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Nonlinear shape models have been shown to improve the robustness and flexibility of contour-based
object segmentation when there are appearance ambiguities between the object and the background.
In this paper, we focus on a new search strategy for the shape regularized active contour (ShRAC) model,
which adopts existing nonlinear shape models to segment objects that are similar to a set of training
shapes. The search for optimal contour is performed by a coarse-to-fine algorithm that iterates between
combinatorial search and gradient-based local optimization. First, multi-solution dynamic programming
(MSDP) is used to generate initial candidates by minimizing only the image energy. In the second step, a
combination of image energy and shape energy is minimized starting from these initial candidates using
a local optimization method and the best one is selected. To generate diverse initial candidates while
reducing invalid shapes, we apply two pruning methods to the search space of MSDP. Our search strategy
combines the advantages of global combinatorial search and local optimization, and has shown excellent
robustness to local minima caused by distracting suboptimal solutions. Experimental results on segmen-
tation of different anatomical structures using ShRAC, as well as preliminary results on human silhouette
segmentation are provided.

� 2009 Published by Elsevier Inc.
1. Introduction

The segmentation of anatomical structures is often a critical
component of medical imaging systems, such as a computer-
aided diagnosis (CAD) system or a patient information system
(PIS). In chest radiography, researchers have developed numerous
methods for segmenting the lung fields, rib cage, heart, clavicles,
blood vessels, as well as abnormal structures such as lung nod-
ules. However, given the projective nature of chest radiography,
superimposed anatomical structures make images complicated
and challenging for both radiologists and computerized systems.
On the other hand, the limited domain of the problem provides
an opportunity to incorporate prior knowledge of the shape,
and in some cases the appearance, of the anatomical structures
of interest. This prior knowledge, often in the form of object
shape and/or appearance model, is used during the search for
similar structures in the image. Earlier researches focus on rule-
based reasoning and hand-crafted shape models [1], while more
recent approaches use statistical learning tool to train the object
model from a set of examples.

Landmark based active shape model (ASM) [2] is a successful
method for object localization and segmentation. It uses linear
Elsevier Inc.

@kodak.com (J. Luo), ahuja@-
shape and appearance models extracted by principle components
analysis (PCA). Linear models have the problem that they admit
invalid shapes when the shape distribution is in fact nonlinear.
Multiple models are often needed to span a nonlinear shape dis-
tribution while excluding invalid shapes. The training of ASM is
also quite tedious. A set of landmarks need to be identified and
correctly matched for each example.

It is desirable to incorporate nonlinear shape priors into seg-
menting different anatomical structures (e.g., lung fields, clavicles,
ribs) in medical images, which can remove the need to train multi-
ple linear models. For the specific problem of lung field segmenta-
tion, it is desired that the segmentation algorithm can
automatically adapt and converge to the correct shape, without
any model selection in advance, e.g., to decide whether to use
the left or right lung field model (Fig. 1). In addition, the method
should also be robust to noise and clutter that are commonly seen
in medical images.

Nonlinear shape priors have been incorporated into nonlinear
ASM [3] and variational image segmentation with nonlinear
shape statistics [4]. These algorithms have been shown to be
more flexible and powerful in model building and therefore
more successful in segmenting objects with nonlinear shape
variations. However, they also pose many difficulties to the de-
sign of a search strategy that balances the use of shape prior
constraints and actual image structures to find a globally opti-
mal solution.
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Fig. 1. Starting with the same elliptical shape, a segmentation algorithm should converge to the correct shape without model selection (e.g., to adapt to the left or the right
lung field). Here we show the results of the proposed ShRAC search strategy: (a) Initial contour on the right lung. (b) Final contour on the right lung. (c) Initial contour on the
left lung (note that it is the same shape as in (a)). (d) Final contour on the left lung.

Fig. 2. Comparison of the shape energy functions learned by PCA (lower left) and
KSDE (lower right) from the training shapes of both left (+) and right (x) lungs.
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In the work by Cremers et al. [4], a Mumford-Shah functional
type image energy and a shape energy derived from kernel space
density estimation (KSDE) are combined to construct an energy
function for segmentation. The KSDE-based shape energy enforces
object-specific nonlinear shape constraint, in contrast to general
smoothness constraint in conventional snakes [5,6]. However, this
shape energy term makes it difficult to minimize the energy func-
tion globally. Instead, gradient-descent is used in their work, which
often converges to a local minimum.

