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Abstract—In this paper, we formulate particle filter-based
object tracking as an exclusive sparse learning problem that
exploits contextual information. To achieve this goal, we propose
the context-aware exclusive sparse tracker (CEST) to model par-
ticle appearances as linear combinations of dictionary templates
that are updated dynamically. Learning the representation of
each particle is formulated as an exclusive sparse representation
problem, where the overall dictionary is composed of multiple
group dictionaries that can contain contextual information. With
context, CEST is less prone to tracker drift. Interestingly, we
show that the popular L1 tracker [1] is a special case of our
CEST formulation. The proposed learning problem is efficiently
solved using an accelerated proximal gradient method that yields
a sequence of closed form updates. To make the tracker much
faster, we reduce the number of learning problems to be solved
by using the dual problem to quickly and systematically rank
and prune particles in each frame. We test our CEST tracker
on challenging benchmark sequences that involve heavy occlu-
sion, drastic illumination changes, and large pose variations.
Experimental results show that CEST consistently outperforms
state-of-the-art trackers.

Index Terms—Contextual information, exclusive sparse learn-
ing, particle filter, tracking.

I. INTRODUCTION

V ISUAL tracking is important for automatic surveillance,
robotics, human computer interaction, etc. In real-world

scenarios, it is very challenging due to the existence of several
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sources of appearance variations such as occlusion, pose vari-
ation, abrupt motion, varying viewpoints, varying lighting
conditions, and cluttered background as shown in Fig. 1(a).
Over the years, many trackers have been proposed to overcome
these challenges, and more details can be found in [2]–[4].

Recently, sparse representation has been successfully
applied to visual tracking [1], [5]–[10]. In this case, the tracker
represents each target candidate as a sparse linear combina-
tion of dictionary templates that can be dynamically updated
to maintain an up-to-date target appearance model. This
representation has been shown to be robust against partial
occlusions, thus, leading to improved tracking performance.
However, sparse coding-based trackers perform computation-
ally expensive �1 minimization at each frame. In a particle
filter framework [11], computational cost grows linearly with
the number of sampled particles. It is this computational bot-
tleneck that precludes the use of these trackers in real-time
scenarios. Consequently, efforts have been made recently to
speed up this tracking paradigm [5], [7], [9], [12]–[14]. In
addition, these methods focus on building a sparse model to
encode the variations of object appearance without consider-
ing contextual information (background or other objects) as
shown in Fig. 1(b). This renders the tracker more prone to
drifting from the target, especially in cases of significant target
appearance change and cluttered background. In fact, the issue
of tracker drift is a common problem faced in visual tracking,
where the representation model of a tracker is unable to persis-
tently describe the changing appearance of a target over time.
This inability to represent the target precisely might force the
tracker to incorporate more background information in the tar-
get’s representation, which in turn leads the tracker to drift
gradually from the target into the background over time.

Inspired by the above work, we develop a computationally
efficient, sparse learning tracker that exploits context infor-
mation. We generate particles using Gaussian noise models
around particles sampled in the previous frame. The next target
state is selected to be the particle sample that is represented
the best by a dictionary of target templates and poorly by
templates from the target’s context. As such, we devise an
accurate, robust, and discriminative particle representation by
making the following considerations.

1) The best particle should have a particle representation
that is more similar with the target templates than the
context at each frame. In order to handle target appear-
ance changes, these target templates (as well as the
context) should be updated dynamically.
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Fig. 1. (a) Frames from a Skating sequence. The ground truth is designated
in green. (b) Context information of the object (green box) with respect to
background (between red and green boxes) and other objects (other red boxes).

2) Since occlusion and noise significantly impact tracking
performance, representation error should be incorporated
explicitly in the tracking process.

3) Particle representations should encode the target’s
appearance while also distinguishing it from its context
(background or other objects).

Discriminating the target from its context adds another layer
of robustness against tracker drift. Generally, a “good” target
candidate is effectively represented by the target and not the
context templates, thus, leading to a sparse representation. The
contrary is true for a “bad” target candidate. In this sense,
each particle’s sparse representation should be exclusive to
either the target or context templates. As compared to other
sparse trackers [1], [5]–[7], we exploit context information as
well as target appearance to guide tracking. For simplicity,
we denote our tracker as the context-aware exclusive sparse
tracker (CEST).

A. Contributions

The contributions of this paper are threefold.
1) We propose an exclusive sparse learning method for

object tracking, which makes use of context information
for more robust performance. To the best of our knowl-
edge, this is the first work to exploit context information
through exclusive sparsity in object tracking.

2) Compared with the popular L1 tracker [1], our CEST
exploits context information and can yield the L1 tracker
as a special case.

3) We adopt a coarse-to-fine scheme to make CEST com-
putationally attractive, especially compared to the L1
tracker.

First, we use the structural properties inherent to the dual
of the exclusive sparse learning problem to quickly rank and
prune particles. Then, an efficient accelerated proximal gradi-
ent (APG) method is used to compute the representations of
the particles that are not pruned. This pruning scheme can also
be used for exclusive sparse problems outside the domain of
object tracking.

II. RELATED WORK

Visual tracking is an important topic in computer vision
and it has been studied for several decades. There is extensive
literature, and we only briefly review techniques that are most
related to ours, including a brief overview of prior work in
generic object tracking, as well as, sparse representation, and

context information. For a more thorough survey of tracking
methods, we refer the readers to [2].

A. Object Tracking

In general, visual tracking methods can be categorized into
two groups: 1) generative and 2) discriminative.

