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ABSTRACT 

 

A new rotation-invariant wavelet-based texture recognition 

scheme is proposed. In the previous rotation-invariant 

approaches, the focus is on adapting the wavelet transform 

or filter to rotated texture. In our approach, instead, we 

estimate the rotation of the texture with respect to some 

reference orientation, and then rotate the texture image back 

to the reference orientation before applying the wavelet 

analysis to extract features. With such rotation 

compensation, even very simple features (such as 1-level 

DWT and the subband energy) can be effective in achieving 

high classification accuracy as we demonstrate through our 

experiments. 

 

Index Terms—  texture recognition, wavelets, rotation-

invariant, rotation compensation, intensity moment 

 

1. INTRODUCTION 

 

Texture recognition and classification is an important and 

challenging task in image processing. A number of early 

methods use the statistical property of the image to analyze 

textures, such as the co-occurrence matrix method [12]. 

Later on Gabor filter [13][14] and wavelet-based methods 

[1-6][15][16] become the classical methods for texture 

recognition. Other common methods include Gaussian 

Markov random field (GMRF) [17], local binary pattern 

(LBP) histogram [7], autoregressive model [18] and hidden 

Markov models [19][20]. Among all those methods, Gabor 

filter, and particularly, wavelet-based methods are perhaps 

the most popular ones. The reason for the popularity of the 

wavelet-based methods is that it provides a natural partition 

of the image spectrum into multiscale and oriented subbands 

via efficient transforms [2]. There has been a rich variety of 

the wavelet-based texture analysis methods such as wavelet 

transform, wavelet packets, complex wavelet transform, 

rotated wavelet filter and so forth. Most of the wavelet 

methods make use of the energy distribution among the 

subbands in frequency domain to identify texture. The 

subband energy may be used directly, or features may be 

extracted from the wavelet coefficients using techniques 

such as generalized Gaussian density model [2].    

 

2. RELATED WORK 

 

One of the classical methods for wavelet-based texture 

recognition, proposed by Chang and Kuo [1], is based on 

the idea of wavelet packets. In the traditional octave wavelet 

transform only the low-frequency channel is iteratively 

decomposed. However the textures may have dominant 

frequencies in the middle frequency channels. It is therefore 

better to detect the significant frequency channels of the 

texture and decompose them further. In the wavelet packets 

approach, each subband LL, HL, LH, HH can be further 

decomposed, depending on the energy of the subband. A 

criterion is used to decide whether a subband needs to be 

further decomposed. Finally the energy values at J most 

dominant channels are used as features for classification [1].  

 

However the major drawback of this wavelet packets 

approach for texture recognition is that it is not rotation-

invariant, i.e., the rotation of texture will severely affect its 

accuracy. Since recognizing texture irrespective of its 

orientation is a very important issue, many efforts have been 

devoted in literature to rotation-invariant texture recognition 

[8-11][17-24], such as those based on rotated wavelet filter 

(RWF) [8] and complex wavelet transform (CWT) [9]. But 

most of these methods are aimed at modifying the wavelet 

filter or transform to adapt to the rotation of the texture (i.e., 

trying to extract rotation-invariant features), without 

manipulating the rotated texture image itself.  In this study, 

we propose a method to directly manipulate the rotated 

texture image itself before the feature extraction to obtain 

rotation-invariant recognition. Some other study also 

suggests the idea of orientation adjustment of the texture 

[24], and Radon transform is used for estimating the texture 

orientation. In our study we use a totally different method 

for texture orientation estimation – the intensity moment 

approach, which is very effective and has more explicit 

physical meaning than Radon transform. 

 

 



 
Figure 1. (a) Net texture. (b) Brick texture. (c) Bark texture. 

 

 
Figure 2. (a) Feature space plot for three textures net, brick and 

bark. (b) Feature space plot for three textures net, brick and bark 

with rotation. 

 

3. WAVELET-BASED TEXTURE RECOGNITION 

WITH ROTATION COMPENSATION 

 

As mentioned above, wavelet is a good tool for texture 

recognition since it provides a natural partition of the image 

spectrum into multiscale and oriented subbands using an 

efficient transform. Recognition is based on the observation 

that the energy distribution among the subbands in 

frequency domain can identify texture. Using the Rotation 

compensation introduced later in this paper, even simple 

features can achieve very good classification performance. 

