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Abstract. In this paper, we propose a new particle-filter based track-
ing algorithm that exploits the relationship between particles (candidate
targets). By representing particles as sparse linear combinations of dic-
tionary templates, this algorithm capitalizes on the inherent low-rank
structure of particle representations that are learned jointly. As such,
it casts the tracking problem as a low-rank matrix learning problem.
This low-rank sparse tracker (LRST) has a number of attractive prop-
erties. (1) Since LRST adaptively updates dictionary templates, it can
handle significant changes in appearance due to variations in illumina-
tion, pose, scale, etc. (2) The linear representation in LRST explicitly
incorporates background templates in the dictionary and a sparse error
term, which enables LRST to address the tracking drift problem and to
be robust against occlusion respectively. (3) LRST is computationally
attractive, since the low-rank learning problem can be efficiently solved
as a sequence of closed form update operations, which yield a time com-
plexity that is linear in the number of particles and the template size.
We evaluate the performance of LRST by applying it to a set of chal-
lenging video sequences and comparing it to 6 popular tracking methods.
Our experiments show that by representing particles jointly, LRST not
only outperforms the state-of-the-art in tracking accuracy but also sig-
nificantly improves the time complexity of methods that use a similar
sparse linear representation model for particles [1].

1 Introduction

Visual tracking is a well-known problem in computer vision with many appli-
cations such as surveillance, robotics, human computer interaction, etc. It is
challenging to design a robust tracking algorithm due to the presence of occlu-
sion, background clutter, varying viewpoints, and illumination and scale changes.
Over the years, many tracking algorithms have been proposed to deal with these
difficulties. To survey many of these algorithms, we refer the reader to [2].

Recently, several approaches have successfully applied �1 minimization for ro-
bust visual tracking [1,3]. In these methods, visual tracking exploits the sparse
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representation of the target candidate using a dictionary of templates that can
be updated progressively. An important advantage of using sparse representa-
tion is its robustness to a wide range of image corruptions, especially moderate
occlusions. These methods demonstrates promising robustness compared with
many existing trackers on well-known video sequences, but at a computational
cost dominated by �1 minimization. Furthermore, since the target states are
estimated in a particle filter framework, the computational cost grows linearly
with the number of particle samples used. This large computational bottleneck
precludes the use of these robust trackers in real-time scenarios. Moreover, this
family of methods learns the sparse representations of particles separately and
thus ignores the relationships among them, which ultimately constrain their rep-
resentation. For example, most particles are densely sampled at a small distance
around the target, so their appearances, and thus their sparse representations,
are expected to be similar.

Inspired by the above work, we propose a computationally efficient tracking
method that capitalizes on sparse and low-rank representation in a particle filter
framework. This method is denoted as the Low-Rank Sparse Tracker (LRST).
In visual object tracking, the next state of the tracked object is decided based
on its current state and observation. To obtain particle samples, we adopt the
independent and identically distributed (i.i.d.) sampling strategy in [4] based
on a zero-mean Gaussian model centered around the current object state. The
next object state is chosen to be the particle that has the highest similarity
with a dictionary of target object templates. As such, an accurate and joint
representation of particle samples w.r.t. this dictionary is crucial. To devise this
representation, we make the following observations. (a) The best particle sam-
ple should have the most similar representation with the target object templates
in the dictionary. (b) Since particles are densely sampled around the current
target state, the appearances of many of these particles and, in turn, their rep-
resentations w.r.t to the dictionary are expected to be similar. So, we observe
a correlation among particle representations and not their i.i.d. sampled states.
This correlation should be exploited instead of being ignored as in other sparse
coding trackers [1,3,5]. (c) Occlusion and noise can significantly impact tracking
performance. To alleviate their effect, representation error should be explicitly
incorporated in the tracking process. (d) During tracking, a particle sample
should be represented using a dictionary of templates composed of both object
and background templates, which are updated progressively. This emphasizes
the importance of representing what a target is and is not. Discriminating the
target from the background adds another layer of robustness against possible
tracker drift. Generally, a “good” target candidate is effectively represented by
the object and not the background templates, thus, leading to a sparse repre-
sentation. The converse is true for a “bad” target candidate.

