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a b s t r a c t

Blob or granular object recognition is an image processing task with a rich application background,
ranging from cell/nuclei segmentation in biology to nanoparticle recognition in physics. In this study, we
establish a new and comprehensive framework for granular object recognition. Local density clustering
and connected component analysis constitute the first stage. To separate overlapping objects, we further
propose a modified watershed approach called the gradient-barrier watershed, which better incorporates
intensity gradient information into the geometrical watershed framework. We also revise the marker-
finding procedure to incorporate a clustering step on all the markers initially found, potentially grouping
multiple markers within the same object. The gradient-barrier watershed is then conducted based on
those markers, and the intensity gradient in the image directly guides the water flow during the flooding
process. We also propose an important scheme for edge detection and fore/background separation called
the intensity moment approach. Experimental results for a wide variety of objects in different disciplines –
including cell/nuclei images, biological colony images, and nanoparticle images – demonstrate the
effectiveness of the proposed framework.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recognition and segmentation of blob or granular objects in the
image is an important and fundamental task in image processing.
This problem has a rich practical background in applications, such
as the recognition of biological cells [12,17], cell nuclei [8–10],
colonies, and pollen [34,35], as well as nanoparticles [6], and so on.
Very large numbers of objects in the image make manual seg-
mentation and counting quite tedious, if it is even feasible, so
computer vision is crucial to the task. Given that objects may also
vary in shape, size, and intensity and may overlap or cluster, the
challenges of recognition and segmentation are in no way trivial.

The recognition of blob objects in an image can be first
regarded as detecting clusters of high-density foreground pixel
(pixel-of-interest) clouds in the image. For detecting the clusters of
pixel-of-interest, local density clustering together with connected
component analysis constitutes a good scheme and will be
discussed in detail in Section 3. Local density clustering is able to
cluster objects of any shape and any size. However, the major
drawback of this method is that it cannot separate overlapping
objects. All the clusters or objects that overlap will be grouped into
the same cluster, since they are connected. To overcome this
limitation, more processing is needed, such as making use of clues

in the object shape or intensity gradient within a connected
component.

There have been many approaches to separating overlapping
objects. These include the watershed algorithm [7–15], the gradient
or edge detection method [39], morphological erosion [6], the active
contour method [16–24], the sliding band filter approach [25,26],
and others. A nice review and comments on some of these
approaches can be found in [6]. The gradient or edge method
apparently does not work well in cases where there is no obvious
intensity difference between the overlapping objects or if the
objects are strongly textured. The active contour method is quite
computationally demanding, making it unsuitable for a case in
which the number of objects is large, which is in fact the most
meaningful case for computer-aided segmentation. The sliding
band filter approach requires that the range of object size be
known beforehand, and it does not work well if the size range is
wide. While the watershed method is still an effective and efficient
method to separate overlapping objects, improvements can be
made to the algorithm.

The advantages of the watershed approach are (i) it can provide
the natural growth of the region corresponding to each object
independent of object shape and size, and (ii) it automatically
provides a closed contour as well as computational efficiency.
However, directly applying the watershed algorithm to the image
or its gradient can lead to severe over-segmentation due to large
numbers of local minima/maxima in the image or its gradient
version. Many remedies have been proposed to overcome this
issue [9,11,27–31]. Hierarchical watershed segmentation aims to
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merge the over-segmentation hierarchically to form meaningful
object regions, for example based on the mosaic image transform
and associated graph [27] or by multi-scale filtering of the image
and segmenting on the filtered and simplified image [30]. Some
other studies have proposed using the pattern classification and
object model learned from the data to direct the region-merging
[9,11,29]. Compared with the methods aiming to conduct a blind
watershed on the image first and then merge the over-
segmentations afterward, it would be better not to over-segment
the image in the first place.

