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Abstract—Suppose a set of arbitrary (unlabeled) images contains frequent occurrences of 2D objects from an unknown category. This

paper is aimed at simultaneously solving the following related problems: 1) unsupervised identification of photometric, geometric, and

topological properties of multiscale regions comprising instances of the 2D category, 2) learning a region-based structural model of the

category in terms of these properties, and 3) detection, recognition, and segmentation of objects from the category in new images. To

this end, each image is represented by a tree that captures a multiscale image segmentation. The trees are matched to extract the

maximally matching subtrees across the set, which are taken as instances of the target category. The extracted subtrees are then

fused into a tree union that represents the canonical category model. Detection, recognition, and segmentation of objects from the

learned category are achieved simultaneously by finding matches of the category model with the segmentation tree of a new image.

Experimental validation on benchmark data sets demonstrates the robustness and high accuracy of the learned category models when

only a few training examples are used for learning without any human supervision.

Index Terms—Object recognition, image segmentation tree, hierarchical object representation, unsupervised learning, graph

matching, tree union.

Ç

1 INTRODUCTION

SUPPOSE we are given a set of arbitrary images that contain
frequent occurrences of 2D objects belonging to an

unknown visual category, defined here as a collection of
subimages that share similar geometric and photometric
properties and occur in similar spatial configurations.
Whether and where any objects from the category occur
in a specific image is not known. We are interested in
extracting instances of the category from the image set and
in obtaining a compact model of the extracted 2D objects. A
model derived from such training can then be used to
determine whether a new test image contains objects from
the learned category and, when it does, to segment all
instances of the category.

We define a category model in terms of the structure of
image regions (or segments) comprising the 2D category
instances. Specifically, the category model we use captures
the canonical properties of regions: 1) geometric properties,
such as area and shape, 2) photometric properties, such as
gray-level contrast with the surround, and 3) topological
properties, such as the layout and recursive embedding of
segments. Thus, two critical ideas lie at the foundation of
our approach. First, we use regions as features for deriving
the category model since they are rich descriptors, usually
stable to small illumination and viewpoint changes, robust
to common (for example, additive) noise, facilitate simulta-
neous object detection and segmentation, and they naturally
capture the recursive definitions of object parts. Second, we

exploit the ubiquitous structural properties of objects—spe-
cifically, the spatial layout and recursive containment of
their parts. This leads to a representation of category
instances consisting of a finitely deep recursion of regions.
The depth is finite because the region size is upper bounded
by the object size that can occur in a given size image and
lower bounded by the pixel size. The resulting finite-size
hierarchy model facilitates learning of objects as a whole by
learning category-specific parts that exhibit smaller intra-
category variations compared to whole objects.

Our approach consists of the following major steps:

1. Segment the images to identify all homogeneous-
intensity regions at all degrees of homogeneity
present.

2. Match the training images to identify frequently
occurring subimages that have similar geometric,
photometric, and topological properties. Interpret
the maximally matching recurring subimages as
evidence and instances of some category.

3. From these category instances, obtain a hierarchical
model of region properties defining the category.

4. Use the category model to detect, recognize, and
segment all instances of the category in a new
unseen image by delineating all defining regions of
each instance.

As our literature review in Section 1.1 indicates, most
prior work requires human supervision to provide a label of
the object category that the training images contain. To the
best of our knowledge, this paper presents the first attempt
at completely unsupervised learning of an unknown visual
category that frequently occurs in an arbitrary (unlabeled)
image set. The need for human input to specify a category is
eliminated by defining a category as a set of subimages
sharing similar geometric, photometric, and topological
properties of their constituent regions. As we demonstrate
in the sequel, this definition is adequate for addressing a
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wide range of real-world, rigid, and articulated object
categories, including faces, cars, horses, cows, etc.

1.1 Relationship to Prior Work

In general, object recognition approaches consist of four
major stages:

1. feature extraction,
2. object representation,
3. training, and
4. recognition.

This section reviews prior work and points out the
differences with our approach with regard to each of these
stages. Other related work will be discussed in the
subsequent sections.