1) Generative Visual Tracking: Generative tracking meth-
ods adopt an appearance model to describe the target obser-
vations, and the aim is to search for the target location that
has the most similar appearance to this model. Examples of
generative methods include eigentracker [15], context-aware
tracker [16], incremental tracker (IVT) [17], fragment-based
tracker (Frag) [18], and visual tracking decomposition (VTD)
tracker [19]. In [15], a view-based representation is used for
tracking rigid and articulated objects. The approach builds on
and extends work on eigenspace representations, robust esti-
mation techniques, and parameterized optical flow estimation.
The context-aware tracker [16] considers context information
in the scene for more robust tracking. Specifically, this method
integrates into the tracking process a set of auxiliary objects
that are automatically discovered in the video on the fly by
data mining. The IVT tracker [17] seeks an adaptive appear-
ance model that accounts for appearance variation of rigid or
limited deformable motion. Although it has been shown to per-
form well when the target object undergoes lighting and pose
variation, this method is less effective in handling heavy occlu-
sion or nonrigid distortion as a result of the adopted holistic
appearance model.

2) Discriminative Visual Tracking: Discriminative tracking
methods formulate object tracking as a binary classification
problem, which aims to find the target location that can best
distinguish the target from the background. Examples of dis-
criminative methods are on-line boosting (OAB) [20] ensemble
tracking [21], and online multiple instance learning track-
ing [22]. In the OAB tracker [20], online AdaBoost is adopted
to select discriminative features for object tracking. Its perfor-
mance is affected by background clutter and can easily drift.
The ensemble tracker [21] formulates the task as a pixel-based
binary classification problem. Although this method is able to
differentiate between target and background, the pixel-based
representation is rather limited and thereby limits its ability to
handle occlusion and clutter. Moreover, the multiple instance
learning (MIL) tracker [22] extends multiple instance learn-
ing to an online setting for object tracking. Although it is
able to address the problem of tracker drift, this method does
not handle large nonrigid shape deformation well. In [23], a
target confidence map is built by finding the most discrimi-
native RGB color combination in each frame. Also, a hybrid
approach that combines a generative model and a discrim-
inative classifier is proposed in [24] to capture appearance
changes and allow reacquisition of an object after total occlu-
sion. Also, global mode seeking can be used to detect and
reinitialize the tracked object after total occlusion [25].

B. Sparse Representation for Object Tracking

Recently, sparse linear representation based on the
particle filter framework has been introduced to object
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tracking and has been shown to achieve significant
tracking performance [1], [5], [7]–[9], [13], [26]–[29]. In the
L1 tracker [1], a tracking candidate is represented as a sparse
linear combination of object templates and trivial templates.
Sparse representation is computed by solving a constrained
�1 minimization problem with nonnegativity constraints to
solve the inverse intensity pattern problem during tracking.
The results show good performance at a high computational
expense due to the �1 minimization. In fact, the computa-
tional cost grows proportionally with the number of particle
samples [30], [31]. In [5], an efficient L1 tracker with min-
imum error bound and occlusion detection is proposed. The
minimum error bound is quickly calculated from a linear least
squares equation, and serves as a guide for particle resampling
in a particle filter framework. Without loss of precision during
resampling, the most insignificant samples are removed before
solving the computationally expensive �1 minimization prob-
lem. In [32], the original L1 tracker is improved by using prin-
cipal component analysis subspace as target templates. In [27],
dynamic group sparsity is integrated into the tracking prob-
lem and high dimensional image features are used to improve
tracking robustness. In [9], dimensionality reduction and a cus-
tomized orthogonal matching pursuit algorithm are adopted
to accelerate the L1 tracker [1]. However, this method may
reduce the tracking performance sometimes [9]. In [8], a very
fast numerical solver based on the APG approach is developed
to solve the �1 norm minimization problem with guaranteed
quadratic convergence. The APG method is also used in [33]
to solve the sparse representation for visual tracking. In [13],
compressive sensing theory is adopted for real-time track-
ing. In [34], a fast tracking algorithm is proposed to handle
partial occlusion in the tracking problem. In [29], a sparsity-
based discriminative classifier and a sparsity-based generative
model are designed for tracking. Different from [29], which
adopts the background information to select the discrimi-
native features for tracking, our proposed tracker uses the
background information via the exclusive sparse learning algo-
rithm. Zhang et al. [7], [35] proposed a multitask learning
approach to jointly learn the particle representations for robust
object tracking. Our proposed method is inspired by the suc-
cess of these �1 minimization-based trackers, and we will also
adopt the sparsity property for robust tracking.

Different from previous sparse trackers [1], [7], in this
paper, we use exclusive sparse model to exploit contextual
information to improve visual tracking. The exclusive sparse
model has been used for feature selection [36] and multilabel
image classification [37]. In [37], the exclusive sparse model
is defined as solving a �1,2-regularized least squares problem,
and it encourages that variables in the same group are exclu-
sively selected in the output. In this paper, motivated by the
exclusive property between target templates and context tem-
plates, we will use the exclusive sparse model to exploit the
contextual information to improve visual tracking.

C. Context Information for Object Tracking

Context information has been applied actively in object
detection [38], object classification [39], and object

recognition [40]. It has been employed recently in sev-
eral successful tracking methods [16], [41]–[43]. The
improved performance of these trackers is attributed to the
use of context information in determining the target location.
Our proposed method using context information in image
domain is inspired by the work above. In this paper, a particle
is represented as a sparse linear combination of dictionary
templates that are exclusive to either the target or its context.
Our tracker is generic, as it can incorporate the forms of
context information previously used [16], [41], [42]. For the
proposed method, the representation of a target candidate is
obtained by efficiently solving an exclusive sparse learning
problem.

III. CONTEXT-AWARE EXCLUSIVE SPARSE TRACKER

In this section, we give a detailed description of our parti-
cle filter-based tracking method, which makes use of context
information in an exclusive sparse learning framework to rep-
resent particle samples. Similar to [1], we assume an affine
motion model between consecutive frames. Therefore, the state
variable st consists of the six parameters of an affine transfor-
mation, consisting of a 2-D linear transformation and a 2-D
translation. By applying an affine transformation using st as
parameters, we crop the region of interest xt from the image
and normalize it to the size of the target templates in our dictio-
nary. The state transition distribution p(st|st−1) is modeled to
be Gaussian with the components of st assumed independent.
The observation model p(xt|st) reflects the similarity between
a target candidate (particle) and dictionary templates. In this
paper, p(xt|st) is computed as a function of the reconstruction
error obtained by linearly representing xt using the target tem-
plate dictionary. The particle that maximizes this function is
selected to be the tracked target at each time instance. Fig. 2
shows the basic idea of our proposed method and how the
context information is enforced in the proposed tracking algo-
rithm. Next, we will show how to represent particles using the
exclusive sparse learning framework.