We believe the best way to conduct watershed segmentation is
not directly from the original image or its gradient version. It is better
to first find the marker corresponding to each object in the image and
then to conduct the watershed based on those markers. This
approach gives a much better guarantee of object counts and
approximate locations in the image. Therefore automatic detection of
markers is the most critical step in using watershed segmentation.
There are several approaches to detecting markers, including the
distance transform, morphological erosion, and the gradient transform.
Under the appropriate condition, such as for convex object, the first
two approaches can be shown to be essentially similar, as the final
result of morphological erosion is also the local maximal distance
region [6]. Both approaches are based on purely geometrical informa-
tion and require the overlapping objects to display a bottleneck region
as the hint for the location of separation. Both also require the
individual object to be more or less convex in shape, and may lead to
over-segmentation when this requirement is violated. An alternative
way to detect markers is the gradient transform. It is based on the
assumption that the inter-object gradient is larger than the intra-
object gradient, and connected low gradient regions are detected as
markers. However, this method is very sensitive to image noise and
often leads to over-segmentation. Therefore using the distance trans-
form as the basic framework and combining gradient information
into the system would be a good option.

To combine gradient information into the watershed process
based on the distance transform framework, one study uses the
gradient-weighted distance transform [9] to alter the “distance” at
a certain pixel regarding its gradient. Such a method is free of
parameter tuning, but the incorporation of the gradient into the
geometric framework is based on heuristics. So it is not immedi-
ately apparent where the watershed or boundary will be, or
whether it will be accurate. Therefore in this study we propose
an alternative version of watershed, the gradient-barrier watershed,
in which the flooding process is still carried out based on the
distance transform framework, but the image gradient directly
guides the water flow in the watershed process.

In addition to the mainstream watershed techniques, we
propose an important method for edge detection and fore-
ground/background separation, which is essential for the object
detection and connected component analysis. The method is based
the concept we propose in this paper called the intensity moment,
which will be detailed in Section 2.

The structure of the paper is as follows. In Section 2 we discuss
the concept of intensity moment and intensity moment scheme
for foreground/background separation of the image. In Section 3
we discuss the local density clustering method for object detection
and delineation. The entire methodology and approach are dis-
cussed in detail in Section 4. The experimental result is presented
in Section 5 and finally we conclude in Section 6.

2. Foreground/background separation: the intensity moment
scheme

Given the image, the first step in recognition is typically finding
the foreground pixels or the pixels-of-interest. The commonly

used foreground/background pixel classification methods include
intensity thresholding (for example, the Otsu method [32] for
automatic threshold detection), the gradient or edge detection
method, and so forth. Each method has its strengths and weak-
nesses, and no single method can perfectly handle all images. In
this study, we propose another scheme called the intensity moment
approach. In essence, the intensity moment approach tries to find
the imbalance of the intensity distribution within the local patch
of a certain scale around each pixel. In an analogy with the force
moment, the intensity moment is calculated via the vector
summation of the product between pixel intensity and vector
distance to the patch center for each pixel within the patch (Fig. 1).

M
!ði0; j0Þ ¼ ∑

ði;jÞAD
Iði; jÞ L!ði; jÞ ð1Þ

In above D is the local patch or domain centered at ði0; j0Þ, Iði; jÞ
and L

!ði; jÞ are the pixel intensity and the vector distance to the
patch center ði0; j0Þ for each pixel ði; jÞ, respectively, and M

!ði0; j0Þ is
the intensity moment of the patch centered at ði0; j0Þ.

If the intensity has variation but the overall distribution is
balanced or uniform in the scale of the patch, such as is the case
with local textures, then the intensity moment has only a weak
response at that point. However, if there is a salient edge in the
patch (the edge between the object and background), then the
intensity variation is in no sense balanced, repeating, or uniform in
the patch scale. Rather, there are two distinct halves in the patch,
so the response of the intensity moment will be strong at that
point. Therefore, by the value of the intensity moment, we can
locate the salient edge between the object and the background in
the image, while ignoring unwanted details. Since the intensity
moment approach takes into account the balance of intensity
distribution within a certain scale, it is much better than gradient
edge detection at finding the salient edges or the “main structure”
of the image, as shown in Fig. 2. Here, what is most important is
not the property of a single pixel or the gradient at that point, but
rather the behavior of the local patch up to a certain scale,
specifically whether it is uniform or has distinct parts. Finally,
we can further classify the foreground/background pixels based on
the detected object outlines.

