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Abstract This paper formulates both the median filter and
bilateral filter as a cost volume aggregation problem whose
computational complexity is independent of the filter kernel
size. Unlike most of the previous works, the proposed frame-
work results in a general bilateral filter that can have arbitrary
spatial' and arbitrary range filter kernels. This bilateral fil-
ter takes about 3.5s to exactly filter a one megapixel 8-bit
grayscale image on a 3.2 GHz Intel Core 17 CPU. In practice,
the intensity/range and spatial domain can be downsampled
to improve the efficiency. This compression can maintain
very high accuracy (e.g., 40dB) but over 100x faster.

Keywords Bilateral filtering - Edge-preserving
smoothing - Recursive filtering

1 Introduction

The objective of bilateral filtering is to smooth images. It is
done by replacing the intensity (color) value of a pixel by the
average of the values of other pixels weighted by their spatial
distance and intensity similarity to the original pixel. Zucker
and Rosenfeld (1977) used this idea by identifying similar
pixels by first detecting edges. They iteratively replaced the
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intensity of a pixel by the average of all the pixels in a small
(3 x 3) neighborhood, and on the same side of the edge as
the pixel itself. Davis and Rosenfeld (1978) identified similar
pixels differently, by choosing those six of the nine pixels in
the neighborhood that are closest in intensity to the original
pixel, and used their median to obtain the smoothed value.
Ahuja (1996) proposed a transform to compute the net sim-
ilarity between a pixel and all other pixels in the image, as
well as the direction in which the largest number of a pixel’s
most similar pixels are located. The latter was captured by
computing a force vector at the pixel. Tabb and Ahuja (1997)
presented a detailed algorithm for multi-scale image segmen-
tation using the force transform and demonstrated the perfor-
mance advantages of the similarity measure incorporated in
the force transform. Tomasi and Manduchi (1998) used the
same definition of similarity as proposed by Ahuja (1996)
and used it for image smoothing. They replaced pixel val-
ues with similarity-weighted averages and called it bilateral
filtering.

Bilateral filter has been demonstrated to be very effective
for many computer vision and computer graphics tasks but its
brute-force implementation is known to be computationally
intensive when the filter kernel is large (Paris et al. 2009).
Several methods Durand and Dorsey (2002), Elad (2002),
Pham and van Vliet (2005), Weiss (2006), Paris and Durand
(2009) enable it to be computed at either O (r) or O (log(r))
runtime in the radius of the filter r. By filtering on the subsam-
pled image, Paris and Durand (2009) prove that the runtime
of Durand and Dorsey’s method Durand and Dorsey (2002)
decreases as the filter size increases because the subsampling
factor can be increased without significantly impacting the
accuracy of the result. This method is relatively slow when
the filter size is small. Chen et al. (2007) later show that
the GPU implementation of Durand and Dorsey (2002) can
achieve video rate.
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Porikli (2008) proposes three types of O(1) bilateral fil-
ters for processing grayscale images: (1) box spatial and arbi-
trary range kernels; (2) arbitrary spatial and polynomial range
kernels; and (3) arbitrary spatial and Gaussian range kernels.
Kass and Solomon (2010) use a smoothed histogram to accel-
erate median filtering and propose mode-based filters. Adams
et al. (2009) then propose to use Gaussian KD-trees for effi-
cient high-dimensional Gaussian filtering. This method can
be directly integrated with Paris and Durand’s method Paris
and Durand (2009) for fast bilateral filtering. They later pro-
pose to use permutohedral lattice (Adams et al. 2010) for
bilateral filtering, which is faster than Gaussian KD-trees
(Adams et al. 2009) for relatively lower dimensionality but
has a higher memory cost. Both Gaussian KD-trees and per-
mutohedral lattice are relatively less efficient when used to
process grayscale images and are not suitable for parallel
implementation. Yang (2012b) proves that the bilateral filter
can be recursively implemented so that the complexity can
be linear in both input size and dimensionality. However, it
is limited to only a special-range filter kernel. A number of
edge-preserving filtering methods that have similar applica-
tions but lower computational complexity emerged recently.
For instance, Fattal’s EAW method Fattal (2009), He et al.’s
guided image filtering method He et al. (2010), and Gastal
and Oliveira’s domain transform filtering method Gastal and
Oliveira (2011). However, their behaviors are not exactly the
same as the bilateral filter and thus they are not suitable for
some bilateral filtering applications like highlight removal
(Yang et al. 2010).