A. Representation of Particle Sample

In our particle filter-based tracking method, particles are
randomly sampled around the previous states according to
zero-mean Gaussian distributions. In the tth frame, we sam-
ple n particles, where the observation (pixel color values) of
the ith particle is denoted in vector form as: xi ∈ R

d, where
d is the dimension of xi. Each xi is represented as a sparse
linear combination zi of m dictionary templates D ∈ R

d×m, as
shown in (1). D is updated dynamically to handle frame-to-
frame changes in target appearance. The exact update process
is described later. We define three types of templates DF ,
DO, and DC, which incorporate information about the tar-
get, noise/occlusion, and context, respectively. We model D
as a concatenation of |G| = G predefined groups of dic-
tionary templates, indexed by the set G. Each group in G
contains templates from each of the three types of templates.
For example, the templates in the gth group is defined as
Dg =

[
Dg

F Dg
O Dg

C

]
and g = 1, . . . , G. Here, Dg

F , Dg
O, and Dg

C
are a subset of DF , DO, and DC, respectively. Defining the set
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Fig. 2. Schematic example of CEST. Representation z of particle x with respect to dictionary D is computed by solving (2). Note that z is exclusively sparse
in general. Particle xi is selected among all particles as the tracking result, since xi is represented the best by DF .

G and its effect on tracking performance will be addressed in
Sections V-B and V-C3, respectively

x =
∑

g∈G
Dgzg = Dz; with

{
D = [DF DO DC]

z = [zF; zO; zC
]
.

(1)

The three dictionaries (DF , DO, and DC) focus on compli-
mentary aspects of particle representation: 1) accurate target
reconstruction; 2) occlusion/noise handling; and 3) discrimi-
nation from context. We discuss these issues next.

1) Target Reconstruction (DF): To reliably represent the
appearance of the target, we construct dictionary DF from tar-
get templates, which are visual observations of the tracked
object possibly under a variety of appearance changes. Since
our representation is constructed at the pixel level, misalign-
ment between dictionary templates and particles might lead to
degraded performance. To alleviate this problem, one of two
strategies can be employed.

1) DF can be constructed from a dense spatial sampling
of the target object, as well as, transformed versions of
these samples.

2) Each x can be aligned to columns of DF as in [44].
In this paper, we employ the first strategy, which leads to a

larger m but a lower overall computational cost. In the noise-
less case, the target at a given frame is the particle x that is
represented the best by only a few templates in DF . This leads
to a sparse and robust target representation.

2) Occlusion/Noise Handling (DO): In many tracking sce-
narios, target objects are often corrupted by noise or partially
occluded. As in [1], this noise is modeled as sparse additive
noise that can take on large values anywhere in its sparse sup-
port. Therefore, in the presence of occlusion/noise, we can still
represent x as a linear combination of dictionary templates, so
long as DF is augmented with occlusion templates DO, e.g.,
identity of R

d×d. The nonzero entries of zO indicate the pixels
in x that are corrupted or occluded. In general, the nonzero

support of zO is different for different particles and is assumed
to be sparse.

3) Discrimination From Context (DC): To alleviate the
problem of tracker drift, we acknowledge the importance of
representing what a target is and what it is not. In that spirit,
we go beyond representing the target appearance and exploit
context information for more robust object tracking. Here,
we define context to include the target’s immediate back-
ground and any other objects, whose appearance may distract
the tracker from the target. Although its exact definition and
usage differ in previous tracking methods that use contex-
tual information [16], [41], [42], [45], a target’s context has
been shown to significantly improve tracking performance.
In contrast to these methods that try to exploit the context
information, we formulate the tracking problem as an exclu-
sive sparse learning problem that seamlessly incorporates the
context information.

To formalize the notion of context, we define DC as a
dictionary of context templates, which are observations of
the target’s immediate background and any other objects that
might distract tracking. The latter templates are especially
important when tracking multiple objects. Clearly, good parti-
cles, from which the next target is selected, are particles that
are represented well by DF and poorly by DC. Conversely, bad
particles tend to be represented better by DC. As such, aug-
menting D with DC discriminates the target from its context
and reduces tracker drift.

B. Imposing Exclusive Sparsity via the �1,2-Norm

To allow for robust tracking and because particles are
densely sampled around the current target state, particle repre-
sentations with respect to D are sparse in general. In previous
sparse coding trackers (e.g., L1 tracker [1]), the sparsity of z
had unstructured support. In other words, each particle could
be represented by any set of dictionary templates, as long as
that set is small and the reconstruction is accurate. However,
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this is not the case when context information is involved.
Since DF and DC describe complimentary aspects of par-
ticle representation, we believe that the representation of a
particle should ideally be due to either DF or DC and not
both. The sparsity’s exclusivity lends some structure to its
support. Therefore, when imposing sparsity on z, we need
to distinguish between intratype and intertype sparsity. While
intratype sparsity describes the sparsity of the representation
that uses a particular group of templates (e.g., sparsity of zF ,
zO, and zC individually), intertype sparsity describes the sparse
selection of target or context templates to represent a parti-
cle. Previous sparse coding trackers only consider intragroup
sparsity.

For robust context-aware tracking, we take the fol-
lowing into consideration to learn particle representation
z = [zF; zO; zC

]
.

1) Intratype sparsity should hold, i.e., zF , zO, and zC should
be individually sparse. This allows for a robust represen-
tation based on target or context templates and for partial
occlusion handling.

2) Intertype sparsity should also hold. This encourages
exclusivity in representation by DF or DC.