3. Local density clustering for object detection

Besides the intensity moment approach mentioned above,
some other methods can also be applied to differentiate fore-
ground/background of the image (such as the Otsu thresholding
[32]) and each method might be suitable for some case. Given we

Fig. 1. Schematic illustration of the concept of intensity moment. Each block
represents a pixel, dark block has lower intensity value than bright block.
(a) Intensity moment and its direction of each pixel in the region with respect to
the center pixel. (b) Total intensity moment and its direction of the entire region (or
of the center pixel).
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already have the foreground pixels of the image, the next essential
step for the recognition of granular objects is detecting the clusters
of high-density foreground pixel (pixel-of-interest) clouds in the
image. Therefore the objects can be detected and delineated. In
cluster detection, the concept of local density plays an important
role in the recognition task. This is because, in nature, a cluster is a
group of points with relatively uniform density (typically above
some density threshold) inside its domain but distinguishable
from its surroundings (it is the case in this context, although the
task of clustering problem has a broader definition). For a
particular point in the image, we consider a local patch with
appropriate scale around it. Only when the local density of the
pixel-of-interest within this local patch is sufficiently high (or
within a particular range in the hierarchy case) can we consider all
the pixels-of-interest within this local patch to be on-object and in
need of further clustering, while ignoring all the isolated or sparse
pixels-of-interest. The merit of local density clustering is that it is
independent of the cluster's size and shape and robust with
respect to the individual pixel outliers. In object recognition, the
property of the local region (with appropriate scale) is more
important than the property of the individual pixel. It is important
to note that in local density clustering the patch scale is not an ad

hoc parameter. It is essential for correct clustering because it
reflects the perception level at which the recognition is performed.
In any given case, clustering could be meaningful at various scales,
so we must decide at what level we want to detect the object.
Fig. 3 illustrates this concept: while clustering the image into nine
objects or three objects could both be meaningful, how we cluster
depends on the object scale we are interested in.

In most local density clustering methods, two input parameters
are required: the patch scale and the density threshold [1]. It is
not conceptually correct to expect meaningful clustering with
out knowing these two seemingly ad hoc parameters, since as
we stressed, the clustering could be meaningful at various para-
meter levels and it is the recognition task itself that determines
which level we are looking for. Some approaches do try to avoid
manually tuning those parameters by automatically estimating
the appropriate parameter settings at different levels (not elim-
inating these two parameters) and performing the clustering
hierarchically [2–5]. However, there is probably only one para-
meter level in the hierarchy that best suits the clustering problem
at hand.

Another essential aspect of local density clustering is connected
component analysis [36–38]. This step follows the local density

Fig. 2. Edge detection between two texture regions. (a) Original two-texture image. (b) Gradient of the original image; the boundary between two texture regions is not well
detected, and the gradient value within the texture region could be higher than the value at the boundary. (c) Intensity moment of the original image; the edge between two
texture regions is well detected, while the inner region response is quite weak.

Fig. 3. The effect of scale on clustering. (a) Original image. (b) Clustering result for smaller scale (local density clustering scale¼3, local density threshold¼0.6). (c) Clustering
result for larger scale (local density clustering scale¼30, local density threshold¼0.3).
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test, which determines whether a given pixel-of-interest is on-
object. Connected component analysis groups the on-object pixels
into clusters. Here connected is used in the sense of “close
enough”; any two on-object pixels lying within a certain distance
will be considered as connected. Thus, local density clustering
(with connected component analysis) is able to cluster objects of
any shape and any size (see Fig. 4).

4. Methodology

4.1. Overview

As in Sections 2 and 3, we have discussed the separation of
foreground/background in the image and the local density cluster-
ing for object detection and delineation. Up to this point, all the
objects that are separated can be segmented successfully. In order
to further separate the overlapping objects, more processing is
needed, which will be discussed in detail in this section. The
schematic illustration of the overall approach is shown in Fig. 5. At
the beginning of this section, local density clustering and con-
nected component analysis will be revisited briefly to make
connection with the experiment carried out in this study.