This paper extends Paris and Durand’s bilateral filtering
method Paris and Durand (2009) for median filtering by for-
mulating it as a cost volume aggregation problem whose com-
putational and memory complexity is independent of the filter
kernel size. This formulation is naturally extended to a gen-
eral bilateral filter that can have arbitrary spatial' and arbi-
trary range filter kernels. The resulting bilateral filter takes
about 3.5 to exactly filter a one megapixel 8-bit grayscale
image on a modern CPU. Similar to Paris and Durand (2009),
the intensity/range and spatial domain can be downsampled
to improve the efficiency in practice. A novel spatial upsam-
pling approach is proposed in this paper which enables this
compression to maintain very high accuracy (e.g., 40dB) but
over 100x faster: about 33 ms to filter a one megapixel 8-
bit grayscale image. The framework can be further extended
for constant time weighted median filtering (Yin et al. 1996)
which is very effective for noise attenuation.

2 Constant Time Median Filtering

The median filter replaces each pixel p with the median of
neighboring pixel values within a box region £2,,. Let I,

Ian TIR O (1) solution needs to be available for the kernel.
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denote the pixel value at p and / I/,V’ denote the corresponding
median filtered value,

L = arg min Z 1, — x| |, (1)
qe2p

given the fact that median actually minimizes the sum of
absolute error of the given data (Huber and Wiley 1981).

When the input signal is an 8-bit digital image, the possible
median value only resides in a total of 256 digital numbers
ranging from O to 255, thatis x € [0, 255] in Eq. (1). Letting
the absolute error in Eq. (1) be the cost, a cost volume C can
then be computed given an 8-bit image:

Cyx = I, — x|, x €0,255] 2)

and the median filter is formulated as a standard cost aggre-
gation problem followed by a winner-take-all selection. As
a result, the main computational cost of the median filter
resides in the cost aggregation step. The integral image?
Viola and Jones (2001) enables the cost aggregation to be
independent of the size of the filter; and thus the computa-
tional complexity of the median filter is linear regarding the
number of image pixels and the intensity level.

In practice, the cost volume can be downsampled in the
intensity domain before aggregation to improve the effi-
ciency. That is, 256 intensity values are quantized into only
atotal of N < 256 bins, and the cost is computed at each bin
and each pixel location. Instead of using a winner-take-all
selection, a quadratic interpolation step is used to upsample
the intensity domain after cost aggregation. Specifically, let
C“4 denote the aggregated cost volume. A quadratic function

fx) = ax® + bx + c, 3)

is fitted at each pixel location using the lowest cost (let it be
f(xo) = C;"xo) and two of its closest neighbors (let them
be f(x;) = C;}’x] and f(x) = C;"xz), and the upsampled
intensity value is then computed as the x value where the
minimum f(x) occurs. According to calculus, this x value

1S Xmin = —%, where
2 2. -1 _
al [x{—x5x1—xo fx1) — f(xo)
=2 2
b X5 — Xx§ X2 — X f(x2) = f(x0)
2_ .2 “lrea A
_ [xé —xg X1 —x0:| |:C%x1 —C%xo:|
Xy = Xg X2 — X0 Cp,xz T ¥paxo

In the extreme case, the input image consists of a single
intensity value; thus the median filtered image is exactly the

2 Integral image is an image representation. The integral image at a
pixel location contains the sum of the pixels above and to the left of the
pixel.
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Fig. 1 Numerical comparison of the quadratic and linear interpolation
for the proposed median filtering method using the eight images pre-
sented in Fig. 2. The red solid line corresponds to the PSNR values
obtained from quadratic interpolation and the blue dashed line from
linear interpolation. As can be seen, quadratic interpolation is more
accurate over all (Color figure online)

same as the input image and the shape of the aggregated cost
is exactly the same as the absolute error function presented
in Eq. (2). In this case, the ground truth can be obtained by
either interpolating the aggregated cost using this absolute
error function or the quadratic function presented in Eq. (3).
However, in real images, the intensity values within a local
region are likely to be similar but normally different; thus
interpolation with a quadratic function is proved to be more
accurate as shown in Fig. 1. The eight images used in this
experiment were selected from different categories Paris and
Durand (2009) as shown in Fig. 2. These images were chosen
to be as different as possible to cover a broad spectrum of
content including the following:

— artificial image with various edges, frequencies, and
white noise;

— architectural picture structured along two main direc-
tions; and

— photograph of natural scenes with a more stochastic struc-
ture.

An ambiguity to be clarified is how to set the number of
quantization levels N to avoid visible artifacts. Apparently,
when N = 256, the obtained filtered image is exactly the
same as the ground truth. PSNR values are then computed
from the median filtered image obtained from different N

Median Filtering (¢ = 0.03)
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Fig. 3 Performance of the proposed median filter w.r.tz. N when o =
0.03. As can be seen, the performance increases w.r.t. N and the min-
imum PSNR value (shown as a red curve) is always over 40dB when
N > 14 (Color figure online)
values and the ground truth as shown in Fig. 3. The images
presented in Fig. 2 are used in this experiment, and the min-
imum, average, and maximum PSNR values obtained from
these images are presented as red, green, and blue curves in
Fig. 3. Note that the minimum PSNR value is always higher
than 40dB when N > 14. Itis concluded in Paris and Durand
(2009) that a PSNR value above 40dB often corresponds to
an almost invisible difference. Thus when N = 14, itis guar-
anteed that there will be very limited visible artifacts in any
of the eight median filtered images.

