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ABSTRACT 
Eigenface or Principal Component Analysis (PCA) 
methods have demonstrated their success in face recog- 
nition, detection, and tracking. The representation in 
PCA is based on the second order statistics of the im- 
age set, and does not address higher order statistical 
dependencies such as the relationships among three or 
more pixels. Recently Higher Order Statistics (HOS) 
have been used as a more informative low dimensional 
representation than PCA for face and vehicle detection. 
In this paper we investigate a generalization of PCA, 
Kernel Principal Component Analysis (Kernel PCA), 
for learning low dimensional representations in the con- 
text of face recognition. In contrast to HOS, Kernel 
PCA computes the higher order statistics without the 
combinatorial explosion of time and memory complex- 
ity. While PCA aims to find a second order correlation 
of patterns, Kernel PCA provides a replacement which 
takes into account higher order correlations. We com- 
pare the recognition results using kernel methods with 
Eigenface methods on two benchmarks. Empirical re- 
sults show that Kernel PCA outperforms the Eigenface 
method in face recognition. 

1. MOTIVATION AND APPROACH 

Subspace methods have been applied successfully in ap- 
plications such as face recognition using Eigenfaces (or 
PCA face) [ll] [5], face detection [5], object recognition 
[6], and tracking [l]. Representations such as PCA en- 
code the pattern information based on second order 
dependencies, i.e., pixelwise covariance among the pix- 
els, and are insensitive to the dependencies of multiple 
(more than two) pixels in the patterns. Since the eigen- 
vectors in PCA are the orthonormal bases, the princi- 
pal components are uncorrelated. In other words, the 
coefficients for one of the axes cannot be linearly rep- 
resented from the coefficients of the other axes. 

Higher order dependencies in an image include non- 
linear relations among the pixel intensity values, such 
as the relationships among three or more pixels in an 
edge or a curve, which can capture important informa- 
tion for recognition. Several researchers have conjec- 

tured that higher order statistics may be crucial to bet- 
ter represent complex patterns. Recently, Higher Order 
Statistics (HOS) have been applied to visual learning 
problems. Rajagopalan et al. use HOS of the images of 
a target object to get a better approximation of an un- 
known distribution. Experiments on face detection [7] 
and vehicle detection [8] show comparable, if no better, 
results than other PCA-based methods. 

HOS usually works by projecting the input patterns 
to a higher dimensional space RF before computing the 
cumulants. The k-th order cumulant is defined in terms 
of its joint moments of order up to k. For zero mean 
random variables 21, 2 2 ,  2 3 ,  2 4 ,  the second, third and 
fourth order cumulants are given by 

Note the computation involved in HOS depends on the 
order of cumulants and is usually heavy because of com- 
puting expectations in a high dimensional space. 

In contrast to computing cumulants in HOS, we 
seek a formulation which computes the higher order 
statistics using only dot products, @(xi) @(xj), of the 
training patterns x where @ is a nonlinear projection 
function. Since we can compute these dot products 
efficiently, we can solve the original problem without 
explicitly mapping to RF.  This is achieved using Mer- 
cer kernels where a kernel Ic(xi,xj) computes the dot 
product in some feature space RF,  i.e., Ic(xi,xj) = 

The idea of using kernel methods has also been 
adopted in the Support Vector Machines (SVMs) in 
which kernel functions replace the nonlinear projection 
functions such that an optimal separating hyperplane 
can be constructed efficiently [2]. Scholkopf et al. pro- 
posed the use of Kernel PCA for object recognition 
in which the principal components of an object image 
comprise a feature vector to train a SVM [lo]. Empiri- 
cal results on character recognition using MNIST data 
set and object recondition using MPI chair database 

@(Xi). @(Xj). 
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show that Kernel PCA is able to extract nonlinear fea- 
tures. Since much of the important information may 
be contained in the high order relationships among the 
pixels of a face image, we investigate the use of Kernel 
PCA for face recognition and compare its performance 
against the Eigenface method. 