The first stage—feature extraction—uses image regions,
interest points, curve fragments, image-filter responses, or a
combination of these as image features. Since our focus is on
region features obtained via low-level segmentation, we
will omit here a review of the work that uses other types of
features for brevity. Region-based feature extraction has
been used for object representation for a long time [1], [2],
[3], [4], [5], [6], [7], [8], [9]. Regions are higher dimensional
features and, thus, in general, are richer descriptors, more
discriminative, and more noise-tolerant than interest points
and curve fragments. Regions offer many advantages over
point and edge features for the same problems. For
example, region boundaries coincide with the boundaries
of objects and their subparts, allowing for simultaneous
object detection and segmentation. In addition, regions
make various constraints, frequently used in object recogni-
tion, such as those dealing with contiguity, smoothness,
containment, and adjacency, implicit and easier to incorpo-
rate than other types of lower dimensional features (for
example, keypoints).

For the second stage—object representation—most ap-
proaches partition extracted features into clusters, called
“parts.” They represent the objects as either planar or
hierarchical graphs, whose nodes usually encode intrinsic
appearance properties of these “parts” and whose edges
capture the spatial relationships among the “parts.” For
example, the pictorial structures [10], [11] and constellation
models [12] are planar graphs with a user-specified number
of “parts,” configured in a prespecified model structure.
Hierarchical models are typically derived by hierarchical
clustering of features [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28]. This hierarchical
clustering can be performed with respect to a statistical
dependence that exists among subsets of features or simply
the spatial containment relationships between a large
feature cluster (for example, large region) and its constitu-
ent subclusters (for example, embedded subregions). These
two bases of clustering lead to ascendant-descendant
connections between nodes in a hierarchical model. In
some models, nodes may be shared by multiple parent
nodes (for example, [14], [21], [22], [23]). The model
structure is typically controlled by a prespecified hierarchy
depth or branching factor or by minimizing model com-
plexity via the minimum description length principle. In
contrast, our hierarchical model allows a priori unknown
hierarchy depth and an arbitrary number of nodes forming
arbitrary spatial configurations, all of which are learned
from training images.

Our goal to derive the canonical model of a visual
category from a given set of 2D examples has been pursued
by many researchers. Early work is characterized by
restricted problem domains and heuristic algorithms that
make use of the domain knowledge (for example, example
images show only one object from a given class on a
uniform background without real-world problems such as
occlusion and illumination and viewpoint changes). For
example, the seminal work by Winston [29] considers
addition and subtraction of features from an evolving
model as successive positive and negative exemplars are
presented, each designed to add precisely one relevant
feature to the model. In [30], a hierarchical object shape
representation is learned from exemplars, where a super-
vised decomposition of the curvature primal sketch of an
example into subparts is followed by augmenting the
hierarchical model with these subparts so that the matching
subparts are consolidated into a single instance in the
model. Another approach to the automatic construction of
object shape models recursively merges pairs of primitive
curve elements that satisfy a set of user-specified general-
ization criteria [31]. In [32], a hierarchical category model is
incrementally refined through matching the segmentation
trees of a given set of images with the model, where
matching is done top down in a greedy manner, only
between regions at the same tree level, such that a bad
match between two regions penalizes attempts to match
their respective descendants. In [33], a tree model of an
object shown in a given input image is learned by matching
the input image to a sequence of templates provided by the
user. There have also been efforts to generate a prototypical
graph from a set of examples represented as graphs. For
example, a heuristic genetic search algorithm is proposed in
[34] to learn a median graph from a given set of graphs. The
related problem of graph clustering using a spectral
embedding of graphs is explored in [35]. It is important to
note that these graph-theoretic approaches do not accom-
modate many-to-many node correspondences, as required
when dealing with real-world exemplars characterized by
large structural variations. These problems have been
recently addressed by a number of approaches. For
example, in [8], an object shape model, which represents a
planar region-adjacency graph, is learned by searching for
plausible region groupings. In addition, in [36], a hierarch-
ical shape model is learned by many-to-many matching of
graphs representing image blobs and their proximity
relations. Our approach differs from prior work in that
we perform many-to-many matching among example
segmentation trees and fuse the matches to learn their tree
union as the canonical model of a visual category. As we
will demonstrate in this paper, these attributes advance the
state of the art, for example, in terms of handling more
challenging real-world images containing partial occlusion,
clutter, and common variations in imaging conditions.