Algorithms developed under the framework of ASM [2] address
this problem by not minimizing a single energy function. Instead,
the search iterates between two steps. In the first step, ASM
searches for the best landmarks. This is equivalent to minimizing
an image energy term. In the other step, the contour is regularized
to the space of training shapes, and can be viewed as minimizing a
shape energy term. Similar approaches are also used in medical
image segmentation [7]. Although the alternating process provides
certain capabilities for the algorithm to jump out of a local mini-
mum and find a better solution, the lack of a unified energy func-
tion may introduce oscillations when trying to optimized two
separate targets. Therefore, a more robust method is needed to
avoid potential oscillations.

In this paper, we focus on a novel search strategy for the shape
regularized active contour (ShRAC) [8], which incorporates nonlin-
ear shape priors through kernel space density estimation, similar
to [4]. Compare to [8], the new search strategy combines the
advantages of combinatorial search, which provides global opti-
mality, and gradient-based local optimization. It could avoid many
problems of separately optimizing two type of energy functions as
in [8], such as oscillation and bias toward the image energy. In par-
ticular, we propose to first use multi-solution dynamic program-
ming (MSDP) to minimize the image energy as the initial
candidate selection step, and then use a local optimization method
that eventually minimizes a combination of the image energy and
shape energy determined by the prior shape models. In addition, a
new search space pruning process is used to ensure the diversities
of the selected candidates and reduce the number of invalid
shapes. Our combined search strategy provides improved robust-
ness to image noise and various distracting structures that present
in medical images.

Compare to [4,2], as well as other shape model constrained seg-
mentation developed under the level set framework [9–11], our
method can be thought as a multi-path search strategy, where
multiple different contours are efficiently generated and evolved
in the search space to find the optimal solution. Most of the previ-
ous methods mentioned above only evolve a single initial contour
until convergence.

Although the main problem solved in this paper is in the con-
text of medical image segmentation. We provide some preliminary
results on human silhouette segmentation at the end of this paper
to explore the feasibility of our approach to other domains.
This paper is organized as follows: Section 2 describes the for-
mulation of ShRAC. Section 3 presents the iterative search strategy.
Section 4 uses experiments in three segmentation tasks to demon-
strate the robustness and versatility of ShRAC, and Section 5 gives
conclusions and outlines related future work.

2. The ShRAC model

ShRAC [8] can be considered as an extension of the conventional
active contour by replacing the smoothness term with a nonlinear
shape distance measure [4]. In particular, a discrete formulation is
used so that efficient combinatorial search methods can be applied.

We try to find a contour c that minimizes an energy function
EðcÞ, which is a weighted sum of two terms:

EðcÞ ¼ EshapeðcÞ þwEimageðcÞ ð1Þ

where both EimageðcÞ and EshapeðcÞ depends on the shape of the con-
tour c. EimageðcÞ is the image energy term, and EshapeðcÞ is the shape
energy term that measures the similarity between the c and the
training shapes. The image energy in ShRAC is chosen to be the
intensity differences on two side of a contour. This is because in
medical images such as X-ray, the appearance of an object may of-
ten be changed by other superimposed structures, but the edges on
the object boundary are largely preserved. EimageðcÞ can be com-
puted as the integration of local edge strength heð�Þ along the
contour.
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Fig. 4. A MSDP search space constructed from an initial contour using the straight-
line grid. fVijg is the candidate set for control point i and ei

jk are candidate contour
segments between control points i and iþ 1.
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EimageðcÞ ¼
R

he½vðsÞ�ds
LðcÞ ð2Þ

where vðsÞ can be viewed as a parametric representation of points
on the contour. LðcÞ is the length of the contour which is used as
a normalization term. The term heð�Þ can be computed as the abso-
lute or signed intensity difference between pixels on the two sides
of the contour. In many medical applications, such as lung field or
rib segmentation, a signed intensity difference will give better per-
formance since the intensity differences generally have the same
sign along the contour.