Based on 1) and 2), we formulate particle representa-
tion as an exclusive sparse learning problem (also known as
eLasso [36], [37]), as shown in (2). Here, based on the three
types of templates (DF , DC, and DO), we define G to make the
learned z have the above sparse property. Equation (2) is con-
vex and nonsmooth, where λ is a tradeoff parameter between
reliable reconstruction and exclusive sparsity. This is the core
of our proposed CEST method

min
z
‖x− Dz‖22 + λ

∑

g∈G

∥∥zg
∥∥2

1. (2)

The solution to (2) is described in Section IV. In Fig. 2,
we present an example of how CEST works. The representa-
tion z of particle x (sampled around the tracked car) in the
tth frame is computed by solving (2). Here, we consider three
particles (xi, xj, and xk), where xi is chosen as the current
tracking result because its reconstruction error with respect to
DF is smallest. Since xj and xk are misaligned versions of
the target car, they are not represented well by DF, i.e., zF

j
and zF

k have much smaller values than zF
i . This precludes the

tracker from drifting into the background. Notice that intra-
group and intergroup sparsity hold in these representations.
Although templates from DF and DC are both used in repre-
senting xj, more nonzero values exist in zF

j than zC
j , which is

a consequence of exclusive sparsity.

C. Dictionary Template Update

The target templates DF (mF elements) are dynamically
updated to incorporate variations in target appearance due
to changes in illumination, viewpoint, etc. Target appear-
ance remains the same only for a certain period of time, but
eventually the target templates no longer provide an accurate
representation. This is why a fixed appearance model is not
sufficient to handle changes due to occlusion or illumination.
Also, if the templates are updated too often, small errors are

introduced each time a template is updated, errors accumu-
late, and the tracker may drift from the target. Our dictionary
update scheme is based on [1]. To initialize the object and
background dictionaries, we sample equal-sized patches at and
around the initial position of the object. In our experiments,
we shift the initial bounding box by 1–3 pixels in each direc-
tion, thus, resulting in mF object templates. Also, we initialize
DC to image patches randomly sampled at a sufficient distance
from the initial tracking result, thus, resulting in mC context
templates for a total of m = mF +mC templates. Note that m
is a user-defined parameter and all templates are normalized.

Each target template in DF is assigned a weight ωk that is
indicative of how representative the template is. The more a
template is used in representing tracking results, the higher its
weight is. When DF cannot represent particles well (up to a
predefined threshold th), the target template with the small-
est weight is replaced by the current tracking result, which
is the particle zi that is best represented by D such that
i = arg mink=1,...,n

(‖xk − DFzF
k ‖2

)
. The weight of this new

template is set to the median of the current normalized weight
vector ω. Templates in DO are fixed, while those in DC are
updated at every frame by resampling patches at a sufficient
distance from the current tracking result. This strategy is very
similar to several methods in the literature, e.g., OAB [20] and
MIL [22] (for negative samples), and sparse discriminative and
generative (SDG) [29] (for background templates).

D. Discussion

As shown in (2), we propose an exclusive sparse learning
formulation for robust object tracking by considering context
information. It is worth emphasizing the difference between
the proposed CEST algorithm and several related tracking
methods [1], [7], [35].

1) Exclusive Sparsity: As shown in (2),

G∑

g=1

∥∥zg
∥∥2

1 =
G∑

g=1

( ng∑

i=1

∣∣zg
i

∣∣
)2

.

Here, ng is the number of template elements in Dg =[
Dg

F Dg
O Dg

C

]
. Due to the �1,2-norm, the elements in zg

corresponding to Dg
F , Dg

O, and Dg
C are exclusively sparse.

2) Comparison With L1 Tracker [1]: The L1 tracker [1]
is a special case of our CEST. When we only use the
DF and DO as one group and discard DC, our CEST
becomes the L1 tracker [1]. Compared with the L1
tracker, our experiments show that CEST shows much
better performance, thus, demonstrating the effective-
ness of context information DC for visual tracking as
in [16], [41], and [42].

3) Comparison With MTT Tracker [7], [35]: The MTT
tracker [7], [35] and CEST are different in the following
ways.

a) The two trackers adopt two different norms.
The MTT tracker uses the �2,1-norm ‖Z‖2,1 =∑

j

(∑
i |[Z]ij|2

)1/2
and our CEST adopts the �1,2-

norm ‖z‖1,2 =
∑

g∈G ‖zg‖21. Here, Z is a matrix
and each column is the representation of each
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particle, [Z]ij denotes the entry at the ith row and
jth column of Z, and z is the representation of one
particle.

b) The two trackers use different information. The
MTT tracker uses the �2,1-norm ‖Z‖2,1 to consider
correlations among different particles to learn their
representation Z jointly. However, CEST adopts
the �1,2-norm ‖z‖1,2 to consider context informa-
tion to learn the representation z of each particle.

IV. OPTIMIZATION

Solving the exclusive sparsity problem in (2) produces the
representation z of a single particle. Ideally, this optimization
problem has to be solved for all n particles in each frame,
which leads to a significant computational overhead. In this
section, we will describe a two stage process, which allows
for an efficient coarse-to-fine handling of these n optimization
problems. In the first stage, we propose an approximate sam-
pling method that scores and ranks all particles in the same
frame according to their optimal cost functions. We use this
ranking to prune out the particles that will obviously not be
selected as the tracking result, thus, leaving a much smaller
set of potential target candidates, whose representations will
be solved for in the next stage. In the second stage, an APG-
based method is used to solve (with quadratic convergence)
a smooth approximation of (2) for each particle that has not
been discarded. This two stage process leads to a significant
speedup with minimal loss in accuracy.