4.2. Local density clustering and connected component analysis

After foreground/background pixels are classified in the image,
we will evaluate the local density at each foreground pixel. That is,
for a patch with a proper scale centered at the pixel, we compute
the ratio of foreground pixel number to total pixel number in that
patch to see if the foreground pixel density is sufficiently high
locally. The patch scale should in general be smaller than the
object scale but large enough for making a statistically confident
decision regarding the density. We find in most cases that the
proper scale could be just a few pixels and that the clustering
result is not sensitive to this parameter. Actually, in most experi-
ments we use a patch scale of 3 pixels and patch density threshold
0.8, i.e., the ratio of foreground pixel number to total pixel number
in the patch is above 0.8. The optimal parameters could change if
different dataset is considered. We then consider all the fore-
ground pixels within the patch to be on-object and in need of
further clustering.

All the on-object pixels within the same patch will be grouped
into the same cluster. Alternatively, any two on-object pixels within
the distance of the patch scale will have the same cluster label. The
connected component analysis is applied to cluster all the on-object
pixels into multiple connected components, each with a unique
label. The local density clustering together with the connected
component analysis can cluster the objects with any shape and any
size, although it cannot differentiate overlapping objects.

4.3. Distance transform and marker finding

If we have no information on the shape or size of the object, the
above procedures should already provide the best possible cluster-
ing result. However, if we have some prior knowledge of the object
shape (for example, circular), then we can make a judgment as to
whether there is overlapping. Up to this point, all the clusters or
objects that are overlapping will be grouped into the same cluster,
since they are connected. But if the objects are circular, a very
elegant scheme exists to separate overlapping ones. We make use of
the distance transform [40,41] or inner-distance map based on the
assumption that, for a circular object, the circle center typically has
the largest distance to the background compared with any other
point inside the circle. When two circular objects overlap, their two
centers still tend to have the local maximal distances to the
background. Therefore, if we compute each on-object pixel's dis-
tance to the nearest background pixel and plot the inner-distance
map, the local maxima in the map will usually correspond to the
centers of the circular objects, even if they overlap. Based on those
local maxima or markers, we find the locations of each object and
can further classify each pixel into its proper cluster.

To be specific, the distance transform of a foreground pixel p is

DðpÞ ¼min
qAB

dðp; qÞ; pAF ð2Þ

Fig. 4. Local density clustering can be applied to the clusters of any size and shape. (a) Original image. (b) Image after clustering; different clusters are shown in different
colors.

Fig. 5. The general flowchart of the approach.
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where F is the set of foreground pixels and B is the set of
background pixels.

To find the markers of the image or the local maxima in the inner-
distance map, we check two criteria: (i) whether the current pixel
itself is a local maximum, i.e., whether its pixel value is greater than
or equal to any of its neighbors, and (ii) whether the patch centered
at this pixel also represents a local maximum in the larger scale. The
purpose of (ii) is to eliminate the impact of noisy pixels or outliers.
This is done because the noise point may easily become a local
maximum, but it is hard to support a patch in a larger scale to still be
a local maximum. In this study, we consider a 5�5 patch centered at
the each pixel and compared this patch with all its eight 5�5
neighboring patches to determine whether it is a local maximum.
The sums of the pixel values in each patch are compared. In this way,
the detection of the markers will be much more robust.

The above condition is described as the following, where Iði; jÞ is
the value of pixel ði; jÞ, in the inner-distance map, Pði; jÞ is the sum
of pixel values of the 5�5 patch centered at pixel ði; jÞ.

"Loop for all the pixels of the image (ignore the boundary effect)
For pixel (i, j)" are part of formula (3), not the main text, please
separate it from main text and put it in the format as in my
submission.

