
Int J Comput Vis
DOI 10.1007/s11263-014-0738-0

Robust Visual Tracking Via Consistent Low-Rank Sparse
Learning

Tianzhu Zhang · Si Liu · Narendra Ahuja ·
Ming-Hsuan Yang · Bernard Ghanem

Received: 15 November 2013 / Accepted: 3 June 2014
© Springer Science+Business Media New York 2014

Abstract Object tracking is the process of determining the
states of a target in consecutive video frames based on prop-
erties of motion and appearance consistency. In this paper,
we propose a consistent low-rank sparse tracker (CLRST)
that builds upon the particle filter framework for tracking.
By exploiting temporal consistency, the proposed CLRST
algorithm adaptively prunes and selects candidate particles.
By using linear sparse combinations of dictionary templates,
the proposed method learns the sparse representations of

Communicated by M. Hebert.

T. Zhang
Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China
e-mail: tzzhang10@gmail.com

T. Zhang · B. Ghanem
Advanced Digital Sciences Center (ADSC) of the University
of Illinois, 1 Fusionopolis Way, #08-10 Connexis North Tower,
Singapore 138632, Singapore

S. Liu (B)
Department of Electrical and Computer Engineering, National
University of Singapore, Singapore 117576, Singapore
e-mail: dcslius@nus.edu.sg

N. Ahuja
Department of Electrical and Computer Engineering, University
of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
e-mail: ahuja@vision.ai.uiuc.edu

M.-H. Yang
School of Engineering, University of California at Merced,
Merced, CA 95344, USA
e-mail: mhyang@ucmerced.edu

B. Ghanem
Department of Electrical Engineering, King Abdullah University
of Science and Technology (KAUST), Al Khawarizmi Building,
Thuwal 23955-6900, Saudi Arabia
e-mail: bernard.ghanem@kaust.edu.sa

image regions corresponding to candidate particles jointly by
exploiting the underlying low-rank constraints. In addition,
the proposed CLRST algorithm is computationally attractive
since temporal consistency property helps prune particles and
the low-rank minimization problem for learning joint sparse
representations can be efficiently solved by a sequence of
closed form update operations. We evaluate the proposed
CLRST algorithm against 14 state-of-the-art tracking meth-
ods on a set of 25 challenging image sequences. Experimental
results show that the CLRST algorithm performs favorably
against state-of-the-art tracking methods in terms of accuracy
and execution time.

Keywords Visual tracking ·Temporal consistency · Sparse
representation · Low-rank representation

1 Introduction

Visual tracking is a well-known problem in computer vision
with numerous applications including surveillance, robotics,
human-computer interaction, and motion analysis, to name
a few. Despite demonstrated success (Yilmaz et al. 2006;
Salti et al. 2012), it remains challenging to design a robust
visual tracking algorithm due to factors such as occlusion,
background clutter, varying viewpoints, and illumination and
scale changes.

Recently, numerous algorithms based on �1 minimization
(Tsaig and Donoho 2006) have been proposed for visual
tracking (Mei and Ling 2011; Mei et al. 2011; Liu et al.
2010; Bao et al. 2012; Li et al. 2011; Zhang et al. 2013c)
where an image observation is sparsely represented by a dic-
tionary of templates with online update. These methods have
demonstrated that the use of sparse representation facilitates
robustness to image corruptions caused by partial occlusions

123

Int J Comput Vis

Fig. 1 (a) Rank statistics of an image observation matrix X0 corre-
sponding to sampled particles per frame. The rank statistics are com-
puted from 15 videos with about 6,433 frames. The target objects are
initialized with the same size (i.e., 30× 30 or d = 900 pixels) and the
number of particles at each frame n0 is set to 500, i.e., X0 ∈ R900×500.
For each X0 of each frame, we compute the SVD SVD of X0 and deter-
mine the numerical rank as the number of non-zero singular values
whose sum is more than 0.7 times the sum of all singular values. The
rank of X0 in most frames is about 100, which is much lower than d
and n0. Thus, the image observations corresponding to particles at each

frame tend to be low-rank. After pruning, the candidate particle obser-
vations X is expected to have lower rank. (b) Rank statistics of image
observations corresponding to sampled particles from the background.
The rank in most frames is about 180, which is larger than the rank
of X0. However, it is smaller than no because the background particles
are sampled around, but at a sufficient distance from a target object. If
the background patches are sampled from cluttered images, the rank is
likely to be higher. (c) Particles are sampled at and around target with
a Gaussian distribution. As a result, an image observation matrix X0 is
likely to have low-rank property

or lighting variations. Nevertheless these formulations entail
solving �1 minimization problems, which is known to be
time-consuming. Furthermore, since the target states are usu-
ally estimated in a particle filter framework, the computa-
tional cost grows linearly with the number of sampled parti-
cles. More importantly, these methods learn sparse represen-
tations corresponding to drawn particles independently, and
do not consider the underlying relationship that constrains
them.

To address these problems, we exploit the temporal consis-
tency property as well as the underlying relationship of image
observations. By exploiting temporal consistency, irrelevant
particles can be pruned by using the previous tracking results,
thereby reducing the overall computational cost. After prun-
ing, the linear representations of the candidate particles based
on the current dictionary are constrained to be low-rank and
sparse. In this work, the low-rank1 property captures the
underlying structure of the image observations correspond-
ing to candidate particles. This structure arises because image
observations of candidate particles tend to lie in a low-rank
subspace as motivated by the empirical results shown in
Fig. 1, where some of them also have very similar visual
appearances. Therefore, we exploit sparsity, low-rank con-
straint, and temporal consistency to learn robust linear repre-
sentations corresponding to candidate particles for efficient
and effective object tracking.

1 Generally, the matrix of particle representations is not full-rank. It
tends to have a low rank that is usually larger than one.

The proposed visual tracking algorithm is developed
based on the following observations:

– The optimal particle is the one at which the image obser-
vation has the lowest reconstruction error based on the
current dictionary consisting of target object templates.

– Temporal consistency should be exploited to constrain
the candidate particles and prune irrelevant ones, thereby
making the tracking algorithm more efficient. In addition,
this property facilitates more stable state predictions and
tracking results.

– After pruning, the image observations corresponding
to the remaining candidate particles should be highly
correlated and thus the matrix of corresponding image
observations should have low rank. The relationship
between these image observations corresponding to par-
ticles should be exploited which has not been used in
existing tracking methods based on sparse representa-
tion (Mei and Ling 2011; Mei et al. 2011; Liu et al. 2010;
Li et al. 2011). Figure 1a shows one example where the
image observations X0 of drawn particles at each frame
have low-rank. The rank of candidate image observations
X should be much lower after pruning.

– As occlusion and noise significantly affect tracking per-
formance, the error term of an image representation can
be sparsely modeled.

– During tracking, an image observation of a candidate
particle can be better represented using a dictionary of

123

Int J Comput Vis

Fig. 2 Enforcing the sparsity, low-rank, and temporal consistency
properties in the proposed CLRST algorithm. (a) The frame at time
t . (b) All particles sampled based on previous particles, and their obser-
vations X0 ∈ Rd×n0 . Here, the number of particle is n0 = 500, and
an observation is defined to be the grayscale values of each normalized
particle in the image. (c) Particles are pruned using the reconstruction
error e0, where the k-th element is the �2 error incurred by linearly rep-
resenting the k-th particle (i.e., k-th column of X0) using the previous
representation z0 and a dictionary D of object and background tem-
plates (25 dictionary elements). Here, we define e0 � ‖X0 − DZ0‖2,

where Z0 = 1z�0 is a rank one matrix, whose columns are equal to z0.
(d) Resulting candidate particles X ∈ Rd×n after the particles with the
large reconstruction error are pruned. Here, 25 candidate particles are
obtained after pruning. Since some of them are similar, they possess a
low-rank property, which constrains their representations. (e) The rep-
resentations of n candidate particles using our CLRST algorithm, which
enforces sparse, low-rank, and consistent properties. Here, the rank of
X (observations of candidate particles) is 2. (f) The tracking result in
frame t and its representation z0

templates from both object and background templates
with online update. This emphasizes the importance of
representing what a target is and what it is not. Gener-
ally, an image observation of a “good” target candidate is
effectively represented by the object templates and not the
background templates, thereby leading to a sparse rep-
resentation. Likewise, an image observation of a “bad”
target candidate can be more sparsely represented by a
dictionary of background templates.

In the proposed algorithm, after pruning, the matrix of
candidate image observation X (where each image observa-
tion corresponding to a particle is stored in a column) in the
current frame is represented as a linear combination Z of
object and background templates that define a dictionary of
templates D. We require that Z be (1). sparse because only a
few templates are required to represent an image observation
well, (2). low-rank because the matrix of image observations
X have a low rank structure2 as observed from the example
in Figs. 1a, and 3. temporally consistent because particles in
the current frame tend to have representations similar to the
representation of the previous tracking result. In addition,
we use sparse error E to account for occlusion and noise
in one representation for an image observation. Therefore,
the representations of the current particles are computed by
solving a low-rank, sparse representation problem. We show
that the solution to this problem is obtained by performing
a sequence of closed form optimization steps by the Inex-
act Augmented Lagrange Multiplier method. To account for
appearance variations and alleviate tracking drift, we update
D progressively via a sequence of template replacement and

2 This follows from the linear representation assumption. Since X =
DZ and D can be designed to be an overcomplete full row or column
rank matrix, then rank(X) = rank(Z). So, if X is low-rank, it follows
that Z is also low-rank.

re-weighting steps. The object templates of D are updated
only when the object undergoes significant changes, while
the background templates are updated at every frame. The
particle at which the image region is most similar to the cur-
rent target is selected as the tracking result. Figure 2 shows
the flowchart and how these three properties are enforced in
the proposed tracking algorithm.

The contributions of this work are three-fold. (1) We for-
mulate object tracking as a consistent, sparse, as well as low-
rank representation problem from a new perspective. This is
carried out by exploiting the relationship between the obser-
vations of particle samples and jointly representing them
using a dictionary of templates with online update. To the best
of our knowledge, this is the first work exploiting the low-
rank nature underlying the image observations correspond-
ing to sampled particles. (2) We take temporal consistency
between the representations of particles into account. It is
used to prune particles and constrain their low-rank represen-
tations. As a result, representations of candidate particles can
be computed jointly and efficiently. The resulting low-rank,
sparse, and temporally consistent representation of candidate
particles facilitates robust performance for visual tracking.
(3) The proposed CLRST algorithm is a generic formulation
that encompasses three special cases: the low-rank sparse
tracker (LRST), low-rank tracker (LRT), and the sparse
tracker (ST). We show how these algorithms are related and
the importance of each property for visual tracking.

2 Related Work

The recent years have witnessed much progress in track-
ing with numerous applications (Yilmaz et al. 2006; Salti et
al. 2012; Wu et al. 2013; Zhang et al. 2012b; Kristan and
Cehovin 2013; Pang and Ling 2013). In this section, we dis-
cuss the most relevant methods to our work.