A. Stage(1): Particle Pruning Using Dual Formulation

By adding redundant variables and assuming that the recon-
struction error term is small (i.e., ‖x − Dz‖2 ≤ α ≤ 1), we
approximate (2) with its upper bound as in

min
r,z,cg∀g

f (r, z, cg) = ‖r‖2 + λ
∑

g∈G
c2

g

such that r = x− Dz; ‖zg‖1 ≤ cg ∀g. (3)

We construct the Lagrange function L(r, z, u0, ug, cg ∀g),
where the dual variables u0 and {ug:g ∈ G} represent the
Lagrange multipliers of the constraints in (3). Then, we
minimize L with respect to the primal variables by using
identities for the conjugate function of a vector norm [46].
As a result, we obtain the dual problem of (3) in (4). Note
that Dz = ∑

g∈G Dgzg, where Dg and zg are the dictionary
corresponding to the gth group and its group representation
respectively. It is easy to see that (4) is equivalent to (5). We
refer the reader to the Appendix for a detailed derivation of
the dual problem

max
u0,ug≥0 ∀g uT

0 x− 1

4λ

∑

g∈G
u2

g

such that ‖u0‖2 ≤ 1; ‖DT
g u0‖∞ ≤ ug ∀g (4)

max
u0

g(u0) = uT
0 x− 1

4λ

∑

g∈G
‖DT

g u0‖2∞
such that ‖u0‖2 ≤ 1 (5)

Since Slater’s condition is satisfied and f (.) is convex, strong
duality holds between the primal and dual problems [46].
Therefore, sorting the particles according to the regularized
reconstruction term in (3) is equivalent to sorting them accord-
ing to the objective in (5). However, solving the optimization
problem in (5) exactly is as hard as the primal problem.
But, we observe that (5) possesses two interesting properties,
which we will exploit to approximate its optimal objective.
In (5), the ball-constraint on the dual variable u0 is indepen-
dent of Dg and x and is easy to sample from. Consequently,
we perform an offline dense sampling of s dual variables
u0 from the unit-ball constraint, thus, generating the set
U = {uj

0:‖uj
0‖2 ≤ 1; j = 1, . . . , s}. We score each parti-

cle x using the largest objective value obtained when g(u0)

is evaluated at all the samples in U . This is equivalent to
approximating the optimal dual objective max‖u0‖2≤1 g(u0)

with maxu0∈U g(u0). Finally, all particles are sorted according
to their scores. Particles with scores outside the largest K are
discarded immediately and their representations do not need
to be computed. The representations of the surviving particles
are computed as outlined in the next section.

B. Stage(2): Solving the Primal Problem of (2)

After pruning, each surviving particle is represented by min-
imizing the objective in (2). Since the cost function is convex
but nonsmooth (due to the �1,2 regularizer), it is well known
that any first order method (e.g., gradient descent) will have
sublinear convergence. Recently, several methods have been
proposed to solve this problem more efficiently [36], [37]. To
reduce computational cost, we approximate the nonsmooth
part of the original objective with a differentiable one. Then,
minimization is done using the APG method [47], which has
quadratic convergence (i.e., an ε-accurate solution is reached
in O(ε−0.5) iterations).

Since the dual norm of the �∞ vector norm is the �1
norm, we define the nonsmooth regularizer as: ‖zg‖1 =
max‖vg‖∞≤1〈zg, vg〉. By choosing a positive smoothness
parameter μ, ‖zg‖1 can be approximated by the differentiable
strongly convex function bμ(zg) = max‖vg‖∞≤1〈zg, vg〉 −
μ/2‖vg‖22. Clearly, limμ→0 bμ(zg) = ‖zg‖1. In fact, bμ(zg)

has a closed form expression: bμ(zg) = 〈zg, v∗g〉 − μ/2‖v∗g‖22,
where v∗g = S(μ−1zg) and S(.) is the elementwise shrinkage
operator defined as S(ai) = min(1, max(−1, ai)). By intro-
ducing this smooth approximation into (2), we obtain (6),
where Eg is the linear operator that extracts zg from z,
i.e., zg = Egz. To apply the APG method [47] on (6), we
require the proximal gradient of F(z), which is computed as
∇Fμ(z) = 2DT(Dz − x) + 2λ

∑
g∈G bμ(Egz)ET

gS(μ−1Egz).
In addition, Fμ is Lipschitz continuous with constant L,
which can be calculated as in [37]. Note that APG could
not be directly applied to (2), since the proximal gradient
in that case is not computable in closed form. The overall
APG-based method for this optimization stage is described
in Algorithm 1

min
z

Fμ(z) = ‖x− Dz‖22 + λ
∑

g∈G
b2
μ(Egz). (6)
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Algorithm 1: Context-Aware Exclusive Sparse
Representation

Input : x, D, G groups, L, λ, and μ

Output: z

1 Initialize z0, q0, α0 ← 0, t← 0
2 while not converged do
3 pt = (1− αt)zt + αtqt; qt+1 = qt − 1/2αtL∇Fμ(pt)

4 zt+1 = (1−αt)zt+αtqt+1, αt+1 = 2/t + 1; t← t+ 1
5 end

1) Time Complexity: We denote CEST as the tracker that
applies Algorithm 1 to represent all n particles. The time com-
plexity of CEST is therefore O(nd2ε−0.5), where the number
of APG iterations is O(ε−0.5) and the complexity of each
APG iteration is O(d2). We denote CEST* as the tracker that
employs the pruning scheme in Section IV-A before apply-
ing Algorithm 1 on the remaining K particles. Since K < n,
the complexity of particle pruning (including particle scoring
and sorting) is dominated by the complexity of solving (6)
for the remaining K particles. Therefore, the complexity of
CEST* is O(Kd2ε−0.5). Based on our experiments where
K = 100, s = 105, and ε = 10−6, CEST* is approximately
n/K times faster than CEST. This speedup grows linearly with
the number of particles. Since increasing n usually leads to
improved tracking performance, CEST* can produce better
tracking results without much added computational overhead.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results that validate
the effectiveness of our CEST method.

A. Datasets and Baseline Trackers

To evaluate CEST, we compile a set of 15 challenging
tracking sequences that are publicly available online. The
videos are recorded in indoor and outdoor environments and
include challenging appearance variations due to changes in
pose, illumination, scale, and partial occlusion. We compare
CEST to nine recent and state-of-the-art trackers denoted as:
VTD [19], L1 [1], MTT [7], IVT [17], MIL [22], OAB [20],
SDG [29], tracking-learning-detection (TLD) tracker [48], and
context tracker (CT) [42]. We implemented these trackers
using publicly available source codes or binaries provided by
the authors. They are initialized using their default parameters.