Loop for all the pixels of the image (ignore the boundary effect).
For pixel ði; jÞ
If Iði; jÞ4 max fIði�1; j�1Þ; Iði�1; jÞ; Iði�1; jþ1Þ;
Iði; jþ1Þ; Iðiþ1; jþ1Þ; Iðiþ1; jÞ;
Iðiþ1; j�1Þ; Iði; j�1Þg AND

Pði; jÞ4 max fPði�5; j�5Þ; Pði�5; jÞ; Pði�5; jþ5Þ;
Pði; jþ5Þ; Pðiþ5; jþ5Þ; Pðiþ5; jÞ; Pðiþ5; j�5Þ; Pði; j�5Þg
Label pixel ði; jÞ as the marker pixel

End ð3Þ

4.4. Marker clustering

After all the markers are generated, we perform an additional
clustering on the markers to group those that should belong to the
same object into one marker. It is different from seed filtering in
terms that we do not know in advance how many final marker we
should end up with, therefore it requires unsupervised clustering.
This is done because local maxima searching in the inner-distance
map often results in multiple local maxima for one object. This is
typical for elliptical objects, where the multiple local maxima
usually appear as a line along the long axis of the ellipse. The
clustering of the markers can be carried out in the same spirit of
connected component analysis. We specify a proper scale, and we
cluster every two marker points lying within this distance into the
same group. Typically, this scale is much smaller than the scale of
the object in the image, usually just a few pixels, and we use 10
pixels in most of our experiments. Finally, the average location of
the markers in one cluster will be used as the final marker to
represent this group (Fig. 6).

4.5. Final segmentation based on markers

An isolated object that has been successfully identified by
connected component analysis may have no marker detected in
the region. For this reason, we ignore connected components with
no or only one marker inside, keep their cluster labels unchanged,
and focus on connected components with multiple markers inside
them to separate further.

Once we have the correct markers, we have the approximate
counts and center locations of the objects in the image. The simplest
way to find the boundaries between overlapping objects is to apply
a nearest-neighbor assignment, that is, to assign each on-object pixel
to its nearest marker. However, the resulting object boundary may
be quite unnatural looking, and boundary locations will become

Fig. 6. (a) Original image. (b) Markers obtained from local maxima of inner-distance map; note one object may have multiple markers. (c) Markers after clustering; one
object typically has one marker corresponding to it.
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very inaccurate when object sizes differ much. The watershed
algorithm is a very natural and effective way to find the boundaries.
It can be applied based on the purely geometric information (the
inner-distance map) and possibly combined with the intensity
(gradient) information. In this subsection, we will first discuss the
purely geometric-based watershed.

For each connected component with markers inside, we start
the watershed from the marker with the maximal distance value.
We decrement this value by one each time and search for all the
unlabeled pixels within this connected component whose distance
values are larger than this current value. For each such pixel, we
check its four neighbors (top, bottom, left, and right) to see if any of
them already has a label (initially, only the marker pixels have
labels, and different markers will have different labels). If a
neighboring pixel does have a label, we assign that label to the
unlabeled pixel. At the start, only the neighbor pixels of the
markers will be assigned labels. If the four neighbors have different
labels, that mean that this unlabeled pixel is at the edge of two or
more connected objects, each centered at a corresponding marker,
and we denote this pixel as thewatershed or the boundary. We loop
from the maximal distance value to zero (the distance value for the
outermost pixels on the connected component). To find and label
all the pixels above a certain distance value, we can either do a
connected component analysis for all such pixels or simply do
multiple-round scanning. For each round of scanning, the pixels
adjacent to some already labeled pixel will be labeled, while those
(if any) appearing far away and with no labeled neighbors will be
left blank and wait for future scans. The image could be scanned
differently each time to make sure the growth of watersheds is in
balance. In most cases, we find scanning 4–6 times at each distance
level is sufficient. The connected component is scanned from top-
left to bottom-right or vice versa, alternatively, for each round. The
algorithm is shown in Fig. 7.

4.6. Gradient-barrier watershed

The purely geometric-based watershed does not take into
account the intensity information of the image, so its boundary is
more or less a guess based on the shape of the region. But some-
times the boundary between overlapping objects is obvious from the
image intensity or gradient, so it is best to make use of such
information. Some studies tried to combine the gradient information
into the distance transform framework, for example using the
gradient-weighted distance transform [9] to alter the “distance” of
a certain pixel regarding its gradient. This method has its merit, as
discussed later, but its formulation is based on some heuristics. It is
not immediately clear that incorporating gradient information into

the geometric framework in this way will indicate where the
watershed or boundary will be, or do so accurately. Further, this
method may lead to the wrong location and distribution of markers
and hence to the merge or split of the object.