Motivated by these considerations, we propose a novel formulation to address
the robust object tracking problem. Here, particle samples in the current frame
are represented as linear combinations Z of object and background templates
that define a dictionaryD. We require that Z be sparse (only a few templates are
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required to represent it well) and low-rank (most of particles are expected to have
similar representations). To incorporate occlusion and noise handling, we allow
for sparse error E to contaminate Z. Z is computed by solving a low-rank, sparse
representation problem, whose solution is obtained after a sequence of closed
form update steps made possible by the Inexact Augmented Lagrange Multiplier
(IALM) method. To account for viewpoint, appearance, and illumination changes
and to alleviate tracking drift, we updateD adaptively via a sequence of template
replacement and reweighting steps.

Contributions: Compared with existing approaches, the contributions of this
work are the following. (1) We formulate object tracking as a sparse and low-
rank representation problem, which provides a new perspective on robust visual
tracking. This is done by primarily taking advantage of the relationship be-
tween particle appearances and jointly representing them w.r.t. a dictionary of
templates, which is dynamically updated. To the best of our knowledge, this is
the first work to exploit the low-rank nature inherent to object tracking. (2)
Although we compute particle representations jointly, we solve the sparse and
low-rank representation problem efficiently through a sequence of closed form
updates, which make LRST computationally attractive (linear in the number of
particles and template size).

The rest of the paper is organized as follows. In Section 2, we summarize
the work most related to ours. The particle filter algorithm is birefly reviewed
in Section 3. The proposed LRST method is described in detail in Section 4.
Experimental results are reported and analyzed in Section 5. We conclude in
Section 6.

2 Related Work

Object tracking boasts of an extensive literature. Here, we review previous work
most relevant to this paper and refer to [2] for a more thorough review. In general,
tracking methods can be categorized into two groups: generative and discrim-
inative. Generative tracking methods adopt an appearance model to describe
the target observations, and the aim is to search for the target location that
has the most similar appearance to the model. Examples of generative methods
are eigentracker [6], mean shift tracker [7], and incremental tracker [8]. Dis-
criminative tracking methods view the object tracking as a binary classification
problem, which seeks the target location that can best separate the target from
the background. Examples of discriminative methods are on-line boosting [9],
ensemble tracking [10], online multi-view forests for tracking [11], and online
multiple instance learning tracking [12].

Over the last few years, particle filters (also known as condensation or se-
quential Monte Carlo models) have proven to be powerful tools for object track-
ing [13]. The strength of these methods lies in their simplicity, flexibility, and
systematic treatment of nonlinearity and non-Gaussianity. While the use of
more particle samples can improve track robustness, the computational load of
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particle filter trackers tends to increase linearly with the number of particles.
Consequently, researchers have proposed methods to speed up the particle filter
framework, such as, the coarse-to-fine strategy in [14].

Recently, sparse representation has been successfully introduced to object
tracking [1,3,5,15,16] based on the particle filter framework. In [1], a tracking
candidate is represented as a sparse linear combination of object and trivial tem-
plates. Sparse representation is computed by solving an �1 minimization problem,
which addresses the inverse intensity pattern problem during tracking. In [3],
dynamic group sparsity is integrated into the tracking problem and very high
dimensional image features are used to improve tracking robustness. In [5], di-
mensionality reduction and a customized orthogonal matching pursuit algorithm
are adopted to accelerate the L1 tracker [1]. Our proposed method is inspired
by these works. To improve efficiency and to capitalize on the interdependence
between particle sample appearances, we employ a sparse, low-rank target rep-
resentation, whose templates can be updated dynamically to capture changes
in the target’s appearance. Our work is also motivated by recent advances in
low-rank representation and its recently discovered applications in computer vi-
sion, such as robust face recognition [17], subspace clustering [18], background
subtraction [19].

3 Particle Filter

The particle filter [13] is a Bayesian sequential importance sampling technique for
estimating the posterior distribution of state variables characterizing a dynamic
system. It provides a convenient framework for estimating and propagating the
posterior probability density function of state variables regardless of the under-
lying distribution through a sequence of prediction and update steps. Let st and
yt denote the state variable describing the parameters of an object at time t
(e.g. location or motion parameters) and its observation respectively. In the par-
ticle filter framework, the posterior p(st|y1:t) is approximated by a finite set of
n samples

{
sit
}n

i=1
(called particles) with importance weights wi. The particle

samples sit are drawn from an importance distribution q(st|s1:t−1,y1:t), which
for simplicity is set to the state transitional probability p(st|st−1). In this case,
the importance weight of particle i is updated by the observation likelihood as:
wi

t = wi
t−1p(yt|sit).