B. Implementation Details

We evaluate CEST for both single object tracking and multi-
object tracking. For single object tracking, DC is obtained from
background information. For multiobject tracking, DC includes
context information from the background and other objects. Of
course, the context information in [16], [41], and [42] could
also be adopted, such as, distracters and supporters in [42]. The
distracters are regions which have similar appearance as the
target and consistently co-occur with high confidence score,
and the supporters, on the other hand, are local key-points

around the target with consistent co-occurrence and motion
correlation in a short time interval. Both of them play an
important role in visual tracking [42]. In our experiments, the
initial position of the target is selected manually, and we shift
the initial bounding box by 1–3 pixels in each dimension,
thus, resulting in mF = 13 target templates DF (similar to
L1 tracker [1]). Also, we initialize DC to image patches ran-
domly sampled at a sufficient distance from the initial tracking
result, and obtain mC = 12 templates for context information.
The template size d is set to half the size of the target in the
first frame. Usually, d is in the order of several thousands of
pixels, and the number of occlusion templates DO is mO = d.
Note that mF , mC, and mO are user-defined parameters. In
object tracking, the DF and DC are updated over time by the
strategy in Section III-C.

As shown in (2), our CEST models D as a concatenation
of G groups of dictionary templates, indexed by the set G.
In each group g, Dg =

[
Dg

F Dg
O Dg

C

]
, and Dg

F , Dg
O, and Dg

C
are a subset of DF , DO, and DC, respectively. To construct
this kind of G, at each time instance, the elements in DF , DC,
and DO are clustered into k1, k2, and k3 clusters, respectively.
Then, the set G is constructed by all possible combinations of
these clusters. In other words, each Dg comprises one cluster
from each base-group. As a result, there are G = k1× k2× k3
groups in G. The effect of these parameters (k1, k2, and k3 )
on tracking performance is discussed in Section V-C3.

As in the L1 tracker [1], we model p
(�st|�st−1

)∼
N (�0, diag(�σ)), where �σ= [0.005, 0.0005, 0.0005, 0.005,

2, 2]T . We set the number of particles n = 600 and sur-
viving particles K = 100. In Algorithm 1, we set λ = 1
and μ = 0.01. Each tracker uses the same parameters for all
sequences. All our experiments are done using MATLAB on
a 2.66 GHZ Intel Core2 Duo PC with 18 GB RAM. Next,
we first do parameter analysis for our proposed method and
show how the parameters affect the performance and how to
decide their values in Section V-C. The computational cost is
discussed in Section V-D. We present qualitative and quantita-
tive results of the tracking methods in Sections V-E and V-F.
The videos are available in the supplementary material.

C. Parameter Analysis

Several parameters play important roles in the proposed
tracking algorithm, such as, the λ in (2), the th in Section III-C,
and the number of groups in G in (2). In this section, we show
how to determine their values and their effects on tracking
performance.

1) Effect of λ: The parameter λ in (2) is to balance the
reconstruction error and the exclusive sparse term. To show
the effect of λ, we parameterize it by a discrete set �, where
� = {1e−3, 0.01, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0}. We evalu-
ate these values on ten videos with about 4000 frames. For
each λ ∈ �, we compute the average overlap score from all
frames. For different λ, we obtain the corresponding results as
shown in Fig. 4(a). Overall, the proposed algorithm is robust
to different λs as long the value is within reasonable ranges.
From on these results, we can set λ = 1 in (2) due to its best
performance.
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Fig. 3. Single object tracking results of 11 trackers (denoted in different colors) on ten video sequences. Frame numbers are overlayed in red. See text
for details. For better viewing, please see original color pdf file. (a) Tracking results on sequences Car4 and Shaking with illumination and pose variation.
(b) Tracking results on sequences Faceocc and Sylv with occlusion and pose variation, respectively. (c) Tracking results on sequences Onelsr, Faceocc2, and
Coke11 with occlusion and pose variation. (d) Tracking results on sequences Soccer, Skating1, and Skating2 with background clutter, abrupt motion, and
illumination change, respectively.

Fig. 4. Effects of (a) λ and (b) th on visual tracking performance.

2) Effect of th: The parameter th in Section III-C decides
the template updating. A fixed appearance template is not
sufficient to handle changes in appearance due to occlusion
or changes in illumination and pose. Also, if the templates
are updated too often, small errors are introduced each time
a template is updated, errors accumulate, and the tracker may
drift from the target. Therefore, the parameter th is closely
related to the tracking performance. To analyze the effect of
th on tracking performance, we use different th on seven
videos with about 2500 frames. To simplify this problem,
we assume that th can be parameterized by a discrete set
{0.2,0.4,0.6,0.7,0.8,0.9,1.0}. Experimental results, shown in
Fig. 4(b), indicate that we can set the value of th to 0.6 because
it achieves the best performance.

3) Effect of G: The parameter G in (2) is about the group
construction for D to obtain the exclusive sparse representa-
tion z. As discussed in Section V-B, the set G is constructed

TABLE I
EFFECTS OF G ON VISUAL TRACKING PERFORMANCE

based on the combinations of the k1, k2, and k3 clusters
(G = k1×k2×k3). To show the effect of G, we parameterize it
by a discrete set as shown in Table I. We evaluate these values
on five videos with about 2000 frames. For each setting, we
compute the average overlap score from all frames, and the
corresponding results are as shown in Table I. Overall, the pro-
posed algorithm is quite stable to different settings. Moreover,
small G can reduce the computational. From on these results,
we can see that it is a good trade-off to set the value of
G to 4× 4× 6.