123

Int J Comput Vis

Visual tracking methods can be categorized as genera-
tive and discriminative. Generative tracking methods adopt
appearance models to represent target objects and search
for the most similar image regions (Black and Jepson 1998;
Comaniciu et al. 2003; Jepson et al. 2003; Yang et al. 2009;
Ross et al. 2008; Adam et al. 2006; Kwon and Lee 2010). In
Black and Jepson (1998), an algorithm builds on view-based
eigenspace representations, robust estimation techniques,
and parameterized optical flow estimation, is proposed for
object tracking. The mean shift tracking algorithm (Comani-
ciu et al. 2003) models a target with nonparametric distrib-
utions of features (e.g., color pixels) and locates the object
with mode shifts. In Jepson et al. (2003), an adaptive appear-
ance model based on mixture of Gaussians is proposed to
model objects with stable components. An adaptive appear-
ance model that accounts for target appearance variation is
proposed in the incremental visual tracking (IVT) method
(Ross et al. 2008). Although it has been shown to perform
well when the target object undergoes lighting and pose varia-
tion, this method is less effective in handling heavy occlusion
or non-rigid motion as a result of the adopted holistic appear-
ance model. The Frag tracker (Adam et al. 2006) addresses
the partial occlusion problem by modeling object appearance
with histograms of local patches. The tracking task is carried
out by combining votes of matching local patches based on
histograms. As the model is not updated, this method is less
effective for handling large appearance changes. The visual
tracking by decomposition (VTD) method (Kwon and Lee
2010) extends the conventional particle filter framework with
multiple motion and observation models to account for large
appearance variation caused by change of pose, lighting and
scale as well as partial occlusion. As the adopted generative
representation scheme is not designed to distinguish between
target and background patches, it is prone to drift in complex
scenes.

Discriminative methods formulate object tracking as a
binary classification with local search which aims to find the
target image region that best distinguishes from the back-
ground (Avidan 2005; Grabner et al. 2006; Jiang et al. 2011;
Babenko et al. 2009). In Collins and Liu (2003), a target con-
fidence map is constructed by finding the most discrimina-
tive features based on features of color pixels. The ensemble
tracking algorithm (Avidan 2005) formulates the task as a
pixel based binary classification problem with local search.
Although this method is able to differentiate the target and
background, the pixel-based representation is less effective
for handling occlusion and clutters. In Grabner et al. (2006),
a method based on online adaptive boosting (OAB) is pro-
posed to select discriminative features for object tracking. As
each tracking result and model update is based on the object
detection of each frame, tracking errors are likely accumu-
lated and thereby causing drifts. To account for ambiguities
in selecting the best target location, a boosting approach that

extends the multiple instance learning (MIL) framework for
online object tracking is developed (Babenko et al. 2009).
While it is able to reduce tracking drifts, this method does
not handle large nonrigid shape deformation or scale well.
A hybrid approach that combines a generative model and
a discriminative classifier is proposed to handle appearance
changes (Yu et al. 2008).

Sparse linear representation has recently been introduced
to object tracking with demonstrated success (Mei and Ling
2011; Mei et al. 2011; Liu et al. 2010; Li et al. 2011; Zhang
et al. 2012a,d, 2014; Zhong et al. 2012; Bao et al. 2012).
In the �1 tracking method (Mei and Ling 2011), a candi-
date region is represented by a sparse linear combination of
target and trivial templates where the coefficients are com-
puted by solving a constrained �1 minimization problem with
non-negativity constraints. As this method entails solving
one �1 minimization problem for each particle, the com-
putational complexity is significant. An efficient �1 tracker
with minimum error bound as well as occlusion detection is
subsequently developed (Mei et al. 2011. In addition, meth-
ods based on dimensionality reduction as well as orthogo-
nal matching pursuit (Li et al. 2011) and efficient numerical
solver using an accelerated proximal gradient scheme (Bao et
al. 2012) have been developed to make the �1 tracking method
more efficient. In Liu et al. (2010), dynamic group sparsity is
incorporated in the tracking problem and high dimensional
image features are used to improve tracking performance.
Most recently, an algorithm that learns the sparse represen-
tations of all particles jointly (Zhang et al. 2012d, 2013a) is
proposed for object tracking.

Considerable progress has been made in recent years for
solving low rank matrix minimization and completion prob-
lems. Since matrix rank is not a convex function, its convex
surrogate (i.e., the matrix nuclear norm) is used for approx-
imation and efficiently solved (Cai et al. 2010; Ma et al.
2011; Recht et al. 2010; Peng et al. 2011) with numerous
applications including face recognition (Peng et al. 2011),
image retrieval (Liu et al. 2012), subspace clustering (Liu
et al. 2010), image classification (Zhang et al. 2013b), back-
ground subtraction (Candès et al. 2011), and video denoising
(Ji et al. 2010), among others.

3 Consistent Low-Rank Sparse Tracking

In this section, we present the proposed tracking algorithm
based on temporally consistent low-rank sparse representa-
tions of particle samples.

3.1 Consistent Low-Rank Sparse Representation

In this work, particles are sampled around the previous
object locations to predict the state st of the target at time

123

Int J Comput Vis

t , from which we crop the region of interest yt in the
current image and normalize it to the template size. The
state transition function p(st |st−1) is modeled by an affine
motion model with a diagonal Gaussian distribution. The
observation model p(yt |st) reflects the similarity between
an observed image region yt corresponding to a particle st

and the templates of the current dictionary. In this paper,
p(yt |st) is computed as a function of the difference between
the consistent low-rank sparse representation of the tar-
get based on object templates, and its representation based
on background templates. The particle that maximizes this
function is selected to be the tracked target at each time
instance.

At time t , we have n0 sampled particles and the corre-
sponding vectorized gray-scale image observations form a
matrix X0 =

[
x1, x2, . . . , xn0

]
, where the observation with

respect to i-th particle is denoted as xi ∈ R
d . We represent

each observation as a linear combination of templates from a
dictionary Dt = [d1, d2, . . . , dm], such that X0 = Dt Zt .
Here, the columns of Zt =

[
z1, z2, . . . , zn0

]
denote the

representations of particle observations with respect to Dt .
The dictionary columns contain templates that are used
to represent each particle including image observations of
the tracked object and the background. Since our repre-
sentation is constructed on the pixel level, misalignment
between dictionary templates and particle observations may
lead to tracking drifts. To alleviate this problem, the dic-
tionary Dt can be constructed from an overcomplete set
using the transformed templates of the target and back-
ground classes. In addition, this dictionary is progressively
updated.

For efficient and effective tracking, we exploit temporal
consistency to prune particles. A particle is considered tem-
porally inconsistent if its observation is not linearly repre-
sented well by the dictionary Dt and the representation of
the tracked target in the previous frame, denoted as z0. More
specifically, if its �2 reconstruction error ‖xi − Dt z0‖2 is
above a predefined threshold σ , then it is pruned in the cur-
rent frame. Temporal consistency is exploited in this work as
the appearances of the tracked object and its representations
do not vary much in a short time period. Consequently, this
process effectively reduces the number of particles to be rep-
resented from n0 to n, where n0 � n in most cases. In what
follows, we denote the ones after pruning as candidate par-
ticles, their corresponding observations as X ∈ R

d×n , and
their representations as Z ∈ R

m×n .
The representation of each candidate particle is based on

the following observations. (1) After pruning, the candidate
particle observations can be modeled by a low-rank subspace
(i.e., X is low-rank) and therefore Z (i.e., their representations
with respect to Dt) is expected to be low-rank as discussed in
Sect. 1. (2) The observation xi of a good candidate particle
can be modeled by a small number of nonzero coefficients

in its corresponding representation zi . (3) The aim of object
tracking is to search patches (with respect to particles) which
have a representation similar to previous tracking results. In
other words, a “good” representation should be consistent
over time.

In this work, we formulate the tracking problem by

min
Z,E

λ1 ‖Z‖∗ + λ2 ‖Z‖1,1 + λ3 ‖Z− Z0‖2,1 + λ4 ‖E‖1,1

(1)

such that X = Dt Z+ E

where

‖Z‖p,q =
(∑

j

(∑

i

∣∣[Z]i j
∣∣p

) q
p
) 1

q

(2)

and E is the error due to noise as well as occlusion. In this
formulation, λi , i = 1, . . . , 4 are weights that quantify the
trade-off between different terms discussed below. In addi-
tion, [Z]i j denotes the entry at the i-th row and j-th column
of Z. We denote the representation of the previous tracking
result with respect to Dt as z0. The matrix Z0 = 1z�0 is a
rank one matrix, where each column is z0.

3.1.1 Low-Rank Representation: ‖Z‖∗
In our formulation, we minimize the matrix rank of the rep-
resentations of all candidate particles together. Since the
rank minimization problem is known to be computationally
intractable (NP-hard) in general, we resort to minimizing its
convex envelope using its nuclear norm ‖Z‖∗. In contrast
to the �1 tracker, the particles at instance t are represented
jointly rather than independently. The proposed joint repre-
sentation capitalizes on the structure of particle representa-
tions which facilitates a more robust and computationally
efficient solution. Instead of solving n independent �1 min-
imization problems by the interior point method as in the
�1 tracker (Mei and Ling 2011), we consider a single rank
minimization problem solved by a sequence of closed form
update operations.

3.1.2 Sparse Representation: ‖Z‖1,1

The templates in the dictionary Dt capture possible appear-
ance variations of the target object and background, and only
a small number of these templates is required to reliably rep-
resent the observation of each candidate particle. This sparse
representation scheme has been shown to be robust to occlu-
sion or noise in visual tracking (Mei and Ling 2011; Zhang
et al. 2013a).

123

Int J Comput Vis

3.1.3 Temporal Consistency: ‖Z− Z0‖2,1

To encourage temporal consistency in the representation
of the tracking result, we compare the representations of
the particles in the current frame Z to that in the previ-
ous frame z0 using the �2,1 matrix norm. This approach
effectively enforces temporal consistency for visual tracking
although more sophisticated methods (e.g., weighted sim-
ilarity function between Z and z0) can be employed. The
use of the �2,1 norm is motivated by its effect on the dif-
ference ΔZ = Z − Z0. This norm encourages sparsity at
the level of the columns of ΔZ (at the particle level). In
other words, the regularization norm encourages the rep-
resentations of most particles (those represented well by
the current object templates in Dt) in the current frame to
be similar to that of the previous tracking result. Equiv-
alently, it allows only a small number of particles (those
observations not represented well by object templates) to
have representations different from the previous tracking
result.

3.1.4 Reconstruction Error: ‖E‖1,1

For robustness against sparse significant errors (e.g., due to
occlusion), we seek to minimize the �1 norm of each column
of E. This sparse error assumption has been adopted in track-
ing (Mei and Ling 2011) and other applications (Wright et
al. 2009). Unlike the �1 tracker (Mei and Ling 2011) that
incorporates sparse error by augmenting Dt with a large
number (i.e., 2d) of trivial templates and computing the cor-
responding coefficients, we obtain the reconstruction error
E ∈ R

d×n . Furthermore, the values and support of columns
in E are informative since they indicate the presence of occlu-
sion (large values but sparse support) and whether a candidate
particle is sampled from the background (large values with
non-sparse support).