Particle filters have been used extensively in object tracking [2]. In this pa-
per, we also employ particle filters to track the target object. Similar to [1], we
assume an affine motion model between consecutive frames. Therefore, the state
variable st consists of the six parameters of the affine transformation (2D lin-
ear transformation and a 2D translation). By applying an affine transformation
using st as parameters, we crop the region of interest yt from the image and
normalize it to the size of the target templates in our dictionary. The state tran-
sition distribution p(st|st−1) is modeled to be Gaussian with the the dimensions
of st assumed independent. The observation model p(yt|st) reflects the similarity
between a target candidate (particle) and dictionary templates. In this paper,
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p(yt|st) is computed as a function of the difference between the low-rank repre-
sentation of the target corresponding to object templates in the dictionary and
its representation corresponding to the background templates.

4 Low-Rank Sparse Tracker (LRST)

In this section, we give a detailed description of our particle filter based tracking
method, denoted as the Low-Rank Sparse Tracker (LRST).

4.1 Low Rank Sparse Representation of a Tracking Target

In our particle filter based tracking method, particles are randomly sampled
around the current state of the tracked object according to a zero-mean Gaus-
sian distribution. In the tth frame, we consider n particle samples, whose obser-
vations (pixel color values) are denoted in matrix form as: X = [x1,x2, · · · ,xn].
Each column of Z is a particle in R

d. In the noiseless case, each particle xi is
represented as a linear combination of templates that form a dictionary Dt =
[d1,d2, · · · ,dm], such that X = DtZ. Here, the columns of Z denote the repre-
sentation of the particles with respect to Dt. The dictionary columns comprise
the templates that will be used to represent each particle. These templates in-
clude visual observations of the tracked object and the background (non-object)
possibly under a variety of appearance changes. Since our representation is con-
structed at the pixel level, misalignment between dictionary templates and par-
ticles might lead to degraded performance. To alleviate this problem, one of
two strategies can be employed. (i) Dt can be constructed from a dense sam-
pling of the object and the background, which includes transformed versions of
both. (ii) Columns of X can be aligned to columns of Dt as in [17]. In this
paper, we employ the first strategy, which leads to a larger m but a lower overall
computational cost. We denote Dt with a subscript because its templates will
be progressively updated to incorporate variations in object appearance due to
changes in illumination, viewpoint, etc. How to update Dt systematically will
be introduced later.

We base the formulation of our tracking method on the following observations.
(a) Because particles are densely sampled around the current object state, most
of them will have similar representations with respect to Dt. Therefore, the re-
sulting representation matrix Z is expected to be low-rank, even for large values
of m and n. (b) Inspired by the L1 tracker [1], a good target candidate (par-
ticle) xi has only a limited number of nonzero coefficients in its corresponding
representation zi. In other words, only a few dictionary templates are required
to reliably represent a particle. (c) In many visual tracking scenarios, target
objects are often corrupted by noise or partially occluded. As in [1], this noise
can be modeled as sparse additive noise that can take on large values anywhere
in its support. We combine (a)-(c) to obtain the problem in Eq (1), where E
is the error due to noise and/or occlusion and λ1, λ2 and λ3 are three parame-
ters to balance the importance of each term. We set λ1 = λ2 = λ3 = 1 in our
experiments. The solution to Eq (1) is described in Section 4.3.
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min
Z,E

λ1 ‖Z‖∗ + λ2 ‖Z‖1,1 + λ3 ‖E‖1,1 (1)

such that: X = DtZ+E

Low-Rank Representation ‖Z‖∗: We seek to minimize the rank of the rep-
resentations of all particles together. Since directly minimizing matrix rank is
NP-hard in general, we resort to minimizing its convex envelope – its nuclear
(or trace) norm ‖Z‖∗. As compared to the L1 tracker, the particles at instance
t are represented jointly and not separately. Joint representation capitalizes on
the correlations between particles to provide a more robust and computation-
ally efficient solution. Instead of solving n separate �1 minimization problems
(in the case of L1 tracking), we consider a single rank minimization problem
that is solved by a sequence of closed form update operations. To the best of
our knowledge, this work is the first to exploit the low-rank nature of particle
representations in a tracking setting.