To use efficient combinatorial optimization methods, we repre-
sent the contour as a set of control points c ¼ fviji ¼ 1; . . . ;Ng con-
nected sequentially by line segments. Eq. (2) can be re-written in a
discrete form as:

EimageðcÞ ¼
Pn�1

i¼0 he½ ~viviþ1� � lð ~viviþ1Þ
LðcÞ ð3Þ

where he½ ~viviþ1� represents the average edge strength along ~viviþ1

and lð ~viviþ1Þ is the length of ~viviþ1. If the control points are equally
spaced, lðviviþ1Þ=LðcÞ becomes a constant, and can be absorbed into
the weight w. This gives us the following energy function:

EðcÞ ¼ EshapeðcÞ þw0
Xn�1

i¼0

he½ ~viviþ1� ð4Þ

We adopt the shape energy used in [4], which is a similarity mea-
sure based on kernel space density estimation (KSDE). KSDE com-
putes the covariance matrix of the training data using a nonlinear
kernel function instead of the usual dot product, which gives an en-
ergy function like this:

EshapeðcÞ ¼
Xr

j¼1

Xm

i¼1

aj
i
~kðci; cÞ

 !2

� ðk�1
j � k�1

? Þ þ k�1
? � ~kðc; cÞ ð5Þ

In Eq. (5), aj
i is the jth eigenvector of the centered kernel matrix,

~kð�; �Þ is the centered kernel function, and ci is the ith training exam-
ple. Furthermore, kj ¼ ð1=mÞ~kj, where ~kj is the jth eigen value of the
Offline Shape
Training Stage

Fig. 3. The flow diagram of the prop
centered kernel matrix, m is the number of training examples, and
k? is a constant value chosen to replace all the smaller eigenvalues.

The KSDE model allows us to build a shape energy term that
contains nonlinear variations. For example, we can put together
training shapes from both left and right lungs and build a single
model to represent the distribution of all the possible lung shapes.

Fig. 2 contrasts the performance of PCA and KSDE in modeling
the shape energy from a set of lung shapes. Both left and right lung
shapes (Fig. 2, first row) are aligned into a common coordinate
space and represented as a sequence of control points. The learned
Mahalanobis distances from PCA and from KSDE using (5) are plot-
ted in the second row, along the axes spanned by the eigenvectors
that correspond to the largest two PCA eigenvalues. Clearly, KDSE
shows two clusters, separated by a high-energy ridge (in light gray)
in the shape space. It gives a better characterization of the training
shape distribution than the single cluster energy from PCA, which
actually assigns the lowest energy (highest likelihood) to the inva-
lid shapes in between the two clusters.
Segmentation Results

Initial Contour

MSDP
Stage

Local
Optimization

Stage

osed search strategy for ShRAC.



Fig. 5. Different search spaces generated from an initial contour. (a) Initial elliptical contour. (b) Search space generated using the straight-line method (directions are normal
to the contour). (c) Search space generated using the distance transform method. For clarity purpose, only segments connecting two corresponding candidate points are
shown.

1 Since an optimal contour should have both low image energy and shape energy,
these invalid contours usually will not be selected as the final result, and therefore it
is a waste of computation to search in these spaces.
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3. Search strategy for ShRAC

3.1. Combinatorial search vs. local optimization

It is easy to see that the image energy term in the energy func-
tion (4) has a good property: it can be expressed as a sum of func-
tions of two consecutive control points. Functions of this form can
be optimized efficiently using combinatorial search methods such
as Dynamic Programming. Dynamic programming guarantees to
find a global minimum within polynomial time [12]. This ensures
the robustness of the algorithm to initial conditions and local
minima.

The shape energy term, on the other hand, has a more complex
form. The addition of this term makes the whole function no longer
decomposable as before, and therefore cannot be optimized by dy-
namic programming. Except for stochastic minimization (often
impractical), we can only rely on gradient-based local methods
to minimize the energy. With the presence of imaging noise and
distracting structures in typical medical images, the local gradi-
ent-based optimization methods can be easily trapped in local
minima.