2. KERNEL PRINCIPAL COMPONENT 
ANALYSIS 

Given a set of zero-mean observations xk, k = 1, . . . , M ,  
Xk E R N ,  and cE, Xk = 0, the covariance matrix is 

j=1 

PCA aims to  find the projection direction that maxi- 
mizes the variance, which is equivalent to finding the 
eigenvalue from the covariance matrix 

Xw = c w  (2) 

for ei envalues X 2 0 and w E RN. 

lie in the span of XI,  . . . , XM. Therefore 

Since Cw = 
Cj=l(xj . w)xj, all solutions w with X # 0 must a 

X(Xk * W) = ( x k  . CW), k = 1 , .  , M (3) 

In Kernel PCA, each vector x is projected from the 
input space, RN,  to a high dimensional feature space, 
RF, by a nonlinear map: 

9 : R~ + R ~ ,  F >> N (4) 

Note that the dimensionality of the feature space can 
be arbitrarily large. In RF, the covariance matrix of 
9(x) is 

(5 )  

and the corresponding eigenvalue problem is 

Xw" = cw" (6) 

All solutions w" with X # 0 lie in the span of @(XI) ,  

. . ., @(XM). 

X ( @ ( X ~ )  - w") = ( Q ( x ~ )  * CW') k = 1 , .  . . , M (7) 

and w" lie in the span of +(XI) ,  . . ., ~ ( x M )  such that 

M 

WO = Xai9(xi) (8 )  
i=l 

Using Equations (7) and (8), we have, for k = 1 , .  . . , M ,  

a i ( @ ( x k )  @ ( x i ) )  = 
M 

EL 
i M  Ci=1 a i ( @ ( X k )  Cj=i 9(xj))(9(xj) 

(9) 

Defining an M x M matrix K by 

Kij = k ( x i ,  xj) = @ ( x i )  * 9(xj) (10) 

M X K a  = K 2 a  (11) 

We can rewrite Equation (9) as 

where a denotes a column vector with entries a1, . . . , C X M .  

The solutions of Equation (11) is the same to the fol- 
lowing eigenvalue problem, 

M X a  = K a  (12) 

See [9] [lo] for technical details on the equivalence of 
these two problems and how to center the vectors 9(x) 
in RF. 

Boser, Guyon and Vapnik suggested the use of Gaus- 
sian Radial Basis Function kernel [2] 

In this paper, we use the polynomial kernel of degree d 
for the sake of computational efficiency, i.e., 

k(Xi ,Xj)  = (Xi X j ) d  (14) 

Note that conventional PCA is a special case of Kernel 
PCA with polynomial kernel of first order. In other 
words, Kernel PCA is a generalization of conventional 
PCA since different kernels can be utilized for different 
nonlinear projections. Table 1 summarizes the proce- 
dure for Kernel PCA. 

We can now project the vectors in RF to a lower 
dimensional space spanned by the eigenvectors w", Let 
x be a test sample whose projection is 9(x) in RF,  then 
the projection of 9(x) onto the eigenvectors w" are the 
nonlinear principal components corresponding to 9: 

M M 

w" 9(x) = a i ( @ ( X i )  - +)) = a i k ( x i , x )  

i=l i=l 

(15) 

In other words, we can extract the first q (1 5 q 5 
M )  nonlinear principal components using the kernel 
function without the expensive operation to  explicitly 
project the patterns to a high dimensional space RF. 
The first q components correspond to the first q non- 
increasing eigenvalues of Equation (12). 
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Table 1: Kernel PCA 

1 Eicenface 

Compute the matrix Kij = (k(xi, xj))ij 

Solve 

40 I 28.49 

MXa = K a  

0 

Kernel PCA, d=2 
Kernel PCA, d=3 
Kernel PCA, d=4 
Kernel PCA. d=10 

and normalize the eigenvector expansion coeffi- 
cients. Let A1 5 A2 5 . 5 AM denote the eigen- 
values of K and a', . . . , aM the corresponding 
eigenvectors, with A, be the first nonzero eigen- 
value. Normalize the coefficients by requiring 
&(ai. ai) = 1 for p 5 i 5 M .  

Extract the principal components (corresponding 
to the kernel k) of the test point x, and compute 
the projections onto the eigenvectors by 

M 

(Wn f q x ) )  = a:k(xi, x) 
i=l 

80 27.27 
60 24.24 
60 24.85 
50 26.01 

3. PROPERTIES OF KERNEL PCA 

We discuss sevearl properties of Kernel PCA in terms 
of feature extraction and reconstruction in this section. 