The performance with respect to the filter size is evaluated
in Fig. 4. The filter size is represented by round (20 H +
1) x round(20 W + 1), where H and W are the height and
width of the input image, and o € [0, 1] controls the filter
size. The number of quantization level N is set to 16 in this
experiment and the eight images in Fig. 2 are used. Note
that the performance increases with respect to o over all,
and the minimum PSNR value (shown as a red curve) is
always over 40dB for all o > 0.005 when N = 16. The
median filtering results of the Tulip test image in Fig. 2 are
presented in Fig. S5a—c. Note that there are very few noticeable
erTors.

3 Constant Time Bilateral Filtering

A bilateral filter has two filter kernels: a spatial filter kernel
F(p, q) that measures spatial distance between two pixel
locations p and ¢ and a range filter kernel G(/,, 1) that
measures the intensity/range distance between two pixel

® (® (h)

Fig. 2 Eight images used in evaluating the performance of the proposed filtering methods. These images are selected from different categories
and used by Paris and Durand (2009) to demonstrate their fast bilateral filtering method
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Fig. 4 Performance of the proposed median filter w.r.t. & when N =
16. As can be seen, the performance increases w.r.t. ¢ over all, and the
minimum PSNR value (shown as a red curve) is always over 40dB for
all o > 0.005 (Color figure online)

(a)Input (b) Our MF(46.0dB)  (¢)G.T. MF

(d) Our Box
BE(56.7 dB) BF

(e) G.T.Box (f)Our Gaussian (g)G.T. Gaussian
BF(56.6 dB) BF

Fig. 5 Visual verification. a is one of the test images in Fig. 2, b is
obtained from our median filtering method (0 = 0.03 and N = 16)
and c is the ground truth; d and (f) are obtained from our bilateral
filtering method (o5 = 0.03,0p = 0.1 and N = 8) with box and
Gaussian spatial filter kernels, respectively. The results obtained from
the ground-truth bilateral filters are presented in (e) and (g), respectively.
Experimental results for all the test images in Fig. 2 are presented at
http://www.cs.cityu.edu.hk/~qiyang/ijcv-13/

values 7, and I,. If the range filter kernel G is computed
using an additional image 7', the resulting filter becomes
a joint/cross bilateral filter (Eisemann and Durand 2004,
Petschnigg et al. 2004). Let / ; denote the joint bilateral fil-
tered value at pixel location p,

=o' > F(p.q) - G(T,. Ty, @)
qes2y
where
wp= > F(p.)G(Tp. Ty) )
qesy

is a normalizing parameter at the corresponding pixel loca-
tion, and the Gaussian kernel is usually selected as the range
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In this section, we show that the computational complexity
of the bilateral filter is independent of the filter kernel size, as
long as its spatial filter kernel has a recursive implementation.

For simplicity, let the spatial filter kernel be a box filter so
that:

2qee, 19T, Ty

T _
i = o , ™
where
wpy = z 1-G(Ty, T,). ®)

qesy

LetK, =1 ; - wp so that the normalizing parameter w,
is ignored,

Kp= > 1-G(T,. Tl 9)

qes2y

Let T be an 8-bit image; potential values of 7, can then
be up to 256 numbers: 7, € [0, 255]. Replacing T, with
a constant value x € [0, 255], Eq. (9) indeed represents a
local aggregation of an image whose pixel value at pixel ¢
is G(x, T;)1,. As a result, the cost aggregation framework
presented in Sect. 2 can be directly used to compute K, by
1) changing the cost function in Eq. (2) to:

Cyx = G(x, Ty, x € [0,255] (10)

and 2) replacing the winner-take-all selection to simply set
x = T, at each pixel location p to access the aggregated
cost:
A A
K,=C,, Zcp,Tp‘ (11
According to Eq. (8) and (9), w), can be obtained in the
same manner by setting the cost function to:

Cpx = G(x, Ty), x €[0,255]. (12)

Finally, K, isnormalized by w), to obtain the bilateral filtered
value 1] according to Eq. (7).