Previous research has shown that combinatorial search strate-
gies can be used to generate good initializations for various snake
algorithms [6]. We also adopt a hybrid search strategy for ShRAC
that combines the advantages of combinatorial search and local
optimization. The algorithm iterates between the following two
stages. In the first stage, we use multi-solution dynamic program-
ming (MSDP) to generate initial candidates by minimizing Eimage

alone. In the second stage, we add the shape energy and use a local
optimization method to minimize the entire energy in (4), starting
with these candidates. After local optimization, a best contour is
selected and used as the input of the next iteration. We also use
a coarse-to-fine scheme: initially we use a large window to com-
pute the image energy and a large step size in MSDP, which can
be viewed as a coarse search stage, and then reduce both of them
to perform finer searches. The whole search algorithm is illustrated
in Fig. 3.

3.2. Multi-solution dynamic programming

In our first step, we generate a set of initial candidates for sub-
sequent local optimization based on minimizing the image energy
Eimage alone. This is done by first constructing a search space
around the initial contour and then using Dynamic Programming
to select optimal contours.

Fig. 4 illustrates the construction of a search space from an ini-
tial contour. The initial contour is first aligned to the space of train-
ing contours and is represented as a set of control points (please
see Section 4.1 for the details of the contour alignment of the lung
field). For each initial control point, a set of candidate points can be
generated based on the variations of the initial point. This search
space can be represented by a graph, where directed segments
are created to connect neighboring control point candidates, and
they become the candidates for the contour segments. In this di-
rected graph, each segment is assigned a weight heðViaV ðiþ1ÞbÞ
which is the local image edge strength. All possible closed contours
in this directed graph constitute the search space for Dynamic
Programming.

One important family of candidate sets is the set of points on a
straight-line passing through the initial control points. The orienta-
tions of the lines can be along the normal to the initial contour, ra-
dial directions from the center of mass of the initial contour, or
other object-specific directions (see Section 4.2 for an example).
The advantages of the straight-line family is that the search grid
is relative easy to generate. The disadvantage is that some lines
can cross each other and create invalid contours in the search
space.1 Another method to generate candidate points that can
avoid this problem is based on the signed distance transform of
the initial contour. First the signed distance function Dðx; yÞ of
the initial contour is computed. Then, each level set contour
fðx; yÞjDðx; yÞ ¼ kDd; k ¼ �1;�2; . . .g is aligned and discretized
using the same method as in shape training. The corresponding
control points of these level set contours form a candidate set of
the MSDP search space.

Fig. 5 shows two search grids constructed for lung field segmen-
tation. Fig. 5(b) is generated from the straight-line method with
direction normal to the initial contour. Fig. 5(c) shows the candi-
date points constructed from signed distance transform of the
same initial contour. In general, search space generated from
signed distance transform is more suited for objects with a blob-
like structures and has many scale variations across different
images.

Dynamic Programming [12] is used to efficiently find a mini-
mum-weight contour in such search spaces. In order to generate
several different initial candidates for the subsequent local optimi-
zation, we modify the dynamic programming algorithm to find the
top p closed contours that minimize the image energy Eimage. The
modified algorithm, named multi-solution dynamic programming
(MSDP), is summarized in Fig. 6. Note that standard Dynamic Pro-
gramming is a special case of MSDP when p ¼ 1.



Fig. 6. The multi-solution dynamic programming algorithm.
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The computational complexity of the original Dynamic Pro-
gramming algorithm is Oðnm2Þ, where n is the number of control
points and m is the number of candidates for each control points.
The MSDP’s complexity is Oðpnm2Þ, which means it grows linearly
with the number of candidate contours needed.

3.3. Search space pruning for MSDP

To accommodate possible object scale variations in different
images, the search space of MSDP is usually constructed such that
the candidate control points cover a large area of the image. How-
ever, the search space with every possible connecting segment be-
tween candidate control points may contain many contours that
has very large shape energy (low probability in the training data).
To limit the number of these invalid contours, we first prune the
Fig. 7. Search space pruning to reduce invalid shapes: segments that has large
orientation difference with the initial contour are removed from the search space.
search space based on the segment orientations of the initial con-
tour. All the connecting segments in the search graph are com-
pared to the corresponding segment in the initial contour. Those
segments with orientation differences larger than a threshold are
removed from the search graph (see Fig. 7). This threshold controls
how different a contour in the search space can be compared with
the initial contour. We select this threshold empirically and keep it
fixed across all the input images. This procedure allows the compu-
tation to be focused on those candidates that have similar shapes
to the initial contour. It is especially useful in feeding the shape
information back into the MSDP search space.
...