Sparse Representation ‖Z‖1,1: Templates in Dt showcase the possible vari-
ations in appearance of the target object and background, but only a sparse
number of these templates is required to reliably represent each particle [1].
This sparse scheme is free of model training, robust to sparse noise, and has
proven useful in discriminating between samples of different classes [20].

Reconstruction Error ‖E‖1,1: For robustness against sparse significant errors
(e.g. due to occlusion), we seek to minimize the �1 norm of each column of E.
This sparse error assumption has been widely adopted in tracking [1] and other
applications [20]. Unlike the L1 tracker [1] that incorporates sparse error by
augmenting Dt with a large number (2d) of “trivial” templates, we compute
E ∈ R

d×n directly. Moreover, the values and support of columns in E are quite
informative, since they can indicate the presence of occlusion (large values but
sparse support) and whether a candidate particle is sampled from the background
(large values with non-sparse support).

Adaptive Dictionary: Dt is initialized by sampling image patches around the
initial target position. For accurate tracking, the dictionary must be updated
in successive frames to model changing target appearance. Furthermore, to al-
leviate the problem of target drift in tracking, we augment Dt with templates
representative of the background, such that Dt = [DO DB], where DO and
DB represent the target object and background templates respectively. Thus, a
particle zk is composed of an object representation zOk and a background rep-
resentation zBk . In this paper, the tracking result yt at instance t is the particle
xi such that i = argmaxk=1,...,n

(‖zOk ‖1 − ‖zBk ‖1
)
. This encourages the tracking

result to be represented well by the object and not the background templates.
We also exploit this discriminative information to design a systematic procedure
for updating Dt. To each object template in DO, we allocate a weight ωi that
is indicative of how representative the template is. In fact, the more a template
is used to represent tracking results, the higher its weight is. If particles are
sufficiently represented (up to a predefined threshold) by the dictionary, then



476 T. Zhang et al.

Fig. 1. Schematic example of our LRST algorithm. The representation Z of sample
particles X w.r.t. dictionary D (set of object and background templates) is learned
by solving Eq (1). Notice that Z is sparse (i.e. few dictionary templates are used) and
low-rank (i.e. dictionary templates are reused for representation). The particle xi is
selected among all other particles as the tracking result, since xi is represented the
best by the object templates only.

there is no need to update it. Otherwise, the current tracking result replaces the
object template that has the smallest weight. The weight of this new template is
set to the median of the current normalized weight vector ω. DB , on the other
hand, is updated at every frame by resampling patches at a sufficient distance
from the current tracking result.

4.2 Discussion

As shown in Eq (1), we propose a generic formulation for robust object tracking
using low-rank sparse representation. With different values of λ1 and λ2, different
object trackers are obtained. When λ1 = 0, it is a Sparse Tracker (ST), and when
λ2 = 0, it is a Low Rank Tracker (LRT). if λ1 �= 0 and λ2 �= 0, we denote it as
a Low Rank Sparse Tracker (LRST). In a word, the popular L1 tracker [1] and
the proposed LRT, ST are three special case trackers of the more general LRST.
In Fig. 1, we present an example of how our tracker works. Given all particles X
(sampled around the tracked car) and based on a dictionary D = [DO DB], we
learn the representation matrix Z by solving Eq (1). Note that smaller values
are darker in color. Clearly, Z is sparse (small number of templates used) and
low-rank (templates are reused among particles). The particle xi is chosen as the
current tracking result yt because its representation difference

(‖zOi ‖1 − ‖zBi ‖1
)

is largest among all particles. Since particle xj is a misaligned version of the
car, it is not represented well by DO (i.e. zOj has small values). Particle xk is

represented well by DB (i.e. zBk has large values). This precludes the tracker
from drifting into the background.
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4.3 Solving Eq (1)

Unlike many other works that only focus on one of the two convex and non-
smooth regularizers (sparse ‖.‖1 regularizer or low-rank ‖.‖∗ regularizer), the
cost function in Eq (1) combines both. In order to handle these two regularizers
independently, we introduce two slack variables and add two equality constraints
as in Eq (2).