3.1.5 Adaptive Dictionary

The dictionary Dt is initialized by sampling image patches
around the initial target position. For accurate tracking, the
dictionary is updated in successive frames to model appear-
ance change of the target object. To alleviate the problem
of tracking drift, we augment Dt with representative tem-
plates of the background such that Dt = [DO DB] where
DO and DB represent the target object and background tem-
plates respectively. Thus, the representation zk of a particle is
composed of an object representation zO

k and a background
representation zB

k . The tracking result yt at instance t is the
particle xi such that

i = arg max
k=1,...,n

(‖zO
k ‖1 − ‖zB

k ‖1). (3)

This encourages the tracking result to be modeled well
by object templates and not background templates. We also
exploit discriminative information to design a systematic pro-
cedure for updating Dt (see Sect. 3.4).

3.2 Discussion

As shown in (1), we propose a generic formulation for robust
object tracking with consistent low-rank sparse representa-
tion. With different setting of λ1, λ2, and λ3, (1) reduces to
various object tracking algorithms as follows:

– Low Rank Tracker (LRT): When λ2 = λ3 = 0, the pro-
posed algorithm reduces to a low rank tracker. In this case,
only the correlations among candidate particle observa-
tions are considered whereas sparsity and temporal con-
sistency properties are not exploited.

– Sparse Tracker (ST): When λ1 = λ3 = 0, the proposed
algorithm reduces to a sparse tracker. It is similar to the �1

tracker (Mei and Ling 2011) that encourages each particle
observation to be represented well by a small number of
templates.

– Low Rank Sparse Tracker (LRST): When λ1 �= 0,
λ2 �= 0, and λ3 = 0, the resulting tracker reduces to
the LRST method (Zhang et al. 2012c). Compared to the
LRT and ST methods, the LRST algorithm performs well
empirically (Zhang et al. 2012c) as it enforces both the
sparsity and low-rank properties.

– Consistent Low Rank Sparse Tracker (CLRST): When
λ1 �= 0, λ2 �= 0, and λ3 �= 0, the proposed algorithm
generalizes the LRST method with temporal consistency,
thereby generating more stable tracking results.

It is worth emphasizing the difference between the pro-
posed CLRST algorithm and several related tracking meth-
ods (Mei and Ling 2011; Zhang et al. 2012d).

– The �1 tracker (Mei and Ling 2011) can be considered
as a special case of Zhang et al. (2012d) and the pro-
posed CLRST algorithm. In the �1 tracker (Mei and Ling
2011), the sparse representations of particles are learned
for each particle independently. However, in Zhang et al.
(2012d) and CLRST, multi-task learning and low-rank
sparse learning are adopted respectively to consider the
relationship among particle observations.

– Both the MTT (Zhang et al. 2012d) and CLRST algo-
rithms consider the structure among particle observa-
tions. However, the assumptions to model this structure
are different. In the MTT method, the tracking problem
is formulated within the multi-task learning framework
by using L21 norm (‖Z‖2,1) such that particle observa-
tions are modeled by only a few (but the same) dictionary

123

Int J Comput Vis

Fig. 3 Schematic example of the proposed CLRST algorithm. The
representation Z of sample particles (after pruning) X with respect to
dictionary D (set of object and background templates) is learned by
solving (1). Notice that Z is sparse (i.e., few dictionary templates are

used) and low-rank (i.e., dictionary templates are reused for represen-
tation). Here, the rank of Z is 11. The particle xi is selected among
all other particles as the tracking result, since xi is best represented by
object templates only

elements to make all columns of Z similar to each other,
which indirectly forces the rank of the representation
matrix Z to be one. Different from the MTT tracker,
in the CLRST algorithm, the tracking problem is posed
within the low-rank learning framework which enforces
the target observations to lie in a low dimensional sub-
space without explicitly requiring the same dictionary
elements. Different from the MTT tracker, by design the
CLRST algorithm assumes the rank of the representa-
tion matrix Z low which can be one or greater than one.
In the proposed tracking method, the particles are ran-
domly sampled with a Gaussian distribution near a target
object, and the observations of some particles may be
different to each other. Consequently the rank of the rep-
resentation matrix Z is not necessarily one as assume by
the MTT tracker. Compared with the MTT tracker, the
assumption of the CLRST algorithm is less restricted and
more amenable to outlier particles. Experimental results
in Sect. 5 provide empirical evidence of this crucial algo-
rithmic difference.

– The use of low-rank property facilitates learning effective
sparse representation for object tracking. We use the �1

tracker as one example to show why the low-rank prop-
erty helps object tracking. In the �1 tracker, the represen-
tation of each particle is learned independently. Due to
the low-rank property, our tracker learns the representa-
tions of all particles jointly. Namely, the sparse represen-
tations of observations are learned jointly by considering
all particles and the low-rank property (i.e., solving one
rank minimization problem by a sequence of closed form
update operations). However, in the �1 tracker, each par-
ticle is processed independently without considering the

Algorithm 1: Consistent Low-Rank Sparse Tracking
(CLRST) Algorithm.

Input:

– Current frame at t
– Dictionary template Dt−1 = [DO DB]
– All n particles st−1
– Representation of previous tracking result z0

Output:

– Tracked target yt
– Current states st
– Updated target templates Dt = [DO DB]
– Updated representation z0

1: Generate n0 particles
2: Obtain mapped observations corresponding to all particles st to

get X0
3: Use consistency property to prune and obtain candidate particle

observations X based on the reconstruction error ‖X0 − DZ0‖2,
where Z0 = 1z�0 (see Sect. 3.1 for details).

4: Compute low-rank sparse representation Z for X by solving (1)
with Algorithm 3

5: Calculate difference score Δzi =‖zO
i ‖1−‖zB

i ‖1, i=1, 2, . . . , n
6: Set p(yt |st) as the difference score for each particle
7: Select the particle with the highest value of Δzi as the current

tracking result
8: Update z0 based on the tracking result zi
9: Update dictionary template via Algorithm 2

other particles (i.e., solving n �1 optimization problems
where n is the number of particles). Thus, the learned
sparse representation by our algorithm is more compact
and robust for object tracking.

Algorithm 1 shows the main steps of our CLRST method,
and Fig. 3 illustrates how the candidate particle observations

123

Int J Comput Vis

are used for tracking. Given observations of all pruned parti-
cles X (e.g., 300 particles sampled around the tracked car are
retained) and the current dictionary D = [DO DB], we learn
the representation matrix Z by solving (1). Note that smaller
values are shown with darker color. Clearly, Z is sparse (i.e.,
small number of templates used) and low-rank (i.e., tem-
plates are reused among particles). The particle observation
xi is selected as the current tracking result yt as its differ-
ence (‖zO

i ‖1 − ‖zB
i ‖1) is largest among all particles. Since

the particle observation x j can be considered as a misaligned
representation of the target, it is not modeled well by the
object dictionary DO (i.e., zO

j has small values). On the other
hand, the particle observation xk is represented well by the
background dictionary DB (i.e., zB

k has large values). As illus-
trated in this example, the tracking drift problem is alleviated
by the proposed formulation.

3.3 Solving (1)

Unlike existing algorithms that only focus on one of the two
convex and non-smooth regularizers (based on �1 or low-
rank constraints) the objective function in (1) consists of both
terms. To solve this complex objective function, we introduce
three equality constraints and slack variables:

min
Z1−4,E

λ1 ‖Z1‖∗+λ2‖Z2‖1,1+λ3 ‖Z3‖2,1+λ4‖E‖1,1

such that:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X = DZ4 + E

Z4 = Z1

Z4 = Z2

Z4 = Z3 + Z0.

(4)

This transformed problem can be minimized using the
conventional Inexact Augmented Lagrange Multiplier (IALM)
method that has attractive convergence properties for non-
smooth optimization which has been used in matrix rank
minimization problems (Peng et al. 2011). It is an iter-
ative method that augments the conventional Lagrangian
function with quadratic penalty terms that allow closed
form updates for each unknown variable. The updates
are in closed form from (5) to (7), where Sλ([A]i j]) =
sign([A]i j) max(0, |[A]i j |−λ) is the soft-thresholding oper-
ator, Jλ (A) = UASλ (�A) V�A is the singular value soft-
thresholding operator, and Lλ(ai) = max(0, 1− λ

‖ai‖2)ai . We

denote ai as the i-th column of matrix A and A = UA�AV�A
as the singular value decomposition. The technical details of
solving this optimization problem are presented in Sect. 4.

X∗ = arg min
X

[
1

2
‖X− A‖2F + λ‖X‖1,1

]
= Sλ(A) (5)

X∗ = arg min
X

[
1

2
‖X− A‖2F + λ‖X‖∗

]
= Jλ(A) (6)

Algorithm 2: Dictionary Template Update
Input:

– Target templates of DO.
– Background templates of DB.
– yt , which is the newly chosen tracking target.

Output:

– Dictionary Dt = [DO DB].
1: Initialize: α = 0 and ε are predefined parameters at t = 1.
2: zi is the solution of (1). Set Δzi = ‖zO

i ‖1 − ‖zB
i ‖1.

3: ω is the current weight vector of templates in DO .
4: Update weights according to the coefficients of the

target templates: ωk ← ωk exp(zO
i (k))∀k = 1, · · · , mO .

5: α← max(α,Δzi).
6: if (Δzi < εα) then
7: α← 0; r ← arg mink=1,...,mO ωk .
8: DO (:, r)← yt . /*replace template with yt */
9: ωr ← median(ω). /*replace weight*/
10: end if
11: Normalize ω such that ‖ω‖1 = 1.
12: Update DB based on the current tracking result.

X∗ = arg min
X

[
1

2
‖X− A‖2F + λ‖X‖2,1

]
= Lλ(A) (7)

3.4 Dictionary Update

It is well known that tracking algorithms with a fixed appear-
ance dictionary of templates is not effective to account for
appearance change in complex scenes. However, small errors
are likely to be introduced and accumulated if the templates
are updated too frequently, thereby making the tracker drift
away from the target. Numerous approaches have been pro-
posed for template update to alleviate the tracking drift prob-
lem (Matthews et al. 2004; Kaneko and Hori 2003). In this
work, we address this issue by dynamically updating the tem-
plates in Dt .

To initialize the object and background dictionaries, we
sample equal-sized patches at and around the initial posi-
tion of the target. We shift the initial bounding box by 1 to
3 pixels in each dimension similar to Huang et al. (2009),
Mei and Ling (2011) and thus obtain mO = 13 object tem-
plates for the object dictionary DO . In addition, we initialize
the background dictionary DB , with image patches randomly
sampled at a sufficient distance from the surrounding back-
ground based on the initial tracking result in a way similar
to Grabner et al. (2006), Babenko et al. (2009), Zhong et
al. (2012) and obtain m B = 12 background templates. All
templates are normalized to half the size of the target object
manually initialized.

Each object template in DO is associated with a weight ωi

proportional to the frequency that it is selected for tracking.
The weight of an object template in DO is updated based on
how frequently that template is used in representing the cur-
rent tracking result zi (computed from (3)). If zi is adequately

123

Int J Comput Vis

represented (based on a predefined threshold) by the current
dictionary, then there is no need to update it. Otherwise, the
object template with the smallest weight is replaced by the
current tracking result, and its weight is set to the median of
the current normalized weight vector ω. The main steps of
the template update for DO are summarized in Algorithm 2.
On the other hand, the background dictionary DB is updated
at every frame by re-sampling patches at a sufficient distance
from the tracking result.

