \quad \text{where } w_i = \exp \left(-\frac{||h - l_i||^2}{2\sigma^2} \right). \tag{3}
\]

We repeat the above procedure for every patch \(l \) of \(I_0 \), and get their corresponding HR patches, which constitute the HR image \(\hat{I}_1 \).

IV. ANALYSIS OF SUB-BAND ENERGIES

We argue that the patch similarity based SR algorithm described in Section III tends to smooth out fine textural details, due to the limitation of the \(L_2 \) distance in capturing textural similarity between patches. To quantify this loss of textural detail, we now perform a simple experiment. We use the baby image of Fig. 3(a) as our example. We denote \(I_1 \) to be the ground truth HR version of this image, as shown in Fig. 3(a). We compute its LR version \(I_0 \) by blurring and downsampling. We then use the SR algorithm described in Section III to super-resolve this LR image \(I_0 \) to obtain the image \(\hat{I}_1 \) as shown in Fig. 3(b). We now examine the textural loss in \(\hat{I}_1 \) when compared to the ground truth image \(I_1 \).

Let \(\tilde{p} \) and \(p \) represent corresponding patches from the super-resolved image \(\hat{I}_1 \) and the ground truth image \(I_1 \), as illustrated by the blue box in Fig. 3. Let \(\{ \tilde{p}^{(j)} \}_{j=1}^{R} \) and \(\{ p^{(j)} \}_{j=1}^{R} \) denote the decomposition of these patches into \(R \) orientation sub-bands, as illustrated in Figs. 3(d) and 3(c). We use the steerable pyramid decomposition [9], [10] to obtain the orientation selective sub-bands. The steerable pyramid provides jointly-localized (space/frequency) representation of images using an invertible multi-scale, multi-orientation image decomposition [9], [10], as shown in Fig. 4. We use \(R = 16 \) orientations (and just a single scale) in our algorithm.
Let \(e^{(j)} \) and \(\tilde{e}^{(j)} \) be the energies of the \(j \)-th sub-bands \(\tilde{p}^{(j)} \) and \(p^{(j)} \) respectively.

\[
\tilde{e}^{(j)} = \left\| \tilde{p}^{(j)} \right\|_2^2, \quad e^{(j)} = \left\| p^{(j)} \right\|_2^2
\]

(4)

We now sort the sub-band energies \(\left\{ \tilde{e}^{(j)} \right\}_{j=1}^{R} \) and \(\left\{ e^{(j)} \right\}_{j=1}^{R} \) according to decreasing values of \(e^{(j)} \). The sorted set of energy values helps us observe the relative energy distribution between the macrostructure (high energy sub-bands) and the microstructures (low energy sub-bands) in the patch, irrespective of their orientations. The sorting helps us achieve this rotation invariance. Therefore, if an image patch recurs in the image in a rotated form, both the patches would yield the same sorted set of sub-band energy values.

We repeat the above procedure for all patch pairs \(\tilde{p} \) and \(p \) from the images \(\tilde{I}_1 \) and \(I_1 \), and obtain a sorted array of sub-band energy values for each patch. We then compute an average of these sorted arrays or sets, across all the patches. Fig. 5(a) shows this average set of sorted energy values, for patches from the super-resolved image \(\tilde{I}_1 \) (blue bars) and from the ground truth \(I_1 \) (red bars).

We make the following two interesting observations: 1) The energy in the high energy bands of the super-resolved image \(\tilde{I}_1 \) is much closer to those of the ground truth image \(I_1 \). This shows that the patch-similarity based SR algorithm using \(L_2 \) distances is able to preserve the macrostructures quite well.

2) Relatively, the low energy sub-bands suffer from severe attenuation, confirming our hypothesis stated earlier that fine textures (microstructures) are much less preserved by such an SR algorithm.

Can we recover or compensate for this loss? Based on examining the bar plot of Fig. 5(a), a possible way to 'optimally' compensate for the sub-band attenuation is to amplify each sub-band \(\tilde{p}^{(j)} \) of the patch \(\tilde{p} \) by multiplying with scaling factors \(\alpha^{(j)} \), where

\[
\alpha^{(j)} = \frac{e^{(j)}}{\tilde{e}^{(j)}}, \quad j = 1, 2, ..., R.
\]

(5)

Using the coefficients \(\alpha^{(j)} \), the sub-bands can be amplified such that their energies match those of the ground truth. The blue curve in Fig. 5(b) shows the values of these coefficients computed using Eq. (5) for the baby image. As expected, the lower energy sub-bands have higher scaling coefficients as they are more severely attenuated.

An obvious problem in using Eq. (5) is that the ground truth image \(I_1 \) is never available in any practical SR problem. Therefore, the sub-band energies \(\left\{ e^{(j)} \right\}_{j=1}^{R} \) of the ground truth image patches are never available, and the coefficients \(\alpha^{(j)} \) of (5) cannot be determined. In the next section, we propose a method to learn these coefficients.

V. SELF-LEARNING OF SUB-BAND CONSTRAINTS

Given an input image \(I_0 \), our analysis in the previous section showed that patches of the super-resolved image \(\tilde{I}_1 \), obtained using the conventional patch-similarity approach of Section III, suffer attenuation of the low energy sub-bands. We saw that the scaling coefficients \(\alpha_1 \) of Eq. (5) could compensate for this attenuation by appropriately boosting the sub-bands of each patch. However, computing these coefficients required knowledge of the ground truth HR image \(I_1 \), which is not available in practical scenarios.