We apply a 1-level Discrete Wavelet Transform (DWT) on 

the original texture image; straight-forward extensions can 

be made easily, such as applying N-level DWT upon the 

image. We compute the average energy (l1-norm) in each 

subband (LL, HL, LH, HH) as follows: 
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where the subband image has dimension NM  , and 

),( nmx  is the wavelet coefficient at location ),( nm . Then 

we normalize the subband energies by the energy of the LL 

channel (approximation channel) and use this normalized 

set of four subband energies as feature. Again, straight-

forward extensions can be made if we consider a N-level 

DWT on the texture image, which could be an octave 

wavelet decomposition (where we only further decompose 

the low-frequency channel), or a full wavelet decomposition 

(where we further decompose every channel, possibly using 

parameters from only selected channels, such as eliminating 

the parameter of the HH channel), or a wavelet packets 

decomposition (where we further decompose any channels 

of interest, not necessarily the low-frequency channel).  

 

For the three textures (net, brick and bark) shown in Figure 

1, the computed subband energies are (1.0000  0.0786  

0.0748  0.0244) for the net texture, (1.0000  0.0403  0.0186  

0.0035) for the brick texture, and (1.0000  0.0202  0.0524  

0.0134) for the bark texture, respectively. If we plot them in 

the feature space as in Figure 2 (a), we can see that the three 

textures are well separated. Here the multiple points for 

each texture correspond to the feature points extracted from 

random locations within each original texture image, and 

apparently the features extracted from the same texture, 

regardless of their locations, are all clustered together. 

 

However the rotation of texture places a major challenge for 

wavelet-based texture recognition, since wavelet transform 

is orientation-dependent and rotation-sensitive. For the same 

three textures in Figure 1, if we rotate each of them by 90°
and apply the same wavelet analysis, it is clear from Figure 

2 (b) that we can no longer separate them easily in the 

feature space. For example, the feature points corresponding 

to the rotated bark texture (bark vertical) are closer to the 

feature points of brick texture than to those of the unrotated 

bark texture. Therefore, dealing with texture rotation is an 

important issue in texture recognition and classification. 

Here we propose an approach called rotation compensation, 

i.e. we first estimate the rotation of the texture image with 

respect to some reference orientation, and then rotate it back 

before applying any further processing (such as DWT) on 

the image.  In such a way the rotation-invariant texture 

recognition can be achieved. 

 

The idea of rotation compensation or specifically rotation 

estimation is based on the concept of intensity moment and 

moment angle. In essence, the intensity moment measures 

the imbalance of the intensity distribution within a patch of 

certain scale around each pixel. In analogy with force 

moment, the intensity moment is calculated via the vector 

summation of the product between pixel intensity and vector 

distance to the patch center for each pixel within the patch 

(Figure 3).  
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In above D  is the local patch or domain centered at ),( 00 ji , 

),( jiI  and ),( jiL


 are the pixel intensity and the vector 

distance to the patch center ),( 00 ji  for each pixel ),( ji , 

respectively, and ),( 00 jiM


 is the intensity moment of the 

patch centered at ),( 00 ji . The intensity moment angle at 

each pixel is simply the direction of the intensity moment at 

that point or the “micro” orientation of the local image patch 

(in fact the raw direction of intensity moment is at the 

normal of the image local orientation, here we use the 

normal of this raw direction as the direction of intensity 

moment angle). Therefore if we generate the histogram of 

intensity moment angle, the major peak in the histogram  



 
Figure 3. Schematic illustration of intensity moment. Each block 

represents a pixel, dark block has lower intensity value than bright 

block. (a) Intensity moment and its direction of each pixel in the 

region with respect to the center pixel. (b) Total intensity moment 

and its direction of the region (or of the center pixel), note the raw 

intensity moment direction is at the normal of the image local 

orientation. 

 

 
 

Figure 4. The bark texture with various orientations and the 

corresponding intensity moment angle histograms. We can see that 

the major peak of the histogram corresponds well with the main 

orientation of the texture image (ignore the thin peak at the center 

of the plot). 

 

should indicate the main orientation of the texture. Figure 4 

illustrates the relationship between the intensity moment 

angle histogram with the texture orientation. The major 

peak in the histogram (ignore the thin peak at the center or 0 

degree as explained below) corresponds well with the main 

orientation of the texture image (with respect to the 

horizontal line). 

 

For texture image, it is often the case that the majority 

portion of the local image patches have relatively uniform 

intensity distribution (i.e. zero degree orientation), only a 

small portion of the image patches exhibit a strong 

orientation which we can use to distinguish textures. This is 

why in most cases we will have a thin peak at the center or 

zero degree in the intensity moment angle histogram, and  

 
 
Figure 5. The classification accuracy with rotation compensation 

for 11 textures (from left to right, top to bottom, the textures are 

grass, bark, straw, cloth, wool, brick, foam plastic, sand, leaves, 

marble, water), with 100 random rotations for each texture.  

 

that peak should be ignored since it is not the signature 

feature of the given texture. In the case that no major peak is 

found besides the peak at the center or zero degree we 

consider the texture orientation is at the zero degree. 