D. Computational Cost

Tracking algorithms based on sparse representations and
particle filters [1], [7] have been demonstrated to perform
well in visual tracking. However, the run-time of sparse
trackers grows proportionally as the number of particles and
templates in the dictionary. Table II shows the average per-
frame runtime of state-of-the-art algorithms based on sparse
representation [1], [7] and the proposed algorithms. Clearly,
the L1 tracker is much slower than CEST and CEST* for
any (n, d), with CEST* being about n/K times faster than
CEST. The MTT tracker [7] makes use of the correlation
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Fig. 5. Multiobject tracking results of four related trackers (a) CEST, (b) MTT, (c) L1, and (d) SDG on one sports video sequence.

TABLE II
AVERAGE PER-FRAME RUNTIME (IN SECONDS) OF FOUR

TRACKERS WITH TEMPLATE SIZE d = 16× 16 AND

VARYING NUMBER OF PARTICLES n

among particles to improve robustness and reduce computa-
tional load. The runtime of CEST* (as stated in Section IV)
is constant with respect to n. Since increasing n usually leads
to improved tracking performance, CEST* can produce better
tracking results without much added computational overhead.

E. Qualitative Comparison

In Figs. 3 and 5, we show tracking results of single object
and multiple objects, respectively. In Fig. 3, we evaluate 11
trackers on ten video sequences, and the results are categorized
according to the tracking challenge faced in each sequence.
In Fig. 5, we show multiobject tracking on five sports video
sequences by using the contextual information from other
tracking targets.

1) Illumination and Pose Variation: For the Car4, and
Shaking sequences, the tracked object is subject to changes
in illumination and pose. In the Car4 sequence in the left
of Fig. 3(a), OAB, SDG, TLD, and VTD start to drift from
the target at frame 186, while MIL drifts at frame 200 and
finally loses the target at frame 300. CT experiences some
drift, while MTT, IVT, and L1 track the target quite well. The
target is successfully tracked throughout the entire sequence
by CEST and CEST*. In the Shaking sequence [refer to the
right of Fig. 3(a)], the stage lighting condition is drastically
changed, and the pose of the object is severely varied due to
head Shaking. OAB, IVT, TLD, L1, and CT fail to track the
object when these dramatic changes occur. VTD, MIL, SDG,

and MTT track the object quite well except for some errors
around frames 60 and 260, respectively. CEST and CEST*
successfully track the object due to the use of robust sparse
representation and contextual information from background.

2) Occlusion: In Faceocc, a moving face is tracked. Some
results are shown in the left of Fig. 3(b). Because occlusion
is minor, most of the methods track the face accurately except
OAB, MIL and CT, which experience some drift.

3) Pose Variation: Results on the Sylv sequence are shown
in the right of Fig. 3(b). Here, the stuffed animal undergoes
significant pose and scale changes. IVT fails around frame
600 due to the pose change. The rest of the trackers track the
target throughout the sequence, with MIL, VTD, OAB, and
L1 veering off the target at certain instances.

4) Occlusion and Pose Variation: In the Onelsr sequence
[refer to the left of Fig. 3(c)], the walking woman is par-
tially occluded by a walking man. IVT, MIL, OAB, CT,
TLD, and VTD lose the target woman, start tracking the
man when partial occlusion occurs around frame 200, and
some of them are unable to recover from this failure. CEST,
CEST*, MTT, SDG, and L1 track the woman quite well.
Results on the Faceocc2 sequence are shown in the mid-
dle of Fig. 3(c). Most trackers start drifting from the manąŕs
face when it is almost fully occluded by the book. Because
the CEST and CEST* make use of the background informa-
tion with the exclusive sparse learning and avoid drifting,
they can handle the appearance changes in this sequence
very well and continue tracking the target during and after
the occlusion. The Coke11 sequence contains frequent occlu-
sions and fast motion, which cause motion blur. The CEST,
CEST*, L1, SDG, MTT, OAB, and MIL can track the tar-
get almost throughout the entire sequence. The other trackers
fail due to pose change and occlusion as shown in the right
of Fig. 3(c).

5) Background Clutter: In the Soccer sequence [refer to
the left of Fig. 3(d)], the background is cluttered. CEST and
CEST* accurately track the player’s face despite scale and
pose changes as well as occlusion/noise from the confetti rain-
ing around him. All other trackers, except VTD and MTT, fail
to track the object reliably. The TLD tracker can not track the
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TABLE III
AVERAGE CENTER LOCATION ERROR AND STANDARD DEVIATION (IN PIXELS) OF 11 TRACKERS ON TEN VIDEO SEQUENCES.

THE BEST AND SECOND BEST RESULTS ARE SHOWN IN RED AND BLUE FONTS, RESPECTIVELY

TABLE IV
AVERAGE OVERLAP RATE BASED ON [49] AND STANDARD DEVIATION OF 11 TRACKERS ON TEN VIDEO SEQUENCES.

THE BEST AND SECOND BEST RESULTS ARE SHOWN IN RED AND BLUE FONTS, RESPECTIVELY

TABLE V
AVERAGE CENTER LOCATION ERRORS (STANDARD DEVIATION) AND AVERAGE OVERLAP RATES (STANDARD DEVIATION)

OF FOUR RELATED TRACKERS FOR MULTIOBJECT TRACKING ON FIVE VIDEO SEQUENCES

target again when it fails to detect. These sequences demon-
strate how CEST achieves state-of-the-art performance despite
dramatic pose change and occlusion.

6) Abrupt Motion and Illumination Change: The Skating1
and Skating2 sequences contain abrupt object motion, severe
illumination and scale changes, and viewpoint changes and
occlusions, which cause most of the trackers to fail. CEST,
CEST*, MTT, and VTD handle these changes well, as
shown in Fig. 3(d). Note that CEST performs slightly bet-
ter than MTT and VTD (e.g., frame 357), which are the most
recent tracker that copes with abrupt motion and appearance
change.