As discussed above, the bilateral filter is again formulated
as a cost volume aggregation problem when the spatial filter
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is a box filter. As shown in Sect. 2, the cost volume can be
aggregated using an integral image; the computational com-
plexity of the bilateral filter is thus independent of the filter
size. Bilateral filtering using other spatial filter kernels can
actually be computed in exactly the same manner by filtering
the cost volume using the corresponding spatial filter kernels.
If the spatial filter kernel has a recursive implementation, the
computational complexity of the spatial filter will be indepen-
dent of the filter kernel size by adjusting the coefficients of the
recursive system (Smith 2007). Three spatial filters are tested
in this paper including the box filter, exponential filter (Smith
2007), and recursive Gaussian filter (Deriche 1992). The box
filter kernel size is again defined using a single parameter og
€ [0,1] : round(2osH + 1) x round(2osW + 1), where
H and W are the height and width of the input image. The
exponential filter and recursive Gaussian filter can be imple-
mented recursively, and the kernel size is controlled by the
coefficients of the recursive system determined also by o.
In our experiments, the exponential filter uses exp(—ﬁ /0s)
as the feedback coefficient (Smith 2007), and Gaussian filter
uses oy as the standard deviation.

3.2 Quantization on Range Domain

Similar to the proposed median filtering method, the aggre-
gated cost volume is downsampled in the range/intensity
domain before aggregation/filtering to improve the efficiency
in practice. A linear interpolation guided by the original pixel
value I, at each pixel location is used to upsample the inten-
sity domain after aggregation/filtering. Specifically, let L™
and L™ denote two of the successive selected intensity levels
where L~ < T, < LT and:

T,—- L~
=TI (13)
the joint bilateral filtered value at pixel p is:
K- +
1! =(1—a,,)w—f +a,,w—ﬁ, (14)
p P

where K (and @) and K/ (and w ;) are retrieved from the
aggregated/filtered cost volume(s) when the intensity level is
L~ and L™, respectively.

Unlike median filtering that requires a single cost vol-
ume, two cost volumes (one for computing K, and the other
for wp) is used in the proposed bilateral filtering method;
thus the computation cost will be theoretically twice higher.
However, the numerical comparison presented in Fig. 1 and
Fig. 6 shows that the performance of the proposed bilateral
filter will be higher than the proposed median filter when
the same amount of quantization levels N is used. The red
curve in Fig. 1 shows that when N > 14, the minimum PSNR

Bilateral Filter (GS =0.03 and op = 0.1)
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Fig. 6 Performance of the proposed bilateral filter w.z.t. N when os =
0.03 and og = 0.1. As can be seen, the performance increases w.r.t.
N and the minimum PSNR value (shown as red curves) is always over
40dB when N > 6 (Color figure online)

Op= 0.10 and N = 8; Spatial filter: Exponential.
60 T T T T T T T T

--PSNR = 40dB
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Spatial filter: exponential filter.

Fig. 7 Performance of the proposed bilateral filter w.r.z. o when N =
8 and og = 0.1. Its performance is higher when smaller filter kernels
(small og values) are used but is very robust when og > 0.05. Note that
the minimum PSNR value (shown as red curves) is always over 40dB
when og < 0.1 (Color figure online)

value will be greater than 40 dB which corresponds to almost
invisible error, while the red curves in Fig. 6 reveal that only
N > 6 is required. Only the box spatial filter is analyzed in
Fig. 6 because the performance w.r.t. N is extremely close
between different spatial filter kernels.

Figures 7 and 8 evaluate the performance of the proposed
bilateral filter with respect to the filter kernel size defined by
os € [0,1] and og € [0, 1]° when the quantization level
N = 8. Two other spatial filters—exponential filter and
recursive Gaussian filter - are used. As can be seen, the per-
formance is robust to og but increases w.r.t. og. Nevertheless,
the minimum PSNR value (shown as red curves) is always
over 40dB when og > 0.05. The bilateral filtering results of
the Tulip test image in Fig. 2 are presented in Fig. 5d—g. In
fact, there is no noticeable error.

3 o is the standard deviation of the Gaussian range filter kernel defined

in Eq. (6). In this paper, the image intensity is normalized so that it ranges
fromOto 1.
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Oy = 0.03 and N = 8; Spatial filter: Gaussian.
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Fig. 8 Performance of the proposed bilateral filter w.r.t. cg when N =
8 and og = 0.03. Apparently, the performance increases w.r.t. og and
the minimum PSNR value (shown as red curves) is always over 40 dB
when o > 0.05 (Color figure online)

3.3 Quantization on Spatial Domain

Besides quantization on the intensity domain, spatial quanti-
zation can also be used to achieve further speedup. The main
differences are that (1) the cost volumes will be built using a
downsampled version of the input image and (2) the aggre-
gated low-resolution cost volume needs to be upsampled to
the original resolution for computing K ;" (and w,) K ;’ (and
a);') in Eq. (14). A simple solution is using linear upsam-

pling. Let K+ and w? denote the low-resolution aggregated
cost volumes, p, denote the pixel coordinate of pixel p in the
original resolution, and p o, p,1, py2, py3 denote the pixel
coordinates of the four nearest neighbors of pixel p|; then:

- = = el gl
K_p -r KPM) K[’U KI’lZ KP¢3 15)
- \L_ ) ~L_ ’ \L_ ) \L_ ’
@p @pro Ppy Ppp Dps

where £ corresponds to the linear interpolation operation.
+

K} . .