 

Once we estimate the main orientation of the texture image, 

we rotate the texture image back to some reference 

orientation (for example, let the main orientation of the 

texture be along the horizontal line) and apply the wavelet-

based feature extraction.  

 

4. EXPERIMENTS 

 

We use 11 textures from Brodatz texture database (last three 

textures are self-collected) as shown in Figure 5. For each 

texture, we randomly rotate it to obtain 100 samples with 

random rotations and then perform the classification. For 

the sample image, we perform 1-level DWT on it (with 

Daubechies-4 filter), and compute the average energy (l1-

norm) for each subband. The set of four energy values for 

the four subbands (normalized against the LL-channel) is 

used as feature. A training set of 100 randomly rotated 

texture images for each texture class is used as the labeled 

samples in the feature space (rotation compensation will be 

applied before extracting wavelet features), and k-Nearest 

Neighbor approach is employed for the classification. With 

the rotation compensation, the average classification 

accuracy is 98.5%, even though the feature we used is fairly 

simple – the 1-level DWT and corresponding subband 

energies. If the same feature and classification method are 

applied on the texture images without rotation 

compensation, the classification performance is dramatically 

poorer especially for the textures with strong orientation. 

For example, for the bark texture the classification accuracy 

is only 40% without rotation compensation, but improved to 

97% with the rotation compensation. And the classification 

accuracy for brick is improved from 44% to 97%, water 

from 64% to 95% with the rotation compensation approach. 

Hence based on the simple features, the rotation 

compensation approach provides an effective and efficient 

way for rotation-invariant texture recognition. 



For the larger dataset, we carried out experiments on 112 

Brodatz textures (D1 – D112). As well we use 100 

randomly rotated images within each texture class as the 

training samples, and 100 randomly rotated images within 

each texture class as the testing samples. The average 

classification accuracy is 83.1%. We should note that all the 

input textures are randomly rotated, and many textures 

within this database are similar to each other. Also the 

feature we use is fairly simple (1-level DWT and subband 

energy), the classification performance might be further 

improved if more sophisticated features are used. In 

comparison, the experiment carried out on the same 

database can also be found in [9], where they use 109 

Brodatz textures (D1 – D112 except D13, D88, D96). The 

classification accuracy in their study is 62.04% based on 

DWT feature, 75.40% for DT-CWT (dual-tree complex 

wavelet transform) feature, and 77.63% for the combination 

of DT-RCWF (dual-tree rotated complex wavelet filter) and 

DT-CWT feature. Hence it is clear that with the help of 

rotation compensation as applied in this study, the 

classification accuracy can be improved considerably. 

 

In [24] some scheme similar to ours is proposed and Radon 

transform is applied to adjust the texture orientation before 

the wavelet analysis. For 25 selected textures from Brodatz 

database, 90.8% - 96.8% accuracy is obtained (depending 

on the k value in k-NN classifier) with Daubechies-4 filter 

for wavelet analysis and the k-NN classifier. Based on the 

same textures and settings (we use k=10 for k-NN classifier) 

our method obtains an accuracy of 95.2%, which is 

comparable to the result in [24]. For another set of 60 

textures from Brodatz database, 77.2% - 89.3% accuracy is 

obtained in [24], while our accuracy is 89.4%. 

 

The same experiment is also conducted upon the real leave 

images as in Figure 6. The first six leave images are from 

VisTex texture database and the rest images are self-

collected. The average classification accuracy is 99%. The 

individual accuracy for each texture is 99%, 100%, 100%, 

100%, 92%, 99%, 100%, 100%, 100%, 100%, respectively. 

 

5. CONCLUSION 

 

Wavelet-based texture recognition is among the most 

effective and popular methods for texture analysis, which is 

due to the natural property of wavelet analysis that it can 

partition the image spectrum into multiscale and oriented 

subbands. However, original wavelet-based texture analysis 

is not rotation-invariant, and has difficulties in recognizing 

the same texture with different orientations. Therefore, it is 

important to develop a texture recognition scheme that is  

 
Figure 6. The 10 real leave images. These are either from VisTex 

texture database or self-collected. 

 

rotation-invariant. In this study, we have proposed a new 

texture recognition scheme based on the approach called 

rotation compensation. In essence, we first estimate the 

rotation of the texture image with respect to some reference 

orientation, and then rotate the texture image back before 

performing wavelet-based analysis. In such a way we 

compensate the change of orientation of the texture. Hence 

even with the simple feature, such as 1-level DWT and 

normalized subband energy, the classification scheme can 

obtain high accuracy. 

 

6. REFERENCES 

 
[1] T. Chang and J. Kuo, Texture analysis and classification with 

tree-structured wavelet transform, IEEE trans. on Image 

Processing, 1993. 

[2] M. N. Do and M. Vetterli, Wavelet-based texture retrieval 

using generalized Gaussian density and Kullback-Leibler distance, 

IEEE trans. on Image Processing, 2002. 