The gradient-barrier watershed we propose uses the image
gradient to directly guide the water flow in the watershed process.
The water flow will be blocked at the pixels with strong gradient
rather than passing through, therefore the strong gradient regions
act as a barrier for the water flow; water can only flow around
them. The preliminary watershed or boundary will be determined
not only at the locations where waters from different markers
meet, but also at the locations where the water is blocked by those
strong gradient pixels. Of course, the object may have inner
intensity fluctuations or textures. If such regions are also detected
as strong gradient regions, then basically water from the same
marker will go around those regions. These “isolated islands” can
be detected and eliminated by a filling operation, since they are
surrounded by the pixels of the same cluster.

Therefore with gradient-barrier watersheds we need to first
obtain the gradient image of the current overlapping region and
then look for the pixels in the inner part of this overlapping region
with a gradient greater than some threshold. This is because the
gradient at the outer boundary of the overlapping region (against
the background) is usually high and is not the inner boundary
between the overlaps that we are looking for. Finally, all the high-
gradient pixels we detect in the inner part of the connected region
will become the barriers for the watershed process. The algorithm
is shown in Fig. 9.

The gradient-barrier watershed is best suited for the case in
which the object has relatively uniform intensity while the inter-
object boundary or intensity gradient is obvious. While in the case
in which the inner-object intensity fluctuates much or the inter-
object boundary is not apparent, it may be better to conduct
watershed based only on the geometric information.

Both the gradient-barrier watershed and gradient-weighted dis-
tance transform method have merits. In the gradient-weighted
distance transform, there is no need to estimate the parameter of
the gradient threshold in order to determine which pixels act as
barriers for water flow. But its formulation is based on heuristics,
such as the exponential decay structure, while the gradient-barrier
watershed provides a more natural and explicit way to find the
boundary between overlaps. Also, since the gradient-weighted dis-
tance transform assigns a new “distance” (altered by the gradient) to
each pixel on the object, it may affect the detection and distribution
of markers. The gradient-weighted distance transform method often
leads to wrong marker location and distribution and hence to an
incorrect merge or split of the object, especially if the object is
strongly textured. The gradient-barrier watershed does not change
the marker location or distribution. Therefore, if the markers have
been reliably detected, the gradient-barrier watershed will perform
more robustly and preserve correct object counts. Actually, we find
the gradient-barrier watershed method is not sensitive to the
parameter of gradient threshold. In most experiments, we use a
gradient threshold of 30 for the grayscale images, which works well.
In the pollen image shown in Fig. 8, we see that two pollen grains on
the upper-right are merged in the gradient-weighted distance trans-
form watershed result. This is due to the generation of wrong
markers in that region (markers are clustered based on proximity).
In contrast, the gradient-barrier watershed provides the correct
marker distribution and gives the correct segmentation (Fig. 8).

5. Experiment

Granular object recognition has a rich application background.
Here we test our scheme on biological cell/nuclei images, colony

Fig. 7. The algorithm description for purely geometric-based watershed applied in
this study.
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images, pollen images, as well as physical nanoparticle images.
This is only a small selection of this approach's potential applica-
tions (Figs. 10–12).

For the blood cell image in Fig. 13, we can differentiate its
foreground and background simply via intensity thresholding. The
local density clustering with connected component analysis can
then be performed, and all the connected regions of the fore-
ground will be clustered and labeled (Fig. 13. (b)). At this point, all
the isolated objects have been successfully segmented. In order to
segment the overlapping objects, we perform the distance trans-
form on the connected component analysis result to obtain the
inner-distance map of the original image (Fig. 13(c)). The markers
are then located based on the inner-distance map (Fig. 13(d)).
As mentioned earlier, the marker pixel should satisfy both of the
following criteria: (i) it should be a local maximum pixel-wise, and
(ii) the 5�5 patch centered at this pixel should be a local

maximum compared with all the eight 5�5 patches surrounding
it. The markers are then clustered, and two markers within the
distance of 10 pixels will be grouped into the same cluster. The
average marker location in each cluster will be computed and used
as the final marker representing this cluster (or object) (Fig. 13(e)).
In this way, the multiple markers within one object will not lead to
the splitting of the object. Then the segmentation of the over-
lapping regions will be carried out via gradient-barrier watershed
with a gradient threshold 30, i.e., we consider all the pixels with
gradient greater than 30 as barriers to the water flow.