4 Optimization

In this section, we present algorithmic details on how to solve
the optimization problem (4). By introducing augmented
Lagrange multipliers (ALM) to incorporate the equality con-
straints into the objective function, we obtain the Lagrangian
function in (8) that can be optimized through a sequence of
simple closed form update operations in (9) where Y1, Y2,
Y3 and Y4 are Lagrange multipliers, and u1 > 0, u2 > 0,
u3 > 0 and u4 > 0 are four penalty parameters.

L(Z1,...,4, E, Y1,...,4, u1,...,4)

= λ1 ‖Z1‖∗ + λ2‖Z2‖1,1 + λ3‖Z3‖2,1 + λ3‖E‖1,1

+ tr
[
Y�1 (X− DZ4 − E)

]
+ u1

2
‖X− DZ4 − E‖2F

+ tr
[
Y�2 (Z4 − Z1)

]
+ u2

2
‖Z4 − Z1‖2F

+ tr
[
Y�3 (Z4 − Z2)

]
+ u3

2
‖Z4 − Z2‖2F

+ tr
[
Y�4 (Z4 − Z3 − Z0)

]
+ u3

2
‖Z4 − Z3 − Z0‖2F

(8)

⇒ min
Z1,...,4,E,Y1,...,4,u1,...,4

L(Z1,...,4, E, Y1,...,4, u1,...,4) (9)

The above problem can by solved by either exact or inex-
act ALM algorithms (Glowinski and Marrocco 1975; Gabay
and Mercier 1976; Boyd et al. 2011), and we take an inexact
approach in this work for computational efficiency. The main
steps of this exact approach are summarized in Algorithm 3,
and the convergence properties can be proved similar to those
in Boyd et al. (2011). In (9), the variables can be viewed as
two groups: local variables (Z1, Z2, Z3, E) and global vari-
able Z4. By updating these two group variables iteratively, the
convergence can be guaranteed (Boyd et al. 2011). We note
that an IALM algorithm is an iterative method that solves for
each variable in a coordinate descent manner. That is, each
iteration of IALM involves update of each variable one at a
time, with the other variables fixed to their most recent val-
ues. Consequently, we obtain six update steps corresponding
to all the variables. We note that steps 3-8 of Algorithm 3 all
have closed form solutions.

Step 1. Update Z1: Updating Z1 requires the solution to
the problem (10) which can be computed in closed form
(11), where Jλ (X) = USλ (�) V� is a thresholding operator
with respect to a singular value λ; Sλ

(
Xi j

) = sign (Xi j)

max
(
0, |Xi j | − λ

)
is the soft-thresholding operator; and X =

U�V� is the singular value decomposition of X.

Z∗1 = arg min
Z1

λ1

u2
‖Z1‖∗ + 1

2

∥∥∥∥Z1 − Z4 − 1

u2
Y2

∥∥∥∥

2

F
(10)

⇒ Z∗1 = J λ1
u2

(
Z4 + 1

u2
Y2

)
(11)

Step 2. Update Z2: Z2 is updated by solving the optimization
problem (12) with the closed form solution (13).

Z∗2 = arg min
Z2

λ2

u3
‖Z2‖1,1 + 1

2

∥∥∥∥Z2 − Z4 − 1

u3
Y3

∥∥∥∥

2

F
(12)

⇒ Z∗2 = S λ2
u3

(
Z4 + 1

u3
Y3

)
(13)

Step 3. Update Z3: Z3 is updated by solving the optimization
problem (14) with the closed form solution (15).

Z∗3 = arg min
Z3

λ3

u4
‖Z3‖2,1 + 1

2

∥∥
∥∥Z3 − Z4 + Z0 − 1

u4
Y4

∥∥
∥∥

2

F

(14)

⇒ Z∗3 = L λ3
u4

(
Z4 − Z0 + 1

u4
Y4

)
(15)

Step 4. Update E: E is updated by solving the optimization
problem (16) with the closed form solution (17).

E∗ = arg min
E

λ4

u1
‖E‖1,1 + 1

2

∥∥∥
∥E− Dt Z4 + X− 1

u1
Y1

∥∥∥
∥

2

F
(16)

⇒ E∗ = S λ4
u1

(
Dt Z4 − X+ 1

u1
Y1

)
(17)

123

Int J Comput Vis

Algorithm 3: Consistent Low-Rank Sparse Representa-
tion (Solving (4))

Input : data matrix X, parameters λ1, λ2, λ3, λ4, and ρ

Output: Z and E

Initialize Z4 = 0, E = 0, Y1 = 0, Y2 = 0, Y3 = 0, Y4 = 01
while not converged do2

Fix other variables and update Z1 (11)3
Fix other variables and update Z2 (13)4
Fix other variables and update Z3 (15)5
Fix other variables and update E (17)6
Fix other variables and update Z4 (19)7
Update multipliers and parameters (20)8
Update final solution Z← Z49

end10

Step 5. Update Z4: Z4 is updated by solving the optimization
problem (18) with the closed form solution (19).

Z∗4 = arg min
Z4

tr
[
Y�1 (X− DZ4 − E)

]

+ u1

2
‖X− DZ4 − E‖2F

+ tr[Y�2 (Z4 − Z1)] + u2

2
‖Z4 − Z1‖2F

+ tr[Y�3 (Z4 − Z2)] + u3

2
‖Z4 − Z2‖2F

+tr[Y�4 (Z4−Z3−Z0)]+ u4

2
‖Z4−Z3−Z0‖2F (18)

⇒ Z∗4 = G1
[
D� (X− E)+G2 +G3

]
(19)

where G2 = u2
u1

Z1 + u3
u1

Z2 + u4
u1

(Z3+Z0), G1

=
(

D�D+ u2
u1

I+ u3
u1

I+ u4
u1

I
)−1

, and G3 = 1
u1(

D�Y1 − Y2 − Y3 − Y4
)
.

Step 6. Update Multipliers Y1, Y2, Y3, Y4: We update the
Lagrange multipliers (20), where ρ > 1.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Y1 = Y1 + u1(X− DZ4 − E)

Y2 = Y2 + u2(Z4 − Z1)

Y3 = Y3 + u3(Z4 − Z2)

Y4 = Y4 + u4(Z4 − Z3 − Z0)

u1 = ρu1; u2 = ρu2; u3 = ρu3; u4 = ρu4

(20)

The IALM algorithm that solves (4) is shown in Algo-
rithm 3, where convergence is reached when the change in
the objective function or solution Z is below a pre-defined
threshold (e.g., τ = 10−3 in this work). In addition, we set
u1 = u2 = u3 = u4. Here, we note that other penalty update
rules and stopping criteria can be used for this optimization
problem as discussed in Boyd et al. (2011).

Computational Complexity: At each frame, each of the
n0 particles drawn in the LRST, ST, and LRT methods
requires solving one optimization as no temporal consis-
tency is exploited for pruning. In the proposed CLRST algo-
rithm, the number of particles is pruned from n0 to n can-
didate particles which are represented jointly by solving
(1). The computational bottleneck of the LRT, LRST and
CLRST methods lies in computing singular value decom-
position (SVD) of Z. The time complexity for solving one
SVD of an m × n matrix is O(min{mn2, m2n}) in gen-
eral. Since m < n in this work, the computational com-
plexity of SVD here is O(m2n). This complexity does not
account for the low-rank nature of Z. It is worthwhile not-
ing that more computationally efficient SVD methods exist
for sufficiently low-rank matrices (Brand 2006) which can
be used to reduce the time complexity of the proposed algo-
rithm. For the LRT and LRST methods, the time complex-
ity is O(m2n0). In addition, we do not need to perform a
matrix inverse operation at each iteration to compute G1 in
Step 5. All what it entails is the inversion operation once
with the complexity of O(m3). In this case, (19) reduces to
simple matrix multiplication operations, and its time com-
plexity is O(m2n). As a result, the total computation cost is
O(m3 + m2nε−0.5), where the number of IALM iterations
is O(ε−0.5). In contrast, the time complexity for LRT and
LRST is O(m3 + m2n0ε

−0.5).
The proposed ST tracking method is efficient as the solu-

tion involves soft-thresholding operations. This complexity
is similar to that of the recent �1 tracking algorithms (Bao et
al. 2012; Li et al. 2011). We note that several fast techniques
(Mei et al. 2011; Bao et al. 2012; Li et al. 2011) can also
be applied to the proposed tracking methods for additional
speedup. In contrast, the computational complexity of the �1

tracker (Mei and Ling 2011) is O(n0d2) since the number of
dictionary templates (object and trivial) is (m + 2d) and n0

Lasso problems are solved independently. Empirical results
show that the proposed trackers are at least two orders of
magnitude faster than �1 tracker in general. For example, the
average run-time for the CLRST and �1 methods are 0.63
and 340 seconds respectively, when m = 25, n0 = 400, and
d = 32 × 32. Furthermore, better tracking results can be
achieved with larger values of m and d without increasing
computational overhead significantly. Compared to the ST,
LRT, and LRST methods, the CLRST algorithm is most effi-
cient, since it involves fewer particles (as n � n0 from the
pruning process).

5 Experimental Results

In this section, we present experimental results on evaluation
of the proposed tracking algorithm against several state-of-
the-art methods.

123

Int J Comput Vis

5.1 Datasets

For thorough evaluations, we use a set of 25 challenging
videos with ground truth object locations including One
Leave Shop Reenter1cor (OLSR), One Shop One Wait2cor
(OSOW), biker, bolt, car11, car4, carchase, coke11, david
indoor (david), faceocc2, faceocc, football, girl, panda, shak-
ing, singer, singer low frame rate (singerlfr), skating, skating
low frame rate (skatinglfr), soccer, surfer, sylv, trellis70, tud-
crossing, and volkswagen.

These videos contain complex scenes with challenging
factors, e.g., cluttered background, moving camera, fast
movement, large variation in pose and scale, occlusion, shape
deformation and distortion.

5.2 Evaluated Algorithms

We compare the proposed tracking methods (CLRST, LRST,
LRT and ST) with 14 state-of-the-art visual trackers includ-
ing visual tracking by decomposition (VTD) (Kwon and
Lee 2010), �1 tracker (Mei and Ling 2011), incremental
visual tracking (IVT) method (Ross et al. 2008), online
multiple instance learning (MIL) (Babenko et al. 2009)
method, fragments-based (Frag) (Adam et al. 2006) track-
ing method online Adabost boosting (OAB) method (Grab-
ner et al. 2006), multi-task tracking (MTT) (Zhang et al.
2012d) method, circulant structure tracking (CST) method
(Henriques et al. 2012), real time compressive tracking
(RTCT) method (Zhang et al. 2012a), tracking by detection
(TLD) method (Kalal et al. 2010), context-sensitive track-
ing (CT) method (Dinh et al. 2011), distribution field track-
ing (DFT) method (Sevilla-Lara and Learned-Miller 2012),
sparse collaborative model (SCM) (Zhong et al. 2012), and
Struck (Hare et al. 2011). For fair comparisons, we use the
publicly available source or binary codes provided by the
authors. In addition, we use the same initialization and para-
meter settings in all experiments.