[3] H. Chuang and J. Kuo, Wavelet descriptor for planar curves: 

theory and applications, IEEE trans. on Image Processing, 1996. 

[4] Kiran K. Simhadri et al., Wavelet-Based Feature Extraction 

from Oceanographic Images, IEEE trans. on Geoscience and 

Remote Sensing, 36(3), 1998. 

[5] Gholamreza Akbarizadeh, A New Statistical-Based Kurtosis 

Wavelet Energy Feature for Texture Recognition of SAR Images, 

IEEE trans. on Geoscience and Remote Sensing, 50(11), 2012. 

[6] Felipe Lumbreras, Joan Serrat, Ramon Baldrich, Maria Vanrell, 

Juan Jose Villanueva, Color texture recognition through 

multiresolution features, Conference on Quality Control by 

Artificial vision (QCAV'01), 1, 114–121, 2001. 

[7] Zhenhua Guo, Lei Zhang, David Zhang, Rotation invariant 

texture classification using LBP variance (LBPV) with global 

matching, Pattern Recognition, 43, 706–719, 2010. 

[8] N. Kim, S. Udpa, Texture classification using rotated wavelet 

filters, IEEE Transactions on Systems, Man and Cybernetics, Part 

A: Systems and Humans, 30(6), 847–852, 2000. 

[9] M. Kokare, P.K. Biswas, B.N. Chatterji, Rotation-invariant 

texture image retrieval using rotated complex wavelet filters, IEEE 

Transactions on Systems, Man and Cybernetics, Part B: 

Cybernetics, 36(6), 1273–1282, 2006. 

[10] Greenspan, H., Belongie, S., Goodman, R., Perona, P., 

Rotation invariant texture recognition using a steerable pyramid, 

Pattern Recognition, 1994. Vol. 2 - Conference B: Computer 

Vision & Image Processing., Proceedings of the 12th IAPR 

International. Conference on, 162-167, 1994. 

[11] R. Porter, N. Canagarajah, Robust rotation-invariant texture 

classification: wavelet, Gabor, and GMRF based schemes, IEEE 

http://www.cat.uab.cat/~ramon
http://www.cat.uab.cat/~maria
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Greenspan,%20H..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Greenspan,%20H..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Goodman,%20R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4428
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4428
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4428


Proceedings Vision, Image, and Signal Processing, 144(3), 180–

188, 1997. 

[12] R.M. Haralik, K. Shanmugam, I. Dinstein, Texture features 

for image classification, IEEE Transactions on Systems, Man, and 

Cybernetics, 3(6), 610–621, 1973. 

[13] A.C. Bovik, M. Clark, W.S. Geisler, Multichannel texture 

analysis using localized spatial filters, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 12(1), 55–73, 1990.  

[14] B.S. Manjunath, W.Y. Ma, Texture features for browsing and 

retrieval of image data, IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 18(8), 837–842, 1996. 

[15] A. Laine, J. Fan, Texture classification by wavelet packet 

signatures, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 15(11), 1186–1191, 1993.  

[16] M. Unser, Texture classification and segmentation using 

wavelet frames, IEEE Transactions on Image Processing, 4(11), 

1549–1560, 1995. 

[17] H. Deng, D.A. Clausi, Gaussian MRF rotation-invariant 

features for image classification, IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 26(7), 951–955, 2004. 

[18] R.L. Kashyap, A. Khotanzed, A model-based method for 

rotation invariant texture classification, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 8(4), 472–481, 1986. 

[19] J.L. Chen, A. Kundu, Rotation and gray scale transform 

invariant texture identification using wavelet decomposition and 

hidden Markov model, IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 16(2), 208–214, 1994.  

[20] W.R. Wu, S.C. Wei, Rotation and gray-scale transform-

invariant texture classification using spiral resampling, subband 

decomposition, and hidden Markov model, IEEE Transactions on 

Image Processing, 5(10), 1423–1434, 1996. 

[21] H. Arof, F. Deravi, Circular neighbourhood and 1-D DFT 

features for texture classification and segmentation, IEEE 

Proceedings Vision, Image, and Signal Processing, 145(3), 167–

172, 1998.  

[22] T.N. Tan, Rotation invariant texture features and their use in 

automatic script identification, IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 20(7), 751–756, 1998.  

[23] G.M. Hayley, B.M. Manjunath, Rotation invariant texture 

classification using a complete space–frequency model, IEEE 

Transactions on Image Processing, 8(2), 255–269, 1999. 

[24] K. Jafari-Khouzani, H. Soltanian-Zadeh, Radon transform 

orientation estimation for rotation invariant texture analysis, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 27(6), 

1004–1008, 2005. 

  