...

...

...

Fig. 8. Search space pruning to reduce clustered solutions: blue segment ei
01 is only

preserved if its image energy is less than both of the red segments ei
00 and ei

02. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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A second pruning method is designed to improve the diversity
of solutions obtained by MSDP. Because the image energy is usu-
ally continuous with respect to the control point positions, the
top ranking contours from MSDP often cluster together and might
Fig. 9. Effect of clustered solution pruning. (a) Initial candidates selected by MSDP wi
candidates selected by MSDP with pruning. (d) Local optimization result of candidates fro
of candidate contours generated by MSDP in the pruned search space. (For interpretatio
version of this article.)

Fig. 10. Segmentation progress of our search strategy for ShRAC. (a) Initial contours (sa
scale. (c) Final segmentation result at the fine scale of our algorithm. (d) The correspondin
of the training data is shown). �: Initial contour, �: MSDP results for the left lung,5: MS
right lung.
not include the optimal contour for the entire energy. Medical
images are intrinsically noisy and ambiguous, and often many
competing interpretations exist. It is critical to preserve multiple,
and more importantly, distinct solutions when only image energy
thout pruning. (b) Local optimization result of the candidates from (a). (c) Initial
m (c). The bold blue contours are the finally selected solutions. (e–h) Other examples
n of the references to color in this figure legend, the reader is referred to the web

me shape for both lungs). (b) Contour candidates generated by MSDP at the coarse
g contours in the shape space (only the projection on the first two PCA eigenvectors

DP results for the right lung, þ: final contour for the left lung, �: final contour for the



Fig. 11. Comparison of IQN and ShRAC-SL for lung field segmentation. (a) Initial contours. (b) Segmentation result by IQN. (c) Segmentation result of ShRAC-SL.
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is minimized. If we apply local optimization starting from similar
candidates, the final solution often converges to the same mini-
mum (which may not be the global minimum), thus defeating
the purpose of using MSDP.

We propose to further prune the search space of MSDP so that
we can obtain a diverse set of initial candidates with a small p.
We refer to this process as Clustered Solution Pruning, which is
similar in spirit to the procedure employed in [13] where non-dis-
tinct proposals are pruned by minimizing the approximate Kull-
back–Leibler (KL)-divergence. In practice, we use a simple yet
effective scheme. For each directed segment ei

jk in the search graph
(Fig. 8), we compare it with its two neighboring segments ei

jkþ1 and
ei

jk�1; the segment is pruned from the search graph if it is not the
minimum among the three segments.

It is easy to see that after pruning, each candidate point still has
at least one segment connecting to a candidate point in the next
control point set, therefore the search space still contains at least
one valid solution. This pruning reduces the search space to only
candidate segments with locally minimum image energy. In es-
sence, this makes the search favor local minima of the image en-
ergy. By starting from multiple locally minimum solutions to the
image energy, the subsequent local optimization of the whole en-
ergy will have a better chance to reach a global minimum solution.
Fig. 9(a)–(d) shows an example where the proposed pruning meth-
od helps MSDP to find more diversified initial candidates that
eventually lead to the desired solution. Fig. 9(e)–(h) shows four
other examples of multiple candidate contours returned by MSDP
in the pruned search space.

3.4. Overall computational complexity

As mentioned in Section 3.2, the time complexity of MSDP is
Oðpnm2Þ, where p is the number of candidates selected by MSDP
(5 in our experiments), n is the number of control points (60 in
our experiments), m is the number of candidate control points
(usually 20). This is a rather small-scale dynamic program problem
(roughly equivalent to a dynamic programming based stereo
matching algorithm on a single scan line of 300 pixels with 20 dis-
parities), which can be easily handled by modern CPUs. A more
reasonable estimate of the time complexity is to use the number
of total energy function evaluations since most of the CPU time
is actually spent on these evaluations. The MSDP search space
needs nm2 local edge strength evaluations. Since Each image en-
ergy evaluation includes n evaluation of local edge strength, the
entire search space is equivalent to m2 times evaluation of the im-
age energy defined in Eq. (3). The total computational cost of our
algorithm is therefore about 400 image energy evaluations, plus
p ¼ 5 local optimization from the candidate contours selected by
MSDP (each include about 100 evaluation of the entire energy
function as defined in Eq. (4)). For the lung field segmentation, it
takes about 30 s to find an optimal contour on a Pentium 4
2.4 GHz machine implemented in matlab code.