5.3 Evaluation Criteria

Two metrics are used to evaluate tracking performance.
The first metric is the center location error which is
the Euclidean distance between the central location of a
tracked target and the manually labeled ground truth. The
other is an overlap ratio based on the PASCAL challenge
object detection score (Everingham et al. 2010). Given the
tracked bounding box RO IT and the ground truth bound-
ing box RO IGT , the overlap score is computed as score =
area(RO IT∩RO IGT)
area(RO IT∪RO IGT)

. To rank the tracking performance, we
compute the average overlap score across all frames of each
image sequence.

Table 1 Effects of σ on the average number of particles after prun-
ing (average particle number), average computational cost per frame
(seconds), and average overlap score

σ 0.5 0.8 1.0 1.2 1.5

Average particle numbers 17 76 177 369 439

Average computational cost 0.34 0.75 1.78 3.71 3.97

Average overlap score 0.63 0.67 0.70 0.62 0.62

5.4 Implementation Details

All our experiments are carried out in MATLAB on a 2.66
GHz Intel Core2 Duo machine with 6 GB RAM. The tem-
plate size d is set to half the size of the target object manually
initialized in the first frame. We use the affine transformation
where the state transitional probability, p (st |st−1), is mod-
eled by a zero-mean Gaussian distribution and a diagonal
covariance matrix σ0 with values (0.005, 0.0005, 0.0005,
0.005, 4, 4): p (st |st−1) ∼ N (0, σ0). The definition of
p(yt |st) is p(yt |st) = Δzi , i = 1, 2, . . . , n. The representa-
tion threshold ε in Algorithm 2 is set to 0.5. The parameter
σ is set to 1.0 in the CLRST method to prune particles. The
number of particles n0 is set to 500 and the total number of
templates m is set to 25.

We first do parameter analysis for our proposed method
and show how the parameters affect the performance and
how to decide their values in Sect. 5.5.3. We present qual-
itative and quantitative results of the tracking methods in
Sects. 5.6 and 5.7. The run-time performance is discussed
in Sect. 5.8. The videos are available at http://faculty.ucmerced.

edu/mhyang/project/clrst, and the MATLAB source code will be
made available soon.

5.5 Parameter Analysis

Several parameters play important roles in the proposed
tracking algorithm. In this section, we show how to deter-
mine their values and their effects on tracking performance.

5.5.1 Effect of σ

As discussed in Sect. 3.1, a particle xi is pruned if the cor-
responding �2 reconstruction error ‖xi − Dt z0‖2 is above
a predefined threshold σ . Thus, σ is closely related to the
number of particles after pruning, the computational cost
per frame, and the tracking performance. To analyze the
effect of σ on tracking performance, we use different σ

on five videos with 1912 frames. To simplify this problem,
we assume that σ can be parameterized by a discrete set
� = {0.5, 0.8, 1.0, 1.2, 1.5}. Experimental results, shown
in Table 1, indicate that it is a good trade-off to set the value
of σ to 1.

123

http://faculty.ucmerced.edu/mhyang/project/clrst
http://faculty.ucmerced.edu/mhyang/project/clrst

Int J Comput Vis

Fig. 4 Effects of λ1, λ2, and λ3 on tracking performance

5.5.2 Effect of λ

There are four parameters λ1, λ2, λ3, and λ4 in the objective
function (1). To demonstrate the effects of these parameters,
we fix one parameter value one at a time and vary the values
of the others. As λ1, λ2, and λ3 are related to the coefficients
Z, and λ4 is related to E, we fix the λ4 = 1 and change other
parameter values.

For sensitivity analysis, all the λi , i = 1, . . . , 3 are para-
meterized by a discrete set Λ, where Λ={1e−4, 1e−3, 0.01,
0.1, 0.5, 1.0, 2.5, 5.0, 10.0}. We evaluate different combina-
tions of these values on five videos with 1912 frames. For
each combination, we compute the average overlap score
from all frames. As a result, for each λ1 ∈ Λ with different
λ2 and λ3, we obtain 9 × 9 average overlap scores. Given
a fixed λ1, the tracking performance is stable for different
λ2 and λ3, we average the 9× 9 scores. For different λ1, we
obtain the corresponding results as shown in Fig. 4a. Figure 4
shows the sensitivity analysis of λi , i = 1, . . . , 3. Overall,
the proposed algorithm is robust to different settings as long
the value is within reasonable ranges. From on these results,
we can set λ1 = 5, λ2 = 0.1, λ3 = 0.5, and λ4 = 1.0 for the
objective function (1).

5.5.3 Adaptive Parameter Learning: λ3

Temporal consistency allows for more stable tracking espe-
cially when the appearance of the tracked target is smoothly
varying over time. As shown in (1), λ3 is the weight of tem-
poral consistency and decides how important this property is
for object tracking at each time instance. Here, we denote the
representation of the current tracking result as z and its repre-
sentation in the previous frame as z0. At a time instance when
the object undergoes smooth appearance change (i.e., small
values of Δz0 = ‖z− z0‖2), temporal consistency is useful
for robust object tracking, so the parameter λ3 should be large
in this case. However, when appearance significant change

Fig. 5 Learning a non-parametric likelihood model p(Δz0|λ3) for a
discrete value set of λ3. When the change in representation is small (i.e.,
Δz0 is small), the choice of λ3 is important and the most likely value of
λ3 is inversely proportional to Δz0. When the change in representation
is significant (i.e., Δz0 is large), the temporal consistency constraint is
suppressed (i.e., λ3 = 0.)

(i.e., large values of Δz0) occurs, temporal consistency is not
helpful and should be suppressed. In this case, λ3 should be
set to a small value. As such, this parameter should be adap-
tively changed for different frames in the same sequence, as
well as, across different sequences. In this section, we fix
the values of the parameters λ1, λ2 and λ4 as obtained in
Sect. 5.5.2, and discuss how λ3 (related to temporal consis-
tency) can be adaptively designed based on target appearance
changes.

The basic idea of adaptive parameter learning is to learn
the distribution of pair pattern (λ3,Δz0) from the training
videos, which are not used for test sequences. At each frame,
our goal is to select the best λ3 and its corresponding Δz0

with the labeled target position (ground truth) in the training
set. The learning details are as follows. Given one frame, for

123

Int J Comput Vis

each λ ∈ Λ, we obtain the corresponding tracking result by
solving (1). To simplify the problem, we further assume that
λ3 can be parameterized by a discrete set denoted as Λ. In
this work, we set Λ = {1e−4, 5e−4, 1e−3, 5e−3, 0.01, 0.05,
0.1, 0.5, 1.0, 2.5, 5.0}. We then use the ground truth at that
frame to select the closest one from all the tracking results
and obtain the best pair pattern (λ3,Δz0). Consequently, for
each value λ3 ∈ Λ, we construct its likelihood p(Δz0|λ3)

with non-parametric kernel density estimation, and obtain
a family of distributions, each of which is estimated in a
data-driven manner. A set of these probabilities are shown in
Fig. 5. We note that all the curves have single modes, which
validate our assumption (small values of Δz0 occur at larger
values ofλ3 and vice versa). We also observe that some curves
(λ3 = 0.0001, 0.001, 0.01) are similar with almost the same
tracking results. Given a test frame with Δz0, we obtain the
best λ3 by selecting λ3 ∈ Λ that maximizes the likelihood
and use the λ3 for the next unseen video frame.

5.6 Qualitative Comparison

Figures 6 and 7 show the tracking results of 18 trackers on
25 sequences. The tracking results are discussed below based
on the main challenging factors in each video.
Occlusion: In the OLSR sequence shown in Fig. 6a, the tar-
get woman walking down the corridor is partially occluded
by a man. The OAB method loses track of the woman and
starts to follow the man when partial occlusion occurs at
frame 28. Other trackers are able track the woman accurately
except the MIL and TLD methods. Among all trackers, the
MTT, CLRST, and DFT methods perform well. Some track-
ing results on the OSOW sequence are shown in Fig. 6b.
All methods track the target person well where limited par-
tial occlusion occurs. Figure 6c shows some results on the
faceocc sequence where the target face is heavily occluded
by a magazine. Most sparse trackers perform well in this
sequence whereas the OAB, RTCT, MIL and CT methods
drift away from the target when heavy occlusion occurs. Fig-
ure 6d shows some results on the tudcrossing sequence where
the target vehicle is occluded by crossing pedestrians. The
MIL, VTD, OAB, CST, Struck, and CT methods drift away
from the target object when occlusion occurs. On the other
hand, the �1, DFT, TLD, and the proposed CLRST methods
perform well in this sequence.
Illumination: Some tracking results of the car4 sequence are
shown in Fig. 6e. The OAB, Frag, DFT, and VTD methods
start to drift from the target at frame 187 when the vehi-
cle goes underneath the overpass. The MIL algorithm starts
drift away from the target object at frame 200, and the RTCT
and SDG methods start to drift at frame 233, The ST, CT,
TLD, Struck, and �1 methods are able to track the target
although with some errors. On the other hand, the target
object is successfully tracker by the IVT, LRT, LRST and

CLRST algorithms throughout the entire sequence despite
large illumination changes. Figure 6f shows some tracking
results on the car11 sequence. Most trackers (RCT, TLD,
MIL, OAB, CT, ST, and �1) drift away from the target vehi-
cle at different frames. The Struck, IVT, VTD, LRT, LRST
and CLRST methods perform well throughout the whole
sequence. Overall, the CLRST, Struck, and LRST trackers
perform better than the others as shown in Tables 2 and 3.
The singer sequence contains significant illumination, scale,
and viewpoint changes and most trackers drift away from
the target object as shown in Fig. 6g. The VTD and pro-
posed trackers perform well in this sequence. The singerlfr
sequence contains the same scenes as the singer video except
at low frame rate. Similar to the tracking results in the singer
sequence, the proposed tracking algorithms (except the ST
approach) and the VTD method perform well in the singerlfr
sequence.
Background Clutter: The football sequence includes scenes
with cluttered background. The RTCT, OAB, Frag, CT, �1,
and ST trackers drift away from the target at different frames
when similar objects appear in close proximity to the tar-
get object. Overall, the proposed LRT, LRST and CLRST
algorithms successfully track the target object. Some track-
ing results on the soccer sequence are shown in Fig. 6j. The
CLRST and LRST methods accurately track the target object
despite scale and pose changes as well as occlusion by con-
fetti. In contrast, other methods (IVT, Struck, �1, OAB, MIL,
and Frag) fail to track the target object reliably.
Illumination and Pose Variation: Figure 6k shows some
tracking results on the david sequence where the Frag, RTCT,
CT, VTD, Struck, and SDG methods fail at different frames.
The OAB method drifts away from the target object at frame
550. The MIL and �1 trackers adequately track the target, but
with certain drift, especially at frames 690 and 500, respec-
tively. The IVT, MTT, DFT, TLD, CST ST, LRT, LRST
and CLRST algorithms are able to track the target accu-
rately throughout the sequence. The trellis70 sequence is
captured in an outdoor environment where the object appear-
ance changes significantly as a result of cast shadows, motion
and head pose variation. Figure 6l shows some results where
almost all the methods do not perform well in this sequence.
However, the CLRST, LRST, LRT, and MTT methods per-
form better than the others. Some tracking results on the
sequence sylv are shown Fig. 6m. The IVT tracker fails at
frame 613 as a result of a combination of large pose and illu-
mination change. The Struck, ST, LRT, LRST and CLRST
methods are able to track the target in this sequence, whereas
the Frag, MIL, VTD, OAB, DFT, CT, CST, and �1 trackers
slightly drift away from the target.
Occlusion and Pose Variation: The can in the coke11
sequence is frequently occluded and rotated. Figure 7a shows
some tracking results where the CLRST, LRST, LRT, ST,
�1, SDG, MTT, Struck, OAB, and MIL methods perform