A solution to the above problem is to estimate these coefficients from training patches extracted from natural images and treat these learned coefficients as a statistical prior. Such a prior would indicate the relative amplifications required for different sub-bands of the super-resolved image patch.
In this paper, instead of resorting to an external database of image patches for learning such a prior, we propose a self-learning scheme, that operates as follows: We utilize scaled down versions of the given image \(I_0 \), to generate training data for learning the scaling coefficients. More specifically, we first obtain \(I_{-1} \) from \(I_0 \) by a blurring and downsampling operation. We then compute a super-resolved image \(\tilde{I}_0 \), by using the patch-similarity based SR algorithm of Section III with \(I_{-1} \) as the input image. The computation of \(\tilde{I}_0 \) is schematically illustrated in the blue dotted box of Fig. 2.

Our training image pair consists of the super-resolved image \(\tilde{I}_0 \), and its corresponding ‘ground-truth’ \(I_0 \), which is available to us. Our objective is now to learn the attenuation in the sub-bands of the patches of \(\tilde{I}_0 \), when compared to those from \(I_0 \). We extract around 1000 randomly sampled patches from \(I_0 \) along with their corresponding ground-truth patches from \(I_0 \). Using these two sets of patches, we repeat the analysis presented in Section IV to obtain the scaling coefficients \(\alpha^{(j)} \) using Eq. (5).

The red plot in Fig. 5(b) shows the coefficients thus obtained using the proposed self-learning scheme (using \(\tilde{I}_0 \) and \(I_0 \) for the Baby image. We can see that these coefficients closely approximate the ‘optimal’ coefficients learnt with knowledge of the ground truth image \(I_1 \) (blue plot), as described in the previous section.

VI. BACKPROJECTION CONSTRAINT

Once the coefficients \(\{\alpha^{(j)}\}_{j=1}^{R} \) have been determined, we use it to amplify or boost the respective sub-bands of each patch from the image \(\hat{I}_1 \), using Eq. (1). The enhanced patches thus obtained form the super-resolved image \(\hat{I}_1 \) that we set out to achieve. However, we must also ensure that the image \(\hat{I}_1 \) on blurring and downsampling, yields the LR image \(I_0 \). We therefore need to minimize the cost function,

\[
J(\hat{I}_1) = \| \left(\hat{I}_1 * f_{psf} \right) \downarrow - I_0 \|^2_2
\]

To satisfy this constraint, we run around 10 iterations of the following gradient based update rule,

\[
\hat{I}_1^{+} = \hat{I}_1 - \mu \nabla J(\hat{I}_1)
\]

where we choose the stepsize \(\mu = 1 \). The above procedure is called the iterative backprojection algorithm [7].

VII. RESULTS

Implementation Details. We use the proposed algorithm for upsampling images with a relatively small scaling factor, not exceeding \(s = 2 \). Therefore, for super-resolving images to 4X resolution, we apply the proposed algorithm twice, each time with scaling factor \(s = 2 \). Similarly, for an overall super-resolution of 3X, we apply our algorithm twice with scaling factor \(s = \sqrt{3} \) each time. For super-resolving color images, we use our algorithm only on the luminance channel. The chroma channels are upsampled using simpler methods such as bicubic interpolation, and then recombined to obtain the color image.
We first run our algorithm on images that have known ground truth HR versions. We compare our approach with the conventional patch similarity based method as described in Section III and see the improvement in results our algorithm brings. Fig. 6 shows our result on the Sunlight image. Clearly, our result shows much richer texture in the hair, facial features, the blue shoulder strap etc. Visually, our result appears almost indistinguishable from the ground truth in this example. We report the structural similarity measure (SSIM) [16] below each result, although the correlation of numerical metrics with human perception of image quality is debatable.

Fig. 7 shows our result on the Fur image. In this case as well, our result looks visually more appealing and bears closer visual resemblance to the ground truth.

We now compare our results to those obtained in the past work. Specifically, we compare our results to those of two state-of-the-art methods, the self-similarity based methods of Glasner et. al. [6] and Freedman et. al [4], taken from the respective authors’ websites. Fig. 8 shows the results on the Koala image. We can see that our result better shows the fine details in the animal fur and the tree trunk than the other two methods. Fig. 9 shows another set of results on the Girl image, where fine details of the hair are more clearly visible in our result. These images do not have ground truth HR available.

Finally, in Fig. 10, we also compare against two more methods, that are based on learning from external databases - the dictionary learning based method of Yang et. al [13] and the edge statistics based method of Fattal [3]. Yang et. al. [13] is not able to produce sufficiently sharp edges (e.g. the lips).
The textures produced by the edge based method of Fattal [3] tend to appear un-natural, e.g., as in the green box. Our result appears richer in texture, and also yields sharper edges.

VIII. Conclusion

We have presented an SR algorithm that delivers better super-resolved texture. Our algorithm is based on an observation we have made, that the conventional L_2 distance based patch-matching does not sufficiently characterize fine textures. Additional criteria are needed to ensure that the subtle textural elements are super-resolved better. To take advantage of oriented bandpass filters in characterizing textures, we have presented an algorithm that additionally constrains the energies of the sub-bands of the super-resolved patches. We have proposed a self-learning scheme that determines an optimal set of scaling coefficients, to balance the energies in the sub-bands to mimic their distributions in the natural images. Our algorithm does not use any external training database.

IX. Acknowledgements

This work was supported by US Office of Naval Research grant N00014-12-0259. Abhishek Singh was also supported by the Joan & Lalit Bahl Fellowship and the Computational Science & Engineering Fellowship at the University of Illinois.

REFERENCES