4. Experimental results

4.1. Lung field segmentation

First, we use lung field segmentation on X-ray images to dem-
onstrate the power of our search strategy in segmenting object
consists of widely different sets of shapes as a single class. We
trained a single shape model, using manually segmented image
masks of both left and right lungs (200 shapes). A set of 60 control
points is used to represent the contour of a lung field (either left or
right). Each shape is aligned to a coordinate system that has the
origin at the shape center and y-axis coincides with the shape’s
major axis. It is also scaled to have unit area. Such normalization



Table 1
Accuracy comparison (mean and standard deviation of the overlap ratio X) of the
three segmentation algorithms on lung field segmentation for two data sets (CR—136
images, JSRT—247 images)

IQN ShRAC-SL ShRAC-DT ASM

CR 0:841� 0:081 0:891� 0:037 0:896� 0:039 0:893� 0:060
JSRT 0:881� 0:070 0:907� 0:033 0:914� 0:034 0:920� 0:022

IQN: Iterative Quasi-Newton method. ShRAC-SL: ShRAC with the search space
generated by the straight-line method. ShRAC-DT: ShRAC with the search space
generated by the distance transform method. ASM: Active shape model.
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ensures that the shape training is done in a common coordinate
system. The two intersections of a contour with the x-axis are used
as anchor points and the other 58 control points are evenly distrib-
uted between these anchor points (29 on each side).

Our segmentation algorithm follows the flow diagram in Fig. 3.
We chose to perform the coarse-to-fine search at two scales. The
initial search area covered by MSDP is set to be large enough to ac-
count for possible poor initializations (Fig. 5). We tested the search
space generated by the straight-line (SL) method and the distance
transform (DT) method. In the rest of the paper, we will refer these
two methods as ShRAC-SL and ShRAC-DT, respectively. In MSDP,
we empirically chose the top five contours as the initial candidates
for local optimization. The local optimization method we used is
the BFGS Quasi-Newton method for unconstrained nonlinear min-
imization in Matlab [14].

To show the internal progress of our algorithm, we plotted the
initial contours (Fig. 10(a)), MSDP results at the coarse scale (Fig.
10(b)) and the final segmented contours (Fig. 10(c)) of both left
and right lung fields on one test image. The transition of these con-
tours in the shape space is shown in Fig. 10 (similar to Fig. 2, the
shape space is projected onto the first two PCA eigenvectors of
the training data). Fig. 10 shows that while MSDP automatically
generates diversified contours that are close to the correct shape
clusters (left or right) in the shape space, the overall algorithm will
eventually drive the contour to further minimize the joint energy.

To evaluate the performance of the algorithm, we implemented
another algorithm as a proxy of the method in [4]. It is a coarse-to-
fine algorithm, which at each scale uses the same local optimizer as
used in ShRAC. The algorithm starts with a large windows size to
Fig. 12. Robustness of the ShRAC-DT search strategy to various structures and imaging co
in the failure cases, the segmented contours were adversely influenced by the strong ye
compute image energy and its gradient, and gradually reduces
them at each iteration. We refer to this algorithm as IQN (Iterative
Quasi-Newton) method.

Both of these algorithms are initialized by a program that com-
putes a rough centerline of each lung field (by searching for valleys
in the image). The centerline is used to scale and orient an elliptical
shape to roughly cover the lung field. This initialization also helps
us handle X-ray images of different resolution. Note the initializa-
tion algorithm is not supposed to be robust and it sometimes fails
to cover the entire lung field correctly.