123

Int J Comput Vis

(a
) o

ls
r

(b
) o

so
w

(c
) f

ac
eo

cc
(d

) t
ud

cr
os

si
ng

(e
) c

ar
4

(f
) c

ar
11

(g
) s

in
ge

r
(h

) s
in

ge
rl

fr
(i

) f
oo

tb
al

l
(j

) s
oc

ce
r

(k
) d

av
id

(l
) t

re
lli

s7
0

(m
) s

yl
v

Fig. 6 Tracking results of 18 trackers (denoted in different colors) on 13 image sequences. Frame numbers are displayed red. See text for details.
Results best viewed on high-resolution displays (Color figure online)

123

Int J Comput Vis

(a
) c

ok
e1

1
(b

) f
ac

eo
cc

2
(c

) p
an

da
(d

) b
ik

er
(e

) s
ur

fe
r

(f
) b

ol
t

(g
) g

ir
l

(h
) v

ol
ks

w
ag

en
(i

) c
ar

ch
as

e
(j

) s
ha

ki
ng

(k
) s

ka
tin

g
(l

) s
ka

tin
gl

fr

Fig. 7 Tracking results of 18 trackers (denoted in different colors) on 12 image sequences. Frame numbers are displayed in red. See text for details.
Results best viewed on high-resolution displays (Color figure online)

123

Int J Comput Vis

Table 2 The average center location error of 18 different trackers on 25 different image sequences

Video CLRST LRST LRT ST �1 MTT RTCT IVT MIL OAB Frag VTD CST CT DFT TLD SDG Struck

OLSR 1.8 3.0 1.9 1.9 1.9 1.7 8.3 1.9 9.8 68.3 4.0 2.4 1.9 4.1 1.8 10.9 2.0 5.0

OSOW 2.3 6.8 2.6 2.9 2.8 2.5 15.2 3.0 11.6 4.6 5.6 2.7 4.6 2.7 3.8 11.1 2.4 4.7

Biker 11.8 27.7 59.0 25.3 29.4 14.0 16.0 76.8 29.6 22.0 104.4 17.3 18.4 121.6 122.6 86.9 73.7 48.0

Bolt 8.4 7.3 11.9 39.2 110.2 95.0 22.3 87.4 9.9 108.2 17.9 16.1 9.0 147.6 36.9 105.8 35.9 144.3

Car11 1.3 2.5 2.7 21.5 19.2 1.9 117.8 5.4 53.8 5.7 72.7 3.7 2.1 17.6 8.1 29.0 2.9 1.8

Car4 2.0 2.6 2.1 12.7 8.5 2.2 86.3 6.4 53.8 88.1 127.3 27.0 18.3 9.2 89.6 6.9 59.4 2.3

Carchase 3.3 9.2 44.2 44.2 21.7 10.9 19.1 18.5 20.4 4.2 11.1 44.4 3.7 5.9 46.3 3.9 3.9 2.5

Coke11 3.6 4.7 7.0 6.0 12.1 7.3 11.1 58.5 13.7 11.3 71.0 62.7 5.9 5.8 16.3 11.6 5.2 4.0

David 9.1 13.5 13.3 15.8 16.2 16.0 32.4 13.1 30.3 26.4 73.0 64.9 19.7 36.0 15.4 16.6 61.6 46.7

Faceocc2 8.5 6.6 5.8 6.2 15.2 8.1 6.0 6.5 10.2 20.8 48.2 11.8 6.0 8.3 7.2 13.3 10.3 6.5

Faceocc 8.4 9.6 6.0 7.5 7.0 7.7 19.0 9.1 34.3 17.2 17.9 8.7 4.5 31.2 4.7 14.8 4.3 8.4

Football 3.4 4.4 4.3 14.6 15.4 4.7 123.3 5.2 8.0 53.3 6.3 3.7 7.2 41.7 5.2 6.0 4.1 6.9

Girl 3.8 4.0 4.7 3.2 5.0 4.5 17.4 4.2 12.4 11.0 7.4 11.4 38.2 12.7 19.1 8.3 3.3 18.6

Panda 8.3 10.3 7.9 8.5 34.8 9.8 6.2 39.7 6.2 7.5 5.8 30.3 92.4 55.7 33.7 22.2 8.6 5.8

Shaking 2.7 3.9 4.4 3.2 37.8 8.4 86.6 52.2 7.9 100.3 15.3 4.0 13.6 33.9 95.4 21.0 4.0 54.9

Singer 1.5 1.9 1.6 2.1 5.3 1.8 5.9 9.8 11.1 63.0 26.9 1.9 6.9 65.6 6.6 44.1 1.8 4.5

Singerlfr 4.5 1.7 6.3 8.6 20.3 3.7 13.3 15.7 42.3 20.5 51.9 9.8 98.1 93.5 24.2 16.6 39.8 43.0

Skating 4.5 5.0 4.8 4.6 20.1 7.4 84.9 74.9 49.2 39.3 63.3 5.0 5.2 35.7 57.4 99.3 28.0 51.9

Skatinglfr 2.7 3.1 3.4 29.5 31.1 3.4 62.4 57.9 44.0 39.8 53.3 6.2 41.5 61.3 80.8 52.6 128.0 45.7

Soccer 11.8 8.7 15.4 15.1 58.5 14.3 79.6 97.8 46.3 65.3 41.4 10.5 35.9 72.3 62.4 29.8 42.2 41.0

Surfer 10.0 14.0 10.3 10.2 28.0 22.3 29.8 75.1 8.4 8.1 186.1 8.7 78.4 7.9 139.4 12.5 111.4 9.2

Sylv 4.4 5.2 5.4 5.9 14.5 4.8 13.5 39.4 15.3 10.4 6.8 7.4 6.8 6.5 10.9 5.2 5.6 4.4

Trellis70 5.8 6.8 7.4 14.5 31.1 10.3 42.4 54.0 37.3 41.5 55.7 47.8 7.6 26.0 60.1 50.9 23.6 28.3

Tudcrossing 17.3 30.2 35.8 46.2 6.8 14.3 55.1 25.9 51.2 26.2 10.8 43.1 58.0 26.7 10.6 16.7 12.9 17.8

Volkswagen 5.6 4.9 3.5 3.6 181.3 9.3 288.0 130.5 19.4 10.1 241.6 11.0 182.9 10.0 253.5 3.5 4.2 1.7

On average, the proposed trackers (ST, LRT, LRST and CLRST) outperform the other 14 state-of-the-art trackers. For each sequence, the smallest
and second smallest distances are denoted in italic and bold, respectively

well throughout the entire sequence. Tracking results on the
faceocc2 sequence are shown in Fig. 7b where most track-
ers drift away from the target when it is heavily occluded. As
the proposed CLRST algorithm exploits sparse and low-rank
representation as well as temporal consistency to account for
occlusion, it performs well in this sequence. Figure 7c shows
tracking results on the panda sequence where the target
undergoes out-of-plane pose variation and shape deforma-
tion. The Frag, OAB, Struck, and MIL methods perform well
which can be attributed to the local representation schemes
or local discriminative features. While the proposed track-
ing methods perform as well as the above methods, the other
trackers fail to track the target.
Abrupt Motion and Pose Variation: The biker sequence
contains scenes with abrupt motion and large pose variation
as shown in Fig. 7d. Most methods fail to track the target
objects well when the target undergoes out-of-plane rota-
tion and abrupt motion. Nevertheless, both MTT and CLRST
algorithms perform well throughout the entire sequence with

more stable tracking results. Figure 7e shows tracking results
of the surfer sequence where the target person undergoes
acrobat movements with 360 degrees out of plane rotation.
The RTCT, DFT and Frag methods start to drift at frames
402, 415, and 418, respectively. The SDG, CST, and IVT
methods drift at frames 480, 556, and 562 due to the abrupt
motion. On the other hand, the CT, OAB, Struck, MIL and
CLRST methods perform well. In the bolt sequence (Fig. 7f),
several objects appear in the same scenes with rapid appear-
ance change due to shape deformation and fast motion. The
CLRST, LRST, LRT, MIL, and CST are able to track the tar-
get object in most frames. However, the IVT, VTD, �1, DFT,
and MTT methods do not perform well when similar objects
appear near the target.
Abrupt Motion, Pose Variation and Occlusion: Figure 7g
shows tracking results for the girl sequence. The ST, LRT,
LRST, CLRST, SDG, MTT and �1 methods are capable of
tracking the target for the entire sequence. Other trackers
experience drift at different time instances (Struck at frame

123

Int J Comput Vis

Table 3 The average overlap score of 18 different trackers on 25 different videos

Video CLRST LRST LRT ST �1 MTT RTCT IVT MIL OAB Frag VTD CST CT DFT TLD SDG Struck

OLSR 0.87 0.77 0.86 0.86 0.86 0.88 0.71 0.86 0.67 0.17 0.78 0.81 0.84 0.73 0.86 0.68 0.86 0.77

OSOW 0.88 0.74 0.83 0.83 0.87 0.86 0.56 0.83 0.56 0.71 0.77 0.86 0.81 0.81 0.82 0.65 0.87 0.81

Biker 0.59 0.45 0.30 0.44 0.39 0.68 0.45 0.31 0.43 0.44 0.27 0.49 0.45 0.39 0.27 0.30 0.36 0.38

Bolt 0.60 0.67 0.53 0.36 0.20 0.03 0.31 0.02 0.56 0.02 0.44 0.46 0.63 0.07 0.37 0.16 0.35 0.17

Car11 0.86 0.76 0.73 0.46 0.52 0.80 0.00 0.51 0.22 0.55 0.10 0.66 0.80 0.43 0.52 0.28 0.68 0.83

Car4 0.88 0.86 0.88 0.49 0.62 0.80 0.24 0.74 0.27 0.22 0.23 0.47 0.47 0.64 0.23 0.57 0.30 0.49

Carchase 0.82 0.67 0.46 0.47 0.59 0.58 0.29 0.44 0.53 0.80 0.60 0.38 0.81 0.74 0.40 0.76 0.77 0.85

Coke11 0.73 0.72 0.71 0.72 0.46 0.68 0.47 0.10 0.43 0.41 0.06 0.06 0.61 0.59 0.43 0.45 0.64 0.74