7) Multiobject Tracking: To demonstrate that context in
the case of CEST can include not only the background of a
single-target but other tracking targets, we test all trackers on
multiobject tracking. To fairly compare our CEST with other
related single-target trackers (e.g., MTT, L1, and SDG), we
run multiple single-target trackers independently. In Fig. 5,
two sample results of four trackers (CEST, MTT, L1, and
SDG) on the same video clip are shown. From the results,
we can see that it is difficult for the four methods to track
players in sports video. Due to fast camera motion, occlu-
sion, low-resolution image capture, varying viewpoints and
illumination changes, and many trackers are prone to drifting.
However, our CEST achieves the best performance because it
adopts exclusive sparse learning to consider the context infor-
mation (background information and object templates) to avoid
drifting.

F. Quantitative Comparison

To give a quantitative comparison among the trackers, we
evaluate them using the center location error as well as the
overlapping rate [49], and the results (mean and standard devi-
ation) are shown in Tables III and IV for single object tracking,
and in Table V for multiobject tracking. Overall, the pro-
posed tracker performs well against the other state-of-the-art
algorithms.

Now, we compare CEST and CEST* with the L1, MTT,
and SDG trackers, which are the most related trackers to
ours and has shown good performance. L1 is a tracker to
adopt sparse learning representing particles. MTT only con-
siders foreground template and adopts multitask learning to
consider the correlations among particles to improve L1. Our
proposed CEST is different from L1 and MTT, because our
method adopts exclusive sparse learning to consider the con-
text information (background or objects). SDG also uses
background information for tracking. Different from SDG,
our CEST adopts exclusive sparse to decide only a few ele-
ments from DF , DO, or DC to represent particles. However,
in L1, SDG, and MTT, elements from all of DF , DO, and
DC can be used to represent particles together. Based on
the results in Tables III–V, CEST and CEST* outperform
three of the trackers (L1, MTT, SDG). This is primarily
due to the use of context information, which makes CEST
less prone to tracker drift. Moreover, CEST and CEST*
have quite comparable performance. This demonstrates that
the particle pruning stage in CEST* has minor impact
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min
r,zg,cg∀g

f (r, z, cg) = ‖r‖2 + λ
∑

g∈G
c2

g such that r = x− Dz; ‖zg‖1 ≤ cg ∀g ∈ G (9)

g(u0, ug) = inf
r,z,cg∀g

‖r‖2 + λ
∑

g∈G
c2

g + uT
0

⎛

⎝x−
∑

g∈G
Dgzg − r

⎞

⎠+
∑

g∈G
ug
(‖zg‖1 − cg

)

= uT
0 x−max

r
(uT

0 r− ‖r‖2)+
∑

g∈G
min

cg
(λc2

g − ugcg)−max
zg

((
DT

g u0

)T
zg − ug‖zg‖1

)

= uT
0 x− 1

4λ

∑

g∈G
u2

g such that ‖u0‖2 ≤ 1; ‖DT
g u0‖∞ ≤ ug ∀g ∈ G. (11)

on tracking accuracy, even though it makes CEST* much
faster.

VI. CONCLUSION

In this paper, we formulate particle filter-based tracking as
an exclusive sparse representation problem that exploits con-
text information. Particle representations are learned using an
efficient APG method. By using a fast particle pruning method
based on an approximate dual formulation, the runtime of the
proposed tracker is constant with respect to the number of parti-
cles. We show that the popular L1 tracker [1] is a special case of
our formulation. Also, we extensively analyze the performance
of our tracker on challenging real-world video sequences and
show that it outperforms nine state-of-the-art trackers.

APPENDIX

In CEST, the representation problem to be solved for a
particle x is defined in

min
z
‖x− Dz‖22 + λ

∑

g∈G

∥∥zg
∥∥2

1

⎡

⎣where Dz =
∑

g∈G
Dgzg

⎤

⎦.

(7)

In order to derive the dual of (7), we first recast it as the
equivalent problem in

min
z
‖x− Dz‖22 + λ

∑

g∈G
c2

g such that ‖zg‖1 ≤ cg ∀g. (8)

By adding redundant variables and assuming that the recon-
struction error term is small (i.e., ‖x − Dz‖2 ≤ α ≤ 1), we
approximate (8) with its upper bound in (9), as shown at the
top of the page. By forming the Lagrange function of (9)
and taking its minimum with respect to the primal variables
r, z, cg∀g, we obtain its dual problem in (10), where g(u0, ug)

is the dual function expressed in (11) and (u0, ug∀g ∈ G) are
the dual variables corresponding to the primal equality and
inequality constraints, respectively

min
u0,ug≥0∀g g(u0, ug). (10)

In the last step of (11), as shown at the top of the page,
we make use of the closed form expression for the solution to

an unconstrained convex quadratic program and the conjugate
function of a vector norm. In (12), we define the conjugate
function of the �p norm and its relationship with its dual �q

norm, such that 1/p+1/q = 1. So, for instance, the dual norm
of the �1 norm is the �∞ norm, while the �2 norm is its own
dual norm

h∗(y) := sup
x

(
yTx− α ‖x‖p

) =
{

0 if ‖y‖q ≤ α

∞ otherwise.
(12)

Therefore, the dual problem of (9) is written in

max
u0,ug≥0 ∀g g(u0, ug) = uT

0 x− 1

4λ

∑

g∈G
u2

g (13)

such that ‖u0‖2 ≤ 1; ‖DT
g u0‖∞ ≤ ug ∀g ∈ G.

Note that the nonnegativity constraint of ug is satisfied by
the inequality in (13). Also, it is easy to see that for any fea-
sible u0, the best choice of ug (i.e., the one that maximizes
the objective) is ug = ‖DT

g u0‖∞. Therefore, the dual problem
is equivalent to (14). As stated in this paper, we sample a
set of s feasible vectors u0 to form the set U , which is com-
piled offline and is used for all particles in all frames. Then,
the optimal objective max‖u0‖2≤1 g(u0) is approximated with
maxu0∈U g(u0). A theoretical study of how good this approx-
imation is (i.e., how close the approximation is to the actual
optimal value) is kept for future work

max
u0

g(u0) = uT
0 x− 1

4λ

∑

g∈G
‖DT

g u0‖2∞ (14)

such that ‖u0‖2 ≤ 1.
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