3.1. Dimensionality and Feature Extraction 

Kernel PCA method can extract more principal com- 
ponents than linear PCA. Consider a problem con- 
sisting of M observations x where the dimension of 
x is N and M >> N .  Linear PCA can find at most 
N nonzero eigenvalues from the covariance matrix C 
(C = & xi = lMxix?. In contrast, Kernel PCA can 
find up to  M nonzero eigenvalues from the covariance 
matrix G* = & xzi @(xi)@(xF) where 9 is a nonlin- 
ear mapping function that can project xi to a possibly 
infinite-dimensional feature space. 

3.2. Reconstruction 

Since PCA is essentially a basis transformation, each 
pattern can be exactly reconstructed using all the prin- 
cipal components and the basis vectors (i.e., eigenvec- 
tors). 

In contrast, there is no direct counterpart in Ker- 
nel PCA. Due to nonlinear mapping, a vector in high 
dimensional feature space does not necessarily have a 
pre-image in the input space. We can at best find 
an approximate reconstruction of the image of a pat- 
tern in RF from its nonlinear components. This can 

be achieved by a regression method for estimating the 
mapping from kernel-based principal components to 
the input space. 

4. EXPERIMENTS 

We tested Kernel PCA with polynomial kernels against 
conventional PCA using two image databases. The 
Yale database contains 165 images of 11 subjects that 
includes variation in both facial expression and light- 
ing. For efficiency, each image has been downsampled 
to  29 x 41 pixels. Figure 1 shows 22 closely cropped 
images which include internal facial structures such as 
the eyebrow, eyes, nose, mouth and chin, but do not 
contain the facial contours. 

Figure 1: The Yale database contains 165 frontal face 
images of 15 individuals taken with variation both in 
facial expression and lighting. 

The experiments were performed using the "leave- 
one-out" strategy: To classify an image of person, that 
image is removed from the training set of M - 1 im- 
ages and the dimensionality reduction matrix wo is 
computed. All the M images in the training set are 
projected to a reduced space using the computed ma- 
trix w* and recognition is performed using a nearest 
neighbor classification. The number of eigenvectors (or 
principal components) are empirically determined to 
achieve lowest error rate by each method. Table 2 
shows the experimental results. Empirical results show 
that Kernel PCA method with a cubic polynomial ker- 
nel achieve the lowest error rate. Furthermore, the re- 
sults show that Kernel PCA methods are insensitive to  
the degree of polynomial kernels. 

Table 2: Experimental results on Yale database 

The AT&T (formerly Olivetti) database contains 
400 images of 40 subjects that include variation in facial 
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expression and pose. Each face image is downsampled 
to 23 x 28 to reduce the computational complexity. Fig- 
ure 2 shows images of two subjects. In contrast to the 
Yale database, the images include the facial contours 
and certain pose variations. However, the lighting con- 
ditions remain the same. Figure 2 shows some sample 
images. 

Figure 2: The AT&T (formerly Olivetti) database con- 
tains 400 frontal face images of 40 subjects with varia- 
tion in facial expression and pose. 

We use the same strategy with the experiments us- 
ing the Yale data set. Table 3 summarizes the em- 
pirical results. Consistent with the experiments on 
Yale database, Kernel PCA methods achieve lower er- 
ror rates than the Eigenface approach on the AT&T 
dataset. 

Table 3: Experimental results on AT&T database 

I Method I Reduced space I Error Rate (%) I 
Kernel PCA, d=2 
Kernel PCA, d=3 50 2.00 
Kernel PCA, d=4 60 2.25 
Kernel PCA, d=10 2.25 

5. DISCUSSION AND CONCLUSION 

The representation in the Eigenface approaches is based 
on the second order statistics of the image set, i.e., 
covariance matrix, and does not use high order sta- 
tistical dependencies such as the relationships among 
three or more pixels. In a task such as face recognition, 
much of the important information may be contained 
in the high order statistical relationships among the 
pixels. We have investigated Kernel PCA and demon- 
strated that it provides a more effective representation 
for face recognition for face recognition. Compared 
to  other techniques for nonlinear feature extraction, 
Kernel PCA has the advantages that it does not re- 
quire nonlinear optimization, but only the solution of 
an eigenvalue problem. Experimental results on two 
benchmark databases show that Kernel PCA method 
achieves a lower error rate than the Eigenface approach 
in face recognition. 

Future research will focus on analyzing face recog- 
nition methods using other kernel methods in high di- 
mensional space. We plan to investigate and compare 
the performance of face recognition methods using Ker- 
nel Fisher Linear Discriminant [4], Independent Com- 
ponent Analysis [3] and Kernel PCA. 
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