— is computed in the same manner.

@p

Linear upsampling works well for images full of low-

texture regions even when a large downsampling factor is
used. A low-texture example is presented in the first row
of Fig. 9. The resolution of the input image in Fig. 9a is
1180 x 880. With a downsampling factor of 16, the cost vol-
ume is built from a 73 x 55 downsampled version of the input
image in Fig. 9a. The PSNR value computed from the ground
truth in Fig. 9b and the filtered image in Fig. 9d is 39dB,
which is relatively high. However, there are visible errors
around tiny/thin-structured objects. For instance, the specu-
lar highlights in both eyes and the mouse are over-smoothed
as shown in the close-ups in Fig. 9d. The error increases
when the image mainly consists of thin-structured objects.
For instance, Fig. 9f is a partial screenshot of a webpage.
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Fig. 9 Spatial quantization. The first three columns contain the input
images, the ground-truth bilateral filtered images, and the filtered
images obtained from the proposed bilateral filter with only intensity
quantization. The last two columns are the filtered images obtained
from the proposed bilateral filter with both intensity and spatial quanti-
zation: the left column uses the linear upsampling method and the right
column uses the proposed upsampling method. When spatial quantiza-

@ Springer

tion is applied with the linear upsampling method, the filtering quality
around thin-structured objects is low as shown in (d) and (i). There
is clear visual improvement in (e) and (j) when the proposed upsam-
pling method is used. Parameter setting: os = 0.03, og = 0.01, and
a % X % downsampled version of the input images in (a) and (f) are
used to compute (d, e) and (i, j)
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(a) PSNR w.r.t. o5 when N = 256 and o =0.1.

Fig. 10 Performance of the proposed bilateral filter when only spa-
tial quantization is employed (N = 256). As can be seen from (a),
the performance normally increases w.r.t. spatial filter kernel size (o)
when o, is fixed (to 0.1), especially when the downsampling factor is
high. This is consistent with Fig. 8, which shows that the performance
increases with o when only range quantization is employed. However,

It contains mainly text. After bilateral filtering, the PSNR
value computed from the ground truth in Fig. 9g and the fil-
tered image in Fig. 9i is only 22.4 dB, which is very low.
Obviously, a simple linear upsampling is not enough for this
image.

Errors around thin-structured objects reside in the removal
of these objects in the low-resolution version after spatial
quantization and thus the contribution of these objects will
not be taken into account during cost volume aggregation.
To reduce the error, we simply need to restore at least part of
these contributions. Taking into account both the accuracy
and efficiency, only the contribution of the center pixel is
restored during linear upsampling and Eq. (15) is updated as
follows:

- 1= 1=
Ky _ o((Krwtrely Koo+l
wp a)i; + K a)ifl + K
Ky, +«l, Ky +«l,
e ST , (16)
Wp,» + K Wps + K

where k = G(L™, Tp) is computed based on the range fil-
ter kernel. This simple adjustment in the linear upsampling
step restores the contribution of the center pixel. It will not
increase the computational complexity of the proposed bilat-
eral filtering method. However, it may significantly improve
the filtering quality around thin-structured objects as demon-
strated in Fig. 9i, j. The PSNR value is increased from 22.4
to 39.6dB, which means that there is almost no visible dif-
ference between the ground truth in Fig. 9g and our filtered
image in Fig. 9j. The specular highlights in the eyes in Fig. 9b
is also maintained using the proposed upsampling method as
shown in Fig. 9e.

Detailed analysis of spatial quantization using the eight
images in Fig. 2 is presented in Fig. 10. The number of inten-

Oy = 0.03 and N = 256.
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(b) PSNR w.r.t. g when N = 256 and o5 =0.03.

the behavior is different when o7 is fixed (to 0.03) as can be seen from
(b). The blue curves in (b) show that the performance increases w.r.t.
or on a smooth natural photograph (e.g., Fig. 2h) while the cyan and
yellow curves show that the performance decreases w.x.t. og on a noisy
artificial image (e.g., Fig. 2a). See Sect. 3.5 for details (Color figure
online)

sity quantization levels N is set to 256 to avoid range quan-
tization. As can be seen, the PSNR values are always over
40dB even when a small spatial filter kernel is employed.
The images were resized to a 1600 x 1600 resolution so that
the minimum spatial filter kernel is 5 x 5 (when og = 0.01)
with a downsampling factor of 8 (% X %). As expected, the
performance decreases w.r.t. to the spatial quantization level
and increases w.r.t. og especially when the downsampling
factor is high as can be seen from Fig. 10a. This is consis-
tent with Fig. 8, which shows that the performance increases
w.r.t. og when range quantization is employed. However, the
behavior is different when oy is fixed. According to Fig. 10b,
the performance increases w.r.t. og on a natural photograph
(e.g., Fig. 2h) and decreases on a noisy artificial image (e.g.,
Fig. 2a). The images in Fig. 2 are listed w.r.z. the PSNR val-
ues obtained with spatial quantization when og = 0.01 and
og = 0.1. The noisy artificial image in Fig. 2a consistently
obtains the lowest PNSR values as a quarter of the whole
image (in the bottom left corner) contains only white noise.
Sect. 3.5 presents detailed analysis w.r.t. different levels of
noise.