The threshold value can be determined from the gradient of the
original image by observing the general range of the gradient
value at the overlapping object boundaries. Or, it can be extracted
automatically by the histogram mode-seeking method. If the
threshold is hard to determine, we can simply perform a purely
geometric-based watershed. Also, in the algorithm we only

Fig. 8. Comparison between gradient-weighted distance transform watershed and gradient-barrier watershed. (a) Original pollen image. (b) Segmentation result by
gradient-weighted distance transform watershed. (c) Segmentation result by gradient-barrier watershed. (d) Markers found in gradient-weighted distance transform
watershed. (e) Markers found in gradient-barrier watershed.

H. Yang, N. Ahuja / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7

Please cite this article as: H. Yang, N. Ahuja, Automatic segmentation of granular objects in images: Combining local density clustering
and gradient-barrier watershed, Pattern Recognition (2014), http://dx.doi.org/10.1016/j.patcog.2013.11.004i

http://dx.doi.org/10.1016/j.patcog.2013.11.004
http://dx.doi.org/10.1016/j.patcog.2013.11.004
http://dx.doi.org/10.1016/j.patcog.2013.11.004


consider the inner part of each connected component with a
distance value (in the inner-distance map) larger than 5 pixels, i.e.,
the pixels at least 5 pixels away from the outer boundary. This is
done to avoid the influence of the high gradient at the outer
boundary of the connected component.

The segmentation result of the gradient-barrier watershed is
shown in Fig. 13(g). Compared with the watershed result based on
the purely geometric information (Fig. 13(f)), we can see the
significant improvement of boundary locations. A few exceptions
where the gradient-barrier watershed also did not give an accurate
boundary location are largely due to the lack of inter-object
gradient within the overlapping region. Finally, a post-processing
step will help to rule out a few non-cell objects based on size
(Fig. 13(h)). The final count of correctly segmented cells in the
image is 194, out of the ground truth 221. Note that there are a few
merges, splits and missed cells in the final segmentation (Table 1).
Also, the presence of the white blood cell in the image creates
some trouble for the segmentation (denoted as “Interrupted” in
the table), but overall the segmentation performance is good.

Fig. 9. The algorithm description for gradient-barrier watershed; the difference
with a purely geometric-based watershed is highlighted.

Fig. 10. (a) Cell nuclei image and (b) segmentation result.

Fig. 12. (a) Nanoparticle image and (b) segmentation result.

Fig. 11. (a) Colony image and (b) segmentation result.
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The comparison between the gradient-weighted distance trans-
form watershed and gradient-barrier watershed (our method) is
conducted on the E. coli image (Fig. 14). The performances of two

methods are comparable yet our method is better (Table 2). Gradient-
weighted distance transform watershed is more easily to make
object split or part of the object merged into the adjacent one. More

Fig. 13. (a) Original blood cell image. (b) Local density clustering with connected component analysis. (c) Inner-distance map. (d) Object markers obtained from local maxima
(upon to certain scale) of inner-distance map. (e) Object markers after clustering. (f) Watershed based on purely geometrical information (markers and inner-distance map).
(g) Gradient-barrier watershed based on both geometrical information (markers and inner-distance map) and intensity information (intensity gradient). (h) Gradient-barrier
watershed after post-processing.
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examples on cell nuclei image segmentation and E. coli image segmen-
tation are shown in Fig. 16 with Table 3 and Fig. 17 with Table 4.

The same experiment is carried out on the coin image (Fig. 15).
We see from the result that the gradient-weighted distance trans-
form method splits the objects. The gradient-barrier watershed
does not split the object, and keeps the object shape and correct
object count in general (although the segmentation for the top-left
coin is not perfect).