min
Z1−3,E

λ1 ‖Z1‖∗ + λ2 ‖Z2‖1,1 + λ3 ‖E‖1,1 (2)

such that:

⎧
⎪⎨

⎪⎩

X = DZ3 +E

Z3 = Z1

Z3 = Z2

This transformed problem can be minimized using the conventional Inexact Aug-
mented Lagrange Multiplier (IALM) method that has attractive quadratic con-
vergence properties and is extensively used in matrix rank minimization prob-
lems [17]. IALM is an iterative method that augments the traditional Lagrangian
function with quadratic penalty terms. This allows closed form updates for each
of the unknown variables. The updates are closed form due to the identities in Eq
(3,4), where Sλ(Aij) = sign(Aij)max(0, |Aij |−λ) is called the soft-thresholding
operator and Jλ (A) = UASλ (ΣA)V

T
A is the singular value soft-thresholding

operator. Due to space limitations, we do not elaborate on the optimization
details here but do so in the supplementary material.

X∗ = argmin ‖X−A‖2F + 2λ‖X‖1,1 = Sλ(A) (3)

X∗ = argmin ‖X−A‖2F + 2λ‖X‖∗ = Jλ(A) (4)

The computational bottleneck of LRST lies in the SVD of matrix Z. Since Z
is low-rank and rectangular, its SVD can be computed efficiently with time
complexity O (mnr), where r is its rank such that r ≤ √

min(m,n). Because
m � min(n, d) in the majority of cases, the overall computational complexity
(per frame) of LRST is O (nd), which is linear in both the number of particles
and the template size. This complexity is on par with that of other fast particle-
based tracking algorithms. In comparison, the computational complexity of the
L1 tracker [1], which uses a sparse linear representation similar to LRST, is at
least O (

nd2
)
, since the number of dictionary templates (object and trivial) is

(m + 2d) and n Lasso problems are solved separately. Clearly, LRST is more
computationally attractive than L1 tracker. In fact, our results show that LRST
is two orders of magnitude faster than L1 tracker in general. For example, when
m = 25, n = 400, and d = 32 × 32, the average per-frame run-time for LRST
and L1 trackers are 3.0 and 340 seconds respectively. Moreover, increasing m
and d will improve performance without much added computational cost.
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5 Experimental Results

In this section, we present experimental results that validate the effectiveness
and efficiency of our LRST method. We also conduct a thorough comparison
between LRST and state-of-the-art tracking methods where applicable.

5.1 Datasets and Baselines

To evaluate our trackers (ST, LRT and LRST), we compile a set of 15 challeng-
ing tracking sequences (e.g. car4, david indoor, and soccer sequences) that are
publicly available online1. Due to space constraints, we will only show results on
10 of these sequences, leaving the rest for the supplementary material. These
videos are recorded in indoor and outdoor environments and include challenging
appearance variations due to changes in pose, illumination, scale, and the pres-
ence of occlusion. We compare our trackers against 6 recent and state-of-the-art
visual trackers denoted as: VTD [21], L1 [1], IVT [8], MIL [12], Frag (Fragments-
based tracker) [22], and OAB [9]. We implemented these trackers using publicly
available source codes or binaries provided by the authors themselves. They were
initialized using their default parameters for all video sequences.

5.2 Implementation Details

All our experiments are done using MATLAB R2008b on a 2.66GHZ Intel Core2
Duo PC with 6.0GB RAM. The template size d is set to half the size of the target
initialization in the first frame. So, d is usually in the order of several hundred
(or a few thousand) pixels. For all our experiments, we model p (st|st−1) ∼
N (0, diag(σ)), where σ = [0.005, 0.0005, 0.0005, 0.005, 4, 4]T. We set the number
of particles n = 400, the total number of templates m = 25. In all cases, the
initial position of the target is selected manually. In Sections 5.3 and 5.4, we give
a qualitative and quantitative analysis of the proposed trackers (ST, LRT and
LRST), as well as compare it against the 6 baseline methods. Our experiments
show that LRST produces more robust and accurate tracks. Tracking results are
made available in the supplementary material.