3.4 Quantization on Both Range and Spatial Domain

To perform quantization on both range and spatial domains,
we can simply adopt the algorithm in Sect. 3.3 but reduce the
number of intensity quantization levels N to a value smaller
than 256. Similar to the analysis in Sect. 3.2, we notice that
N = 8 1is good enough in practice. The PSNR performance
w.r.t. to os and oy, is presented in Fig. 11. As can be seen, the
performance is mainly a combination of Figs. 7 and 8 (when
only range quantization is employed) and Fig. 10 (when only
spatial quantization is employed). Figure 7 shows that the
performance is stable w.zz. to os when only range quantiza-
tion is employed, and thus Fig. 11a mainly follows Fig. 10a
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Fig. 11 Performance of the proposed bilateral filter when both range and spatial quantization is employed. The performance is mainly a combination
of Fig. 7, 8 and 10 and normally increases w.r.t. os and og except for the noisy artificial image in Fig. 2a (as indicated by the yellow curve in b)

(Color figure online)
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Fig. 12 Mean PSNR values obtained with four different levels of syn-
thetic white Gaussian noise. a shows that the noise does affect the pro-
posed filter much when only range quantization is employed. However,

when spatial quantization is employed as well. Figure 8 con-
firms that the performance increases w.r.f. to g when only
range quantization is employed. However, Fig. 11b indicates
that this is not always true when spatial quantization is also
employed. Specifically, when both range and spatial quan-
tization is employed, the performance generally increases
w.r.t. to og like Fig. 8. But when the spatial downsampling
factor is high and the test image is of a low signal-to-noise
ratio (e.g., Fig. 2a), the performance may decrease w.r.t. to
o as can be seen in the yellow curve in Fig. 11b. A detailed
discussion of noisy images is presented in Sect. 3.5.

3.5 Robustness to Noise

Most of the tested images in Fig. 2 are of relatively high
signal-to-noise ratio (SNR) except for the artificial image
in Fig. 2a. The experimental results presented in Sects. 3.3
and 3.4 reveal that the noise in this artificial image may signif-
icantly deteriorate the performance of the proposed fast bilat-
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b and ¢ show that the performance decreases w.r.t. the noise level if
spatial quantization is employed

eral filtering algorithm. This section thus presents a detailed
analysis of its robustness to the noise. Four different levels
of synthetic white Gaussian noise’ were added to the images
in Fig. 2 before testing, and the mean PSNR values w.rt.
parameter os and o are presented in Fig. 12 when different
types of quantization are employed.

Figure 12a presents the PSNR values w.z 1. to four different
noise levels when only range quantization is employed. Note
that the performance is relatively robust to different noise
levels and achieves the highest PSNR when the noise level is
close to og. This performance shows that range quantization
is robust to image noise. This conclusion has indeed already
been demonstrated in Figs. 7 and 8. Note that Fig. 2 contains
images of both high SNR and low SNR. However, the per-
formance in Figs. 7 and 8§ are very consistent, which shows
that the performance is not strongly related to the image
noise.

Figure 12b presents the PSNR values w.zt. to four differ-
ent noise levels when only spatial quantization is employed.
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As expected, the performance always decreases when the
noise level increases and the performance increases when
spatial filter kernel (og) increases. However, the performance
decreases when oy increases if the image contains a signif-
icant amount of noise. This behavior is consistent with the
yellow curve in Fig. 10b (which corresponds to the perfor-
mance of the noisy artificial image in Fig. 2a when only
spatial quantization is employed).

Figure 12c¢ presents the PSNR values w.rz. to four different
noise levels when both range and spatial quantization are
employed. It looks like a combination of Fig. 12a and b. The
performance always increases w.r.t. parameter os. However,
when o7 is fixed, the performance increases w.r.t. parameter
og (like the 2nd row in Fig. 12a) when the noise level is low.
Nevertheless, a significant amount of noise will decrease the
performance (like the 2" row in Fig. 12b).

Figure 12 demonstrates that the proposed range quantiza-
tion technique is robust to noise while the spatial quantiza-
tion technique is relatively vulnerable to noise. Nevertheless,
Fig. 12 shows that the PSNR value is always higher than 40
dB when the noise level is lower than 0.123.