David 0.70 0.50 0.56 0.53 0.50 0.53 0.41 0.36 0.42 0.43 0.23 0.26 0.50 0.39 0.57 0.60 0.30 0.38

Faceocc2 0.71 0.74 0.78 0.77 0.67 0.74 0.54 0.79 0.72 0.59 0.38 0.70 0.77 0.72 0.78 0.57 0.73 0.77

Faceocc 0.84 0.82 0.89 0.86 0.86 0.84 0.73 0.84 0.58 0.77 0.87 0.82 0.92 0.55 0.91 0.57 0.92 0.85

Football 0.74 0.69 0.72 0.64 0.45 0.66 0.02 0.64 0.52 0.23 0.59 0.74 0.57 0.39 0.68 0.60 0.70 0.60

Girl 0.72 0.69 0.68 0.74 0.68 0.71 0.32 0.68 0.45 0.53 0.60 0.55 0.35 0.56 0.38 0.59 0.71 0.41

Panda 0.49 0.41 0.48 0.45 0.27 0.43 0.52 0.14 0.51 0.48 0.53 0.29 0.15 0.35 0.18 0.35 0.47 0.56

Shaking 0.81 0.72 0.72 0.78 0.18 0.55 0.02 0.02 0.58 0.01 0.41 0.72 0.44 0.45 0.15 0.33 0.72 0.15

Singer 0.79 0.76 0.77 0.70 0.70 0.76 0.45 0.48 0.41 0.18 0.26 0.63 0.47 0.24 0.47 0.40 0.65 0.46

Singerlfr 0.61 0.70 0.37 0.32 0.19 0.50 0.20 0.24 0.10 0.12 0.13 0.30 0.11 0.11 0.22 0.16 0.16 0.14

Skating 0.66 0.60 0.62 0.61 0.47 0.51 0.01 0.07 0.23 0.37 0.19 0.61 0.55 0.38 0.20 0.07 0.51 0.29

Skatinglfr 0.78 0.71 0.72 0.40 0.53 0.72 0.12 0.11 0.21 0.26 0.21 0.57 0.35 0.16 0.15 0.29 0.16 0.36

Soccer 0.32 0.38 0.28 0.28 0.14 0.31 0.15 0.14 0.12 0.10 0.19 0.35 0.24 0.10 0.10 0.17 0.16 0.13

Surfer 0.48 0.41 0.51 0.51 0.16 0.27 0.15 0.16 0.57 0.59 0.03 0.56 0.21 0.53 0.03 0.41 0.05 0.56

Sylv 0.82 0.78 0.75 0.76 0.58 0.73 0.59 0.47 0.58 0.67 0.73 0.74 0.72 0.70 0.63 0.70 0.78 0.78

Trellis70 0.78 0.76 0.72 0.57 0.38 0.60 0.22 0.39 0.35 0.46 0.29 0.31 0.72 0.52 0.32 0.21 0.49 0.50

Tudcrossing 0.68 0.51 0.61 0.57 0.84 0.67 0.32 0.56 0.38 0.56 0.68 0.40 0.36 0.61 0.67 0.71 0.67 0.61

Volkswagen 0.51 0.54 0.65 0.64 0.01 0.40 0.01 0.02 0.27 0.37 0.01 0.24 0.01 0.60 0.02 0.66 0.62 0.63

On average, the proposed trackers (ST, LRT, LRST and CLRST) outperform the other 14 state-of-the-art trackers. For each sequence, the best and
the second best scores are denoted in italic and bold, respectively

59, CT at frame 84, TLD at frame 120, RTCT at frame 216,
DFT at frame 240, Frag at frame 248, CST at frame 310, MIL
at frame 430, OAB and IVT at frame 436, and VTD at frame
477). In the volkswagen sequence, the target vehicle under-
goes abrupt object motion, pose variation, and occlusions.
Some the tracking results at frames are shown in Fig. 7h.
The CST, IVT, �1, RTCT, MTT, OAB, and Frag methods
fail to track the target around frame 10; the CT and VTD
algorithms start to drift due to occlusions at frame 293 and
331, respectively; and the MIL tracker fails at frame 754.
The other trackers (CLRST, LRST, LRT, ST, Struck, SDB,
and TLD) are able to track the target almost throughout the
entire sequence. Figure 7i shows some tracking results of the
carchase sequence. The DFT method starts to drift at frame
139; the VTD, RTCT, IVT, and CT algorithms drift at frame
169 when occlusion occurs; and the LRT and ST algorithms
fail at frame 233. The CLRST, TLD, CST, Struck, and OAB
trackers perform well throughout this sequence.
Abrupt Motion, Illumination Change, and Occlusion: In
the shaking sequence, the appearance of the target object
changes significantly due to pose and illumination variations

as well as occlusion. The proposed algorithms (ST, LRT,
LRST and CLRST) successfully track the object as shown in
Fig. 7j. The VTD, MIL, SDG, and MTT algorithms track the
object well except for some large errors around frames 60
and 260. Other methods (OAB, IVT, �1, Struck, and Frag)
fail to track the object when the the combined changes of
pose and illumination as well as occlusion occur. The skat-
ing and skatinglfr sequences contain abrupt object motion,
large changes of illumination, scale, and viewpoints, as well
as occlusions. The VTD and proposed methods (ST, LRT,
LRST and CLRST) are able to account for appearance well
as shown in Fig. 7k. In Fig. 7l, the proposed methods (LRT,
LRST and CLRST) track the target reliably despite fast object
motion (as a result of low frame rate). Moreover, our CLRST
performs slightly better than the MTT and VTD algorithms
(e.g., frame 299) in this sequence.

5.7 Quantitative Comparison

Tables 2 and 3 show the center location errors and the overlap
scores of 18 trackers on the 25 challenging image sequences.

123

Int J Comput Vis

Table 4 Average run-time for each frame (in seconds) of 7 trackers (CLRST, LRST, LRT, ST, �1 Mei and Ling 2011, �∗1 Bao et al. 2012, and MTT
Zhang et al. 2012d) with varying template sizes d and number of particles n0

d 32× 32 48× 48

�1 �∗1 MTT ST LRT LRST CLRST �1 �∗1 MTT ST LRT LRST CLRST

n0

100 84.5 0.31 0.41 0.61 0.66 0.79 0.71 601.3 1.42 2.6 1.19 1.51 1.34 0.93

200 178.9 0.56 1.46 1.19 2.04 1.35 0.75 1,238.3 2.23 5.6 2.73 3.11 2.74 1.00

300 256.4 0.65 2.71 1.79 1.95 2.36 0.65 1,969.9 3.51 5.0 4.09 4.50 4.26 0.79

400 340.5 1.20 4.69 2.51 3.03 3.03 0.63 2,665.2 4.66 11.5 5.24 5.78 6.52 0.86

500 422.5 1.37 4.85 3.15 3.32 3.47 0.71 3,158.6 6.26 19.4 6.16 8.19 7.12 0.77

600 497.1 1.38 5.97 3.74 4.29 4.35 0.60 3,915.9 7.93 21.0 7.31 8.33 8.58 0.74

700 572.3 1.81 6.17 4.13 4.72 4.66 0.55 4,429.9 9.33 22.4 9.14 9.32 10.04 0.75

800 659.4 1.94 7.62 4.61 5.41 5.39 0.75 5,080.4 9.54 23.8 10.05 10.85 10.97 0.76

For the proposed CLRST method, n is smaller than n0 after particle pruning

The proposed trackers achieve the best or second best results
(based on both criteria) in most sequences. Compared to the
ST method, the LRT algorithm achieves much better results
which shows merits of exploiting the underlying structure of
candidate particle representations via low-rank constraints.
Furthermore, the LRST algorithm outperforms the ST and
LRT methods, which shows the advantages of jointly exploit-
ing both low-rank and sparsity constraints. The CLRST algo-
rithm performs better than the LRST method, which indicates
that the use of temporal consistency facilitates visual track-
ing. In addition, we note that the CLRST tracking algorithm
is more efficient than the other three trackers (see Sect. 5.8).

Among the sparse trackers, the LRST algorithm outper-
forms both ST and �1 method which can be explained by the
difference of exploiting the underlying constraints among
particle representations jointly. Compared with the MTT
tracker that models the correlations among particle represen-
tations in a multi-task learning framework, the CLRST algo-
rithm is computationally more efficient with better perfor-
mance. The assumption of the MTT method is strict because
it inherently assumes that the learned representations of all
candidate particles should be described with a few but the
same dictionary elements. However, the CLRST algorithm
does not assume these representations to be similar but rather
belong to a low-dimensional subspace (i.e., the matrix con-
sisting of all candidate particle representations is low-rank).
In addition, by exploiting the temporal consistency property,
our CLRST achieves better runtime performance.

5.8 Run-Time Performance

Tracking algorithms based on sparse representations and par-
ticle filters (Mei and Ling 2011; Zhang et al. 2012d; Bao et
al. 2012; Li et al. 2011) have been demonstrated to perform
well in visual tracking against other methods (Kwon and

Lee 2010; Ross et al. 2008; Babenko et al. 2009; Adam et al.
2006; Grabner et al. 2006; Kalal et al. 2010). However, the
run-time of sparse trackers grows proportionally as the num-
ber of particles and templates in the dictionary. Table 4 shows
the run-time performance of state-of-the-art algorithms based
on sparse representation (Mei and Ling 2011; Zhang et al.
2012d; Bao et al. 2012; Li et al. 2011) and the proposed
algorithms (ST, LRT, LRST, CLRST)3. The �∗1 tracker (Bao
et al. 2012) is more efficient than the �1 tracker by pruning
particles and an approximate gradient descent algorithm. On
the other hand, the MTT tracker (Zhang et al. 2012d) makes
use of the correlation among particles to improve robustness
and reduce computational load.

Table 4 shows that our trackers are more efficient than
the �1 method. For example, when m = 25, n = 400, and
d = 1024, the average run-time for the CLRST and �1 track-
ers are 0.63 and 340 seconds per frame respectively (i.e.,
CLRST is 560 times faster than �1). Note that, most of the
computational gains with respect to the �1 method are due
to the preliminary pruning process. In addition, the CLRST
tracker is also more efficient than the real time �∗1 method
(Bao et al. 2012). Among all trackers, the CLRST algorithm
is 4 to 5 times faster than the LRST method (n = 400, and
d = 1024). This speedup can be attributed to the use of tem-
poral consistency to prune particles. It is known that tracking
performance tends to be better when m and d are increased.
For the �1 tracker, the computational cost increases signif-
icantly with m and d. However, this increase is much less
significant with the proposed tracking methods as shown
in Table 4. While some trackers, e.g., RTCT (Zhang et al.
2012a) and TLD (Kalal et al. 2010), are faster than the pro-
posed algorithms, the tracking performance results are less

3 The results of Li et al. (2011) are not included in Table 4 since
the source code is not available for evaluation and the implementation
requires technical details as well as parameter settings not discussed.

123

Int J Comput Vis

accurate (Mei and Ling 2011; Zhang et al. 2012d; Bao et al.
2012; Li et al. 2011). Furthermore, the computational load of
the CLRST algorithm can be further reduced by decreasing
the target template size d (e.g., by projecting the templates
onto a lower dimensional subspace).