5.3 Qualitative Comparison

The car4 sequence was captured in an open road scenario. Tracking results at
frames {50, 187, 204, 380, 530, 641} for all 9 methods are shown in Fig. 2(a).
The different tracking methods are color-coded. OAB, Frag, and VTD start to
drift from the target at frame 187, while MIL starts to show some target drifting
at frame 200 and finally loses the target at frame 300. L1 and ST can track the
target when illumination changes. However, there is a little shift compared with
ground truth. The target is successfully tracked by other trackers (IVT, LRT

1 vision.ucsd.edu/∼bbabenko/project miltrack.shtml;

www.cs.toronto.edu/ dross/ivt/; cv.snu.ac.kr/research/∼vtd/
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and LRST ) throughout the entire sequence even though the drastic illumination
changes. These results show the sparsity and low-rank property are useful for
robust object tracking.

In the david sequence, a moving face is tracked. The tracking results at frames
{320, 430, 460, 500, 650, 690} are shown in Fig. 2(b). Frag and VTD fail around
frames 430 and 460 respectively. OAB starts to drift at frame 550. MIL and
L1 adequately track the face, but experience target drift, especially at frames
690 and 500 respectively. The IVT, ST, LRT and LRST trackers track the moving
face accurately throughout the sequence.

Results on the faceocc2 sequence are shown in Fig. 2(c). Most trackers start
drifting from the man’s face when it is almost fully occluded by the book. Be-
cause the LRST method explicitly handles partial occlusions, updates the object
dictionary progressively, and continuously incorporates background templates, it
handles the appearance changes in this sequence very well and continues tracking
the target during and after the occlusion.

Fig. 2(d) shows tracking results for the girl sequence. Performance on this
sequence exemplifies the robustness of LRST to occlusion (complete occlusion of
the girl’s face as she swivels in the chair) and large pose change (the girl’s face
undergoes extensive 3D rotation about multiple axes). Only ST, LRT, LRST
and L1 trackers are capable of tracking the target during the entire sequence.
Other trackers experience drift at different instances: Frag at frame 248, OAB
and IVT at frame 436, and VTD at frame 477.

In the shaking sequence, the tracked object is subject to changes in illumi-
nation and pose. Even though the stage lighting is drastically changed and the
object appearance is severely varied due to head shaking, our method success-
fully tracks the object (refer to Fig. 2(e)). Since our trackers (ST, LRT and LRST
) perform adaptive template updating, they effectively handle the inherent pose
variations. However, other methods (OAB, IVT, L1 , and Frag) fail to track the
object when these changes occur. VTD and MIL can track the object quite well
except for some errors around frame 60.

The football sequence includes severe background clutter, which is similar in
appearance to the target to be tracked. The OAB, L1, and ST methods drift at
frame 100, 246 and 271, respectively. For the other methods, tracking drifts from
the intended object (helmet) to other similar looking objects in the vicinity. This
is especially the case when the two football players collide at frame 362 (refer
to Fig. 2(f)). The proposed LRT and LRST method overcome this problem and
successfully track the target with the help of background information and the
low-rank robustness property.

The singer1(l) and skating1 sequences contain abrupt object motion with
significant illumination and scale changes, which cause most of the trackers to
drift as shown in Fig. 2(g-h). ST, LRT, LRST and VTD work well.

Results on the soccer sequence are shown in Fig. 2(i). They demonstrate how
our proposed low-rank sparse method outperforms the state-of-the-art trackers
when the target is severely occluded by other objects. LRST accurately tracks
the player’s face despite scale and pose changes as well as occlusion/noise from
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Fig. 2. Tracking results (color-coded bounding boxes) of 9 tracking methods. Frame
numbers are overlayed in red.
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the confetti raining around him. Other methods (IVT, L1 , OAB, MIL, and
Frag) fail to track the object reliably. ST, LRT and VTD can track the target
in this sequence with some drift.

The trellis70 sequence is captured in an outdoor environment where lighting
conditions change drastically. The video is acquired when a person walks under-
neath a trellis covered by vines. As shown in Fig. 2(j), the cast shadow changes
the appearance of the target face drastically. Furthermore, the combined effects
of pose and lighting variations along with a low frame rate make the tracking
task extremely difficult. Nevertheless, LRST and LRT trackers follow the target
accurately and robustly, while the other tracking methods perform below par in
this case. VTD and Frag fail at frame 185. The L1 and ST trackers start drifting
at frame 288 and 327 respectively, while MIL and OAB fail at frame 327. IVT
starts drifting at frame 330.