6. Conclusion

Granular object segmentation has fundamental importance in
image processing and object recognition. It can emerge from
various application backgrounds, such as cell/nuclei image seg-
mentation in biology and nanoparticle image segmentation in
physics. The more advanced recognition tasks, such as counting,
classifications, need to be built on the segmentation result. The

entire task can be roughly divided into two parts: (i) the recogni-
tion of all the objects-of-interest in the image, whether they are
isolated or overlapping, and (ii) the recognition of each individual
object from the overlapping region. The first stage can be realized
by local density clustering with connected component analysis,
and the second stage can be realized by the proper marker-finding
procedure and proper watershed algorithm.

It is important to mimic human visual perception in the image-
recognition task, and local density clustering is the method that
tries to do this. The local density of pixel-of-interest at each local
patch of certain scale determines whether this patch is significant
enough to become part of the object-of-interest. In most cases, it is
the property of the patch that matters, not the property of the
individual pixel. The scale of the patch is also a key factor in
the recognition process. It reflects the perception level at which
the recognition is performed and depends on the particular
recognition task. The scale can be determined hierarchically, but
probably only one or a few levels out of the hierarchy will best suit
the particular recognition task. Local density clustering can recog-
nize a cluster or object with any shape and size, but it cannot
separate overlapping objects. The marker-finding procedure and
watershed algorithm provide powerful tools for further segment-
ing overlapping granular objects.

We aim to establish one-to-one correspondence between the
markers and objects in the image and then perform watershed upon
those markers. In practice, there are usually multiple markers

Table 1
The segmentation performance of gradient-barrier watershed on the blood
cell image.

Ground Truth Correctly segmented Merged Split Missed Interrupted

221 194 10 1 9 7

Fig. 14. The comparison between gradient-weighted distance transform watershed and gradient-barrier watershed (our method) on the E. coli image. (a) Original E. coli
image. (b) Segmentation result of gradient-weighted distance transform watershed. (c) Segmentation result of gradient-barrier watershed, the gradient threshold is 10.

Table 2
The comparison between gradient-weighted distance transform watershed and gradient-barrier watershed (our method) on the E. coli image shown in Fig. 14.

Ground truth Correctly segmented Merged Split Missed Incorrect boundary

Gradient-weighted distance transform 333 283 22 16 4 8
Gradient-barrier watershed 333 294 22 9 4 4
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Fig. 15. The comparison between gradient-weighted distance transform watershed and gradient-barrier watershed (our method) on the coin image. (a) Original coin image.
(b) Segmentation result of gradient-weighted distance transform watershed. (c) Segmentation result of gradient-barrier watershed, the gradient threshold is 20.

Fig. 16. The segmentation result for cell nuclei image. (a) Original cell nuclei image. (b) Segmentation result of gradient-weighted distance transform watershed.
(c) Segmentation result of gradient-barrier watershed, the gradient threshold is 30.
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detected in one object, and typically they are fairly close to each
other. We then apply a clustering step on all the markers to group
the multiple markers within the same object into one. To better
incorporate the intensity information into the geometric information
for conducting the watershed, we propose the gradient-barrier
watershed, in which the gradient in the overlapping region is used
directly as the barrier to the water flow. The experiments carried out
on various granular objects from distinct application backgrounds
justify our approach.

Conflict of interest statement

None declared.

Acknowledgments

The support of the Office of Naval Research under grant
N00014-06-1-0101 is gratefully acknowledged. The authors would

Table 3
The segmentation result for cell nuclei image.

Ground truth Correctly segmented Merged Split Missed Incorrect boundary

Gradient-weighted distance transform 211 154 27 22 0 8
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Fig. 17. The segmentation result for another E. coli image. (a) Original E. coli image. (b) Segmentation result of gradient-weighted distance transform watershed.
(c) Segmentation result of gradient-barrier watershed, the gradient threshold is 30.

Table 4
The segmentation result for E. coli image shown in Fig. 17.

Ground truth Correctly segmented Merged Split Missed Incorrect boundary

Gradient-weighted distance transform 175 130 44 0 1 0
Gradient-barrier watershed 175 131 43 0 1 0
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