Fig. 11 shows two X-ray images segmented by ShRAC-SL and
IQN. The results show that IQN is more susceptible to local minima
and therefore is more dependent on initialization. On the other
hand, ShRAC shows good robustness with respect to initialization.
Fig. 12 shows more segmentation results of the ShRAC-DT algo-
rithm using the distance transform generated search space. We in-
clude both successful (a–d) and failure cases (e and f) to provide an
nditions. The last row shows example failure modes of the algorithm. Note that even
t misleading edges, but still correspond to valid shapes.



Fig. 14. More clavicle segmentation examples using ShRAC-SL. (e and f) Some failure modes of the algorithm. In (e), the clavicle shape is too different from the normal shapes
in the training set. In (f), a poor initialization together with some distracting structures on the left make the algorithm select the wrong contour.

Table 2
Comparison of average vertical displacement of control points to the ground truth on
clavicle segmentation (100 images with size 512 � 625)

IQN ShRAC-SL

Avg. disp. 13.6 (pixels) 2.3 (pixels)

Fig. 13. Comparison of IQN and ShRAC-SL for clavicle segmentation. (a) Initial contours. (b) Segmentation results of IQN. (c) Segmentation results of ShRAC-SL. The average
vertical displacement over 100 images (size 512 � 625, only upper half are shown in the figure) using IQN and ShRAC-SL is 13.6 pixels and 2.3 pixels, respectively.
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visual evaluation of the robustness of the ShRAC model and search
strategy under various structural and imaging variations. In partic-
ular, the result in (e) was adversely influenced by the additional
misleading edges from the large air bubble below and additional
overlapping structure (breast) above the desired boundary, while
(f) was primarily due to the poor contrast above the clavicles. Still,
the incorrect contours correspond to valid shapes. Note that ShRAC
was able to overcome poor overall contrast in (d) and the same
overlapping structures when there is no complication from prom-
inent air bubbles.

To compare the performances quantitatively, we ran these two
algorithms on two data sets (CR—136 images and JSRT—247
images) for which manually segmented ground truth is available.
We use the following overlap ratio X to measure the performance:

X ¼ TP=ðTPþ FPþ FNÞ ð6Þ

where TP stands for true positive (the area correctly classified as ob-
ject), FP for false positive (the area incorrectly classified as object),
and FN for false negative (the area incorrectly classified as
background).

The overlap ratios obtained by these two algorithms on the two
data sets are listed in Table 1 (excluding training images). For these
two data sets, we also list the performance data of an ASM imple-



Fig. 15. Human silhouette segmentation experiment. (a) Aligned training contours of the human silhouette (without arm) and their bounding polygon (right). (b–d)
Segmentation results of ShRAC-SL for different pose in the walking sequence, 1st row: initial contour, 2nd row: final contour.

2 Human gait dataset courtesy of National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences.
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mentation from another study. Recall that the ASM algorithm re-
quires linear models, so two separate models are built for left lung
and right lung, and a model selection stage is used to select the cor-
rect model before the algorithm begins. The ASM algorithm also re-
quires more elaborate labeling because many landmarks need to
be identified and meticulously located to properly train the object
appearance model.

In Table 1, ShRAC clearly outperforms IQN. Our search strategy
in ShRAC leads to 2.6–5.0% increase of overall segmentation per-
formance for straight-line method and 3.0–5.8% for distance
transform method. It is noteworthy that the improvement is
due to capturing of shape details near the lung boundary, and
therefore translates into substantial visual improvement in the
segmentation. For a blob-like object such as the lung field, getting
the bulk of the lung field right is almost trivial compared to locat-
ing the tips and corners accurately; for example, the dramatic
improvement shown in Fig. 9 amounts to only a 10% change in
the overlap ratio. Our search strategy for ShRAC achieves compa-
rable performance as the two-model (separate for the right and
left lungs) ASM algorithm that requires accurate landmarks in
training. Along with the other advantages mentioned earlier, this
shows the promise of ShRAC as a more flexible and powerful seg-
mentation tool.