3.6 Multi-Channel Bilateral Filtering

If the guidance image T used to compute the range filter
kernel is a n-channel image T where n > 1 (e.g. , a color

Kp=1IF-w,= > 1-G(T,. Tl (17)

qeS2)

where T, and T, are n-channel vectors extracted from the
guidance image at pixel p and ¢, respectively. For 8-bit
images, T, has up to 256" potential vector values. Hence, the
same as the one-channel case, multi-channel bilateral filter-
ing can be formulated as a cost aggregation problem, except
that the computational complexity will be exponential in the
dimensionality n. In practice, the computational complex-
ity can be reduced without introducing significant errors by
downsampling the multi-dimensional space. Assuming that
a total of N values are used in each dimension, the com-
putational complexity will be O (N") at each pixel location.
However, the components of the multi-dimensional space are
normally highly correlated; thus a relatively smaller N value
can be used for a multi-channel bilateral filter as demon-
strated in Fig. 13.

Similar to the one-channel case, a linear interpolation is
performed after cost aggregation to obtain the final bilateral
filtered value. The linear interpolation is straightforward in
theory, except when memory cost is taken into account. Con-
sidering the one-channel bilateral filter again, let 7, denote
the pixel value of the guidance image at pixel location p,
L' denote the I-th selected intensity level, AL denote the
distance between two successive selected intensity levels,

!
. . l ITp—L'| .
image when n = 3), Eq. (9) becomes: B, = =53 — and:
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Fig. 13 Numerical comparison between the proposed multi-channel
joint bilateral filter and one-channel joint bilateral filter using the six
color images in Fig. 2. For each of these color images, its luminance
component is used as the input image. However, the guidance image
is different. The red dashed curves use the luminance as the guidance
image, the green dash-dot curves use the color image as the guidance
image, and the blue solid curves use the luminance to form a three-
channel image and use it as the guidance image (the value is the same

GR
(b) PSNR with respect to o .

0.3 04 045 05

in every channel at a specific pixel location). As can be seen, the multi-
channel bilateral filter outperforms the one-channel bilateral filter when
the same input image and parameter settings are used because the com-
ponents of the multi-dimensional space are normally highly correlated.
As a result, a relatively smaller N value can be used for the multi-
channel bilateral filter. In practice, N = 4 can be used for color images
as the minimum PSNR value (shown as blue solid curves) is over 40 dB
even for very small o values (og = 0.05) (Color figure online)
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18 B <1,
p 0 else,

the linear interpolation in Eq. (14) can be rewritten as follows:

1T = L_r. 18
P Za”w; (18)

Equation (18) can be interpolated as (1) initializing / pT with
a zero value and then (2) accumulating it with respect to
each intensity level. As a result, the memory cost is linear in
the number of pixels as only two extra memory buffers are
required to temporarily store K 5, and a)i, and thus is indepen-
dent of the number of intensity level N.

The memory cost for the multi-channel bilateral fil-
ter can be independent of the dimensionality n. Let 1 =
{l,1r,...,l,_1,1,} denote an n-channel vector where /; cor-
responds to the /; -th selected intensity level in the i -th dimen-
sion, L' denote the /;-th selected intensity level in the i-th

. . i _ |\Tp=Lli] o
dimension, B, = T and:
1— gl ifgli <1
Olli — - ﬂp 1 ﬁp =1
P 0 else,

the linear interpolation for n-channel bilateral filter with
guidance image T can be presented as follows:

[N.N...N.N} / n I
= L)Lz, 19
P > (E “p) o (19)

1={1.1,....1,1}

where K }U and a)'p are retrieved from the aggregated/filtered
cost when the intensity level in the i-th dimension is /; for
any i where /; is the i-th element of vector 1. Equation
(19) can also be interpolated as (1) initializing I; with a
zero value and then (2) accumulating it with respect to each
intensity level; thus the memory cost is independent of the
dimensionality 7.

4 Constant Time Weighted Median Filtering

The weighted median filter has many applications (Yin et al.
1996). This section extends the constant time median filter-
ing framework proposed in Sect. 2 for constant time weighted
median filtering. It is almost identical to the proposed median
filtering framework except that the cost volume built from
Eq. (2) will be aggregated/filtered with non-uniform statis-
tical weights. For instance, filtering the cost volume using
the constant time bilateral filter proposed in Sect. 3 results in
a constant time bilateral weighted median filter. Other con-
stant time filters like the guided image filter (He et al. 2010),
domain transform filter (Gastal and Oliveira 2011), tree filter
(Yang 2012a) and recursive bilateral filter (Yang 2012b) can
also be used.
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Weighted Median Filtering (c = 0.03)
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Fig. 14 Performance of the proposed weighted median filter w.r.t. N
when o = 0.03. As can be seen, the performance increases w.xt. N and
the minimum PSNR value (shown as a red curve) is always over 40 dB
when N > 16 (Color figure online)