5.4 Quantitative Comparison

To give a fair quantitative comparison between the 9 trackers, we obtain man-
ually labeled ground truth tracks for all sequences. To evaluate a tracker, we
compute the distance (in pixels) between the center of the tracking result to
that of the ground truth, averaged over all frames as in [1,12]. The smaller this
distance the better the tracking algorithm is. Most of the ground truth can be
downloaded with the video sequence.

In Fig. 3, we show the mean center distance of all 9 algorithms on 10 se-
quences. Except for the football and faceocc2 sequences, in which our proposed
trackers obtain similar result as VTD and IVT, our algorithms do outperform
the other methods, and in several cases by a significant amount. Both Frag and
L1 trackers perform well against partial occlusion but tend to fail in the presence
of severe illumination and pose changes. IVT performance is hardly affected by
most changes in appearance except for severe illumination changes. OAB perfor-
mance is affected by background clutter and easily drifts. Similar to the previous
trackers, MIL is robust to most changes in appearance except severe illumina-
tion change, which causes the tracking to drift away from the tracker into the
background. VTD is the most robust of the 6 methods we compare against, yet
it tends to drift due to illumination changes, severe occlusions, and pose changes.

Based on the results in Fig. 3, we analyze the importance of each term in Eq (1)
and the corresponding 3 trackers (ST, LRT and LRST). Results from the L1 and
ST trackers show that representation sparsity is very effective for robust object
tracking and is the primary reason why they perform so well against many state-
of-the-art trackers. Compared with ST, LRT obtains much better results, which
demonstrates the effectiveness of the low-rank property in object tracking. This is
due to the fact that the low-rank property mines the correlations among particle
appearances, thus, making the learned representations more robust. Compared
with ST and LRT, LRST obtains the best performance, which shows that the
combination of the low-rank and sparsity properties is more effective than ei-
ther of them taken separately. In fact, the rank of matrix Z is iteratively reduced
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Fig. 3. Mean distances of 9 different trackers on 10 different video sequences. On
average, the proposed trackers (ST, LRT and LRST) outperform the other 6 state-
of-the-art trackers. For each sequence, the smallest and second smallest distances are
denoted in red and blue respectively.

in LRT and LRST. As shown in Fig. 1, the rank of the learned representation Z
is 10, which is reduced from 25.

Now, we compare the performance of the LRST, ST and L1 trackers, which
use the sparsity property. Based on the results in Fig. 3, LRST outperforms
ST and L1. That is because ST and L1 trackers learn particle representations
separately, while LRST capitalizes on the dependencies among different particles
to obtain a more robust joint representation. Our results demonstrate that it is
useful for visual tracking to mine relationships between particle appearances.
Moreover, in theory, the L1 tracker is a special case of our LRST framework,
and it should produce the same results as ST. However, this is not reflected
in our empirical results due to three reasons. (a) The L1 tracker is forced to
adopt a smaller template size (d = 12 × 15) due to its high computational
cost O(nd2). A larger d leads to a richer representation and improved tracking
performance. As mentioned earlier, ST methods set d to half the size of the
initial bounding box, which is generally more than 600 pixels. In addition, ST
uses background information for more robust tracking, while L1 does not. (b)
In the public MATLAB implementation of L1, the dictionary weights are used
not only to update the target templates but also to multiply the templates
themselves, which leads to an artificially sparser representation. For ST, the
weights are only used to update the target templates. In addition, ST uses a
more efficient solver (i.e. IALM algorithm [23]) to learn particle representations.
(c) Since the L1 and ST trackers both adopt the particle filter framework, they
tend to randomly sample different particles from the same frame.
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6 Conclusion

In this paper, we propose a new particle-filter based tracking algorithm that
exploits the low-rank nature of particle representations. We model tracking as a
low-rank sparse learning problem at the level of particles and solve it using an
efficient IALM approach. For further robustness against tracking drift and signif-
icant changes in target appearance, we introduce background templates into the
representation and an online procedure that adaptively updates the templates.
We extensively analyze the performance of our tracker on 15 challenging videos
and show it outperforming 6 recent and state-of-the-art tracking methods.
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