4.2. Clavicle segmentation

To further verify the effectiveness of our search strategy, we
also applied it to segmenting clavicles. Segmenting clavicles is
quite challenging because there are many similar structures in
the vicinity, including the first three ribs and shoulder joints. Since
the two clavicles are always symmetric, we merge them together
and represent them as a single contour (Fig. 13).
We used 30 manually segmented contours as the training
examples. We only use the straight-line method for search space
generation because the distance transform method does not cap-
ture the major variations of the clavicle structure. The search direc-
tions for clavicles are restricted to the vertical directions since the
bones are very thin and lack of horizontal features. The same lung
field centerlines are used to estimate a rough position and scale of
the initial mean shape. Fig. 13 shows three results obtained by
ShRAC-SL and IQN. Locating bone structures is even more difficult
for a local optimization algorithm such as IQN because there are
many local minima created by other bones in the neighborhood.
However, the MSDP-based ShRAC is capable of jumping out of local
minima and finding superior solutions. More segmentation results
can be found in Fig. 14.

For quantitative evaluation, we computed the vertical displace-
ment of the extracted control points to their projections in the ver-
tical direction on the manually segmented ground truth contours.
The average vertical displacement over 100 images using IQN
and ShRAC-SL are summarized in Table 2.

4.3. People silhouette segmentation

We also performed some preliminary experiments in a different
problem domain, namely segmenting the human silhouette.2 We
used a set of 32 manually outlined side view contours of walking
people (see Fig. 15(a)) to train a KSDE shape model, and applied
our search strategy to segment the human silhouette in the image.
The contour of the human silhouette changes dramatically due to
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the arm and leg articulation, which causes problems when param-
eterizing the contour into a common representation. To use the
closed contour representation with fixed number of control points,
we exclude the arms from the silhouette and only train a model
with the upper body and legs. This also limits the complexity of
the shape model and reduce the point correspondence problems
between different poses. Fig. 15(a) shows the contours used for
training. Clearly, the shape variation concentrates on the legs and
is highly nonlinear.

To process each frame independently, we used the bounding
polygon of the training contours as the initial contour, whose scale
is fixed to approximately the scale of the person in the video. The
initial contour was manually placed around the person (Fig. 15(b)–
(d)). We use ShRAC-SL with search direction normal to the initial
contour for segmentation. To be more efficient in the searching
process, the search steps for control points in the contour is pro-
grammed to be large in the leg parts and small in the upper body,
which corresponds to the variations exhibit in the training data.
The last row of Fig. 15 contains the final segmentation results.
Given the background clutters in the image, these preliminary
results are quite promising. Depth [15], appearance [16], and mo-
tion [17] information can be used as more reliable methods for the
initialization. We are working on automatic initialization of the
segmentation and more rigorous experimental evaluation. It is
worth noting that contour-based silhouette characterization was
used in [15], while parts-based articulated models were adopted
in [16,18]. The methods described in [16,18] can also handle differ-
ent poses and viewpoints.

5. Conclusions and future work

We have presented a robust search strategy for the shape regu-
larized active contour which uses a nonlinear prior shape model.
Our search strategy for ShRAC is implemented as a coarse-to-fine
algorithm that combines the advantages of combinatorial search
and local optimization. It uses multi-solution dynamic program-
ming to generate initial candidates that have minimal image ener-
gies, and then uses local gradient-based minimization of the entire
energy to select the final optimal contour. Two types of prunings
are applied to the discrete search space to reduce the number of in-
valid shapes as well as to prevent the clustering of MSDP results.
The experiments on lung field and clavicle segmentation demon-
strate robustness of our search strategy to initialization and dis-
tracting structures in medical images.

In many cases, shape-based similarity is critical to the segmen-
tation task in applications when there are appearance ambiguities
between the object of interest and the background. The search
strategies proposed in this study embed both the shape similarity
and image feature matching to provide improved segmentation
performance. There are a few possible extensions. Incorporating
powerful appearance models, preferably nonlinear, will be of major
interest. Besides a closed contour model such as ShRAC, dynamic
programming can also be applied to any model that has a tree
structure [18,19], extending the proposed multi-stage search strat-
egy to this general tree structure will also be very useful. Another
direction is to extend ShRAC to 3D object segmentation, where Dy-
namic Programming can be replaced by other combinatorial search
methods such as Graph Cuts [20]. We are also exploring applica-
tions of ShRAC outside the medical imaging domain.
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