Weighted Median Filtering (N = 18)
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Fig. 15 Performance of the proposed weighted median filter w.r.t. o
when N = 18. As can be seen, the performance increases w.r.t. ¢ over
all, and the minimum PSNR value (shown as a red curve) is always over
40dB for all o > 0.005 (Color figure online)

Similar to the constant time median filter presented in
Sect. 2, the cost volume can be downsampled in the intensity
domain to improve the efficiency in practice. A total of 256
intensity values are quantized into only a total of N < 256
bins, and the cost is computed at each bin and each pixel
location. A quadratic interpolation step is used to upsample
the intensity domain after cost aggregation. The accuracy of
this approximation w.r.t. the number of quantization levels
N is presented in Fig. 14. Note that the minimum PSNR
value is always higher than 40dB when N > 16; thus it is
guaranteed that there will be very limited visible artifacts
in any of the eight median filtered images when N > 16.
Visual comparison between Figs. 14 and 3 shows that the
performance of the weighted median filter is very similar to
the median filter. The recursive bilateral filter Yang (2012b)
(0s = o and og = 0.1) is used to filter the cost volume and
the eight images in Fig. 2 were tested in this experiment.

The performance w.r:1. the filter size is evaluated in Fig. 15.
Similar to the median filter, the filter size is represented by a
parameter o € [0, 1]. The number of quantization levels N
is set to 18. Note that the performance increases w.r.t. o over
all, and the minimum PSNR value (shown as a red curve) is
always over 40dB for all o > 0.005 when N = 18.
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5 Computational Complexity

As discussed in Sect. 2 and Sect. 3, the proposed constant
time median filter and bilateral filter can be decomposed into
a number of independent O(1) spatial filters like the box
filter or recursive filter. According to our implementations,
an O (1) box filter takes about 4 ms to process a one megapixel
grayscale image on a 3.2 GHz Intel Core i7 CPU. As aresult,
we use the number of O(1) spatial filters to represent the

Table 1 Computational complexity measured in the number of O(1)
filters

Method Dim  Number of O (1) Filters:
Box or Recursive Adaptive weighted

Median 1 16 0

3 48 (=16 x 3) 0
Bilateral 1 16 (=8 x (1+1)) 0

3 256 (=4 x 3+1)) 0
Weighted Median 1 0 16

3 0 48(=16 x 3)

Table 2 Exact runtime for processing a one megapixel image

computational complexity of the proposed O(1) filters in
Table 1.

The exact runtime is listed in Table 2. It is less mean-
ingful due to the different implementation details, different
operation systems and different PC configurations. However,
it does show that the proposed method is comparable to
the state-of-the-art, especially when spatial quantization is
employed. Note that Perreault and Hebert (2007) is designed
for 8-bitimages and cannot be directly extended for weighted
median filtering. Our method does not have this limitation.

6 Conclusion

A uniform framework for median filtering and bilateral filter-
ing is presented. It enables the median filter and bilateral filter
to be computed either exactly or approximately in constant
time per image pixel. Unlike previous methods, the resulting
bilateral filter can have arbitrary spatial and arbitrary range
filter kernels. The proposed framework is also extended for
constant time weighted median filtering.

Method Dim Runtime(ms/Mp)
Our box filter 1 4

Our exponential filter 1 8

Our gaussian filter 1 12

Our Median Filter (N = 16) 1 83
Perreault’s Median Filter Perreault and Hebert (2007) 1 81

Our Box Bilateral (N = 8) 1 125
Our Box Bilateral+Spatial Quantization 1 33
Porikli Porikli (2008) (32 bins) 1 155
Porikli Porikli (2008)+Perreault and Hebert (2007)+SSE (32 bins) 1 40
Guided Filter He et al. (2010) 1 40

Our Box Bilateral (N = 8) 3 2,432
Our Box Bilateral+Spatial Quantization 3 307
Gaussian KD-Tree Adams et al. (2009) (invColorStdev=_8) 3 >10,000
Permutohedral LatticeAdams et al. (2010) (SpatialStdev=4) 3 >1,000
Bilateral GridParis and Durand (2009) (oy = 16, 0, = 0.1) 3 >500
Guided Filter He et al. (2010) 3 150
Guided Filter+Additional Guidance Image He et al. (2010) 3 300
Domain Transform Filter (NC)Gastal and Oliveira (2011) 3 160
Domain Transform Filter (RF)Gastal and Oliveira (2011) 3 60
Recursive Bilateral FilterYang (2012b) 3 43

Except for the proposed methods (in bold), the runtime reported by the author(s) or obtained from the code published by the author(s) is used. The
default parameters or those suggested by the authors were used. The runtime of our bilateral filter reported in this table was computed with a small
downsampling factor of 4 (% X % of the original spatial resolution) when spatial quantization is employed
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