6 Conclusion

In this paper, we propose a robust and efficient particle-filter
based tracking algorithm that exploits the consistent, low-
rank, and sparse nature of candidate particle representations
using a dictionary of object and background templates. We
model visual tracking as a low-rank sparse learning prob-
lem that is regularized by temporal consistency at the level
of particles, and present an efficient solution. We exten-
sively analyze the performance of our tracking algorithms
against a number of competing state-of-the-art methods on
25 challenging image sequences. Qualitative and quantitative
experimental results show that the proposed tracking algo-
rithms outperform state-of-the-art methods, especially in the
presence of partial occlusions, pose variations, illumination
changes, and abrupt motion.

Acknowledgments This work is supported in part by the research
grant for the Human Sixth Sense Programme at the Advanced Digital
Sciences Center from Singapore’s Agency for Science, Technology and
Research (A∗STAR) and NSF CAREER Grant #1149783.

References

Adam, A., Rivlin, E., & Shimshoni, I. (2006). Robust fragments-based
tracking using the integral histogram. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition (pp. 798–805).

Avidan, S. (2005). Ensemble tracking. In Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition (pp. 494–501).

Babenko, B., Yang, M.-H., & Belongie, S. (2009). Visual tracking with
online multiple instance learning. In Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition (pp. 983–990).

Bao, C., Wu, Y., Ling, H., & Ji, H. (2012). Real time robust l1 tracker
using accelerated proximal gradient approach. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition.

Black, M. J., & Jepson, A. D. (1998). Eigentracking: Robust matching
and tracking of articulated objects using a view-based representation.
International Journal of Computer Vision, 26(1), 63–84.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distrib-
uted optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends in Machine Learning,
3(1), 1–122.

Brand, M. (2006). Fast low-rank modifications of the thin singular value
decomposition. Linear Algebra and its Applications, 415(1), 20–30.

Cai, J., Candes, E., & Shen, Z. (2010). A singular value thresholding
algorithm for matrix completion. SIAM Journal on Optimization,
20(4), 1956–1982.

Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal
component analysis? Journal of the ACM, 58(3), 11:1–11:37.

Collins, R. T., & Liu, Y. (2003). On-line selection of discriminative
tracking features. In Proceedings of the IEEE International Confer-
ence on Computer Vision (pp. 346–352).

Comaniciu, D., Ramesh, V., & Meer, P. (2003). Kernel-based object
tracking. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 25(5), 564–575.

Dinh, T., Vo, N., & Medioni, G. (2011). Context tracker: Exploring sup-
porters and distracters in unconstrained environments. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recogni-
tion (pp. 1177–1184).

Everingham, M., Gool, L., Williams, C., Winn, J., & Zisserman, A.
(2010). The pascal visual object class (voc) challenge. International
Journal of Computer Vision, 88(2), 303–338.

Gabay, D., & Mercier, B. (1976). A dual algorithm for the solution of
nonlinear variational problems via finite element approximations.
Computers and Mathematics with Applications, 2(1), 17–40.

Glowinski, R., & Marrocco, A. (1975). Sur l‘approximation, par ele-
ments finis d‘ordre un, et la resolution, par penalisation—dualite,
d‘une classe de problemes de dirichlet non lineares. Revue Fran-
caise dAutomatique, Informatique, et Recherche Operationelle, 9(1),
41–76.

Grabner, H., Grabner, M., & Bischof, H. (2006). Real-time tracking via
on-line boosting. In Proceedings of British Machine Vision Confer-
ence (pp. 1–10).

Hare, S., Saffari, A., & Torr, P. (2011). Struck: Structured output track-
ing with kernels. In Proceedings of the IEEE International Confer-
ence on Computer Vision.

Henriques, J., Caseiro, R., Martins, P., & Batista, J. (2012). Exploit-
ing the circulant structure of tracking-by-detection with kernels. In
Proceedings of European Conference on Computer Vision.

Huang, J., Huang, X., & Metaxas, D. (2009). Learning with dynamic
group sparsity. In Proceedings of the IEEE International Conference
on Computer Vision.

Jepson, A., Fleet, D., & El-Maraghi, T. (2003). Robust on-line appear-
ance models for visual tracking. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(10), 1296–1311.

Ji, H., Liu, C., Shen, Z., & Xu, Y. (2010). Robust video denoising using
low rank matrix completion. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition.

Jiang, N., Liu, W., & Wu, Y. (2011). Adaptive and discriminative metric
differential tracking. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (pp. 1161–1168).

Kalal, Z., Matas, J., & Mikolajczyk, K. (2010). P-N learning:
Bootstrapping binary classifiers by structural constraints. In Pro-
ceedings of IEEE Conference on Computer Vision and Pattern
Recognition.

Kaneko, T., & Hori, O. (2003). Feature selection for reliable tracking
using template matching. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (pp. 796–802).

Kristan, M., & Cehovin, L., et al. (2013). The visual object tracking
vot2013 challenge results. In ICCV2013 Workshops, Workshop on
Visual Object Tracking Challenge.

Kwon, J., & Lee, K. M. (2010). Visual tracking decomposition. In
Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (pp. 1269–1276).

Li, H., Shen, C., & Shi, Q. (2011). Real-time visual tracking with com-
pressed sensing. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (pp. 1305–1312).

Liu, B., Yang, L., Huang, J., Meer, P., Gong, L., & Kulikowski, C.
(2010). Robust and fast collaborative tracking with two stage sparse
optimization. In Proceedings of European Conference on Computer
Vision (pp. 1–14).

Liu, G., Lin, Z., & Yu, Y. (2010). Robust subspace segmentation by low-
rank representation. In Proceedings of the International Conference
on Machine Learning.

Liu, S., Song, Z., Liu, G., Xu, C., Lu, H., & Yan, S. (2012). Street-to-
shop: Cross-scenario clothing retrieval via parts alignment and aux-
iliary set. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition.

123

Int J Comput Vis

Ma, S., Goldfarb, D., & Chen, L. (2011). Fixed point and bregman iter-
ative methods for matrix rank minimization. Journal Mathematical
Programming: Series A and B, 128, -1-1.

Matthews, I., Ishikawa, T., & Baker, S. (2004). The template update
problem. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 26, 810–815.

Mei, X., & Ling, H. (2011). Robust visual tracking and vehicle clas-
sification via sparse representation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(11), 2259–2272.

Mei, X., Ling, H., Wu, Y., Blasch, E., & Bai, L. (2011). Minimum error
bounded efficient l1 tracker with occlusion detection. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition
(pp. 1257–1264).

Pang, Y., & Ling, H. (2013). Finding the best from the second bests—
Inhibiting subjective bias in evaluation of visual tracking algorithms.
In Proceedings of the IEEE International Conference on Computer
Vision.

Peng, Y., Ganesh, A., Wright, J., Xu, W., & Ma, Y. (2011). RASL:
Robust alignment by sparse and low-rank decomposition for lin-
early correlated images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(11), 2233–2246.

Recht, B., Fazel, M., & Parrilo, P. A. (2010). Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization.
SIAM Review, 52, 471.

Ross, D., Lim, J., Lin, R.-S., & Yang, M.-H. (2008). Incremental learn-
ing for robust visual tracking. International Journal of Computer
Vision, 77(1), 125–141.

Salti, S., Cavallaro, A., & Stefano, L. D. (2012). Adaptive appearance
modeling for video tracking: Survey and evaluation. IEEE Transac-
tions on Image Processing, 21(10), 4334–4348.

Sevilla-Lara, L., & Learned-Miller, E. (2012). Distribution fields for
tracking. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (pp. 1910–1917).

Tsaig, Y., & Donoho, D. L. (2006). Compressed sensing. IEEE Trans-
actions on Information Theory, 52, 1289–1306.

Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009).
Robust face recognition via sparse representation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 31(2), 210–27.

Wu, Y., Lim, J., & Yang, M.-H. (2013). Online object tracking: A bench-
mark. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition.

Yang, M., Wu, Y., & Hua, G. (2009). Context-aware visual tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(7), 1195–1209.

Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey.
ACM Computing Surveys, 38(4), 13.

Yu, Q., Dinh, T.B., & Medioni, G. (2008). Online tracking and reac-
quistion using co-trained generative and discriminative trackers. In
Proceedings of European Conference on Computer Vision (pp. 678–
691).

Zhang, K., Zhang, L., & Yang, M. -H. (2012). Real-time compres-
sive tracking. In Proceedings of European Conference on Computer
Vision.

Zhang, T., Ghanem, B., & Ahuja, N. (2012). Robust multi-object track-
ing via cross-domain contextual information for sports video analy-
sis. In International Conference on Acoustics, Speech and Signal
Processing.

Zhang, T., Ghanem, B., Liu, S., & Ahuja, N. (2012). Low-rank sparse
learning for robust visual tracking. In Proceedings of European Con-
ference on Computer Vision.

Zhang, T., Ghanem, B., Liu, S., & Ahuja, N. (2012). Robust visual
tracking via multi-task sparse learning. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition.

Zhang, T., Ghanem, B., Liu, S., & Ahuja, N. (2013). Robust visual track-
ing via structured multi-task sparse learning. International Journal
of Computer Vision, 101(2), 367–383.

Zhang, T., Ghanem, B., Liu, S., Xu, C., & Ahuja, N. (2013). Low-rank
sparse coding for image classification. In Proceedings of the IEEE
International Conference on Computer Vision.

Zhang, T., Ghanem, B., Xu, C., & Ahuja, N. (2013). Object tracking
by occlusion detection via structured sparse learning. In CVsports
workshop in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition.

Zhang, T., Jia, C., Xu, C., Ma, Y., & Ahuja, N. (2014). Partial occlusion
handling for visual tracking via robust part matching. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition.

Zhong, W., Lu, H., & M-H, Y. (2012). Robust object tracking via
sparsity-based collaborative model. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition.

123

	Robust Visual Tracking Via Consistent Low-Rank Sparse Learning
	Abstract
	1 Introduction
	2 Related Work
	3 Consistent Low-Rank Sparse Tracking
	3.1 Consistent Low-Rank Sparse Representation
	3.1.1 Low-Rank Representation: "026B30D Z "026B30D *
	3.1.2 Sparse Representation: "026B30D Z "026B30D 1,1
	3.1.3 Temporal Consistency: "026B30D Z-Z0 "026B30D 2,1
	3.1.4 Reconstruction Error: "026B30D E "026B30D 1,1
	3.1.5 Adaptive Dictionary

	3.2 Discussion
	3.3 Solving (1)
	3.4 Dictionary Update

	4 Optimization
	5 Experimental Results
	5.1 Datasets
	5.2 Evaluated Algorithms
	5.3 Evaluation Criteria
	5.4 Implementation Details
	5.5 Parameter Analysis
	5.5.1 Effect of σ
	5.5.2 Effect of λ
	5.5.3 Adaptive Parameter Learning: λ3

	5.6 Qualitative Comparison
	5.7 Quantitative Comparison
	5.8 Run-Time Performance

	6 Conclusion
	Acknowledgments
	References