With respect to training, in the third stage, different
approaches involve different degrees of supervision in
learning the aforementioned object representations. Most
early work requires that training images be diligently
selected to ensure that they contain a single occurrence of
the object class of interest preselected by the user, where
each occurrence is manually segmented from the rest of the
image. Recently, a number of semisupervised approaches
have been proposed [12], [37], [38], [39], [40], [41], [42], [43]
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where learning broader object classes, called categories, in
more challenging images with clutter and occlusion is
addressed and where manual segmentation of object
examples is not required. However, these approaches still
involve a significant amount of human labor to label
training images with respect to a prespecified category
they contain. In addition, a careful preparation of images
containing a “background” category is required. This is
because “background” is treated as an additional object
category, although it is not defined in any intrinsic way but
as the absence of all prespecified object categories. Thus, the
selection of “background” training images becomes a
difficult problem, which is solved by the user choosing a
training data set that is sufficiently distinctive from the
images of target object categories. This degree of super-
vision is sometimes reduced so that each training image
may remain unlabeled by using alternate constraints, for
example, specifying the total number of user-defined
categories present in the training set and the number of
their occurrences in each training image as input para-
meters [44], [45]. In contrast, we attempt learning an
unknown visual category in a completely unsupervised
manner. The absence of supervision here means that it is
not known whether and where any objects from the
category appear in a specific image from the set. Thus,
some training images may not contain any example of the
frequently occurring (target) category, while others may
contain multiple instances of multiple categories. In addi-
tion, unlike some approaches aimed at learning a discrimi-
nant object classification function (for example, [38]), we do
not require the training set to be large. In addition, we do
not need to model the background as a category by itself
and, hence, do not require a careful preparation of the
background training data set.

Finally, object recognition, in stage four, is typically
evaluated only through image classification in terms of
whether the learned object class/category is present or
absent [12], [27], [38], [42], [43], [44]. There are also
approaches that attempt object localization by placing a
bounding box around a detected object or by thresholding a
probabilistic map that a pixel belongs to the object given the
detected features [37], [40], [41]. These estimates are
imprecise (bounding box) or nondeterministic (probability
map) to begin with and are further worsened by the fact
that both locations of detected features and thresholds for
object localization are image dependent. To overcome these
issues, some methods hypothesize the total number of
target objects present in the image [37]. Few approaches
[45], like ours, delineate the boundaries of all instances of
the learned categories appearing in the image, that is,
simultaneously conduct object detection, recognition, and
segmentation.

1.2 Overview of Our Approach

In this section, we present an overview of the main steps
of our approach and point out their motivation and
contributions:

1. We begin with the detection of image regions, which
are the basic features of our models. An image is
represented by a segmentation tree [46], [47], [48],
which captures the low-level, spatial, and photo-
metric image structure in a hierarchical manner.
Nodes at upper levels correspond to larger, more

salient segments, while their children nodes capture
embedded, less salient details (for example, seg-
ments with smaller gray-level contrasts with the
surround). Each node is associated with the geo-
metric and photometric properties of the corre-
sponding segment, while the tree structure
captures the mutual containment (topological) prop-
erties of segments. Therefore, the segmentation tree
serves as a rich description of the image.

2. Given an image set that contains frequent occur-
rences of an unknown category, we expect that
subimages with category specific values of the above
properties will be abundant in the set. Each such
subimage will correspond to one or more subtrees in
the segmentation tree, thus leading to frequent
occurrences of subtrees with similar properties.
The category subtrees can be detected by a tree
matching algorithm that searches for the common
subtrees of the given image trees having a large
similarity measure. This similarity measure is
defined in terms of the tree structure, as well as
the geometric and photometric properties associated
with tree nodes. The result is a set of subtrees from
each image that have cross-image similarity mea-
sures above a chosen level. The tree matching
algorithm identifies exactly which region properties
are shared by the matching subtrees. These subtrees
are interpreted as instances of the target category
whose intercategory variability depends on the
chosen level of the similarity measure.

3. The extracted subtrees may represent complete
object occurrences or their parts. Extraction of only
object parts occurs when they remain unaltered,
while the region properties of other parts, and,
hence, of the entire objects, are changed due to, for
example, partial occlusions, or illumination, view-
point, or scale variations across the images. There-
fore, the extracted similar subtrees provide for many
observations of the entire objects or their parts in the
category, thus allowing robust estimation of the
entire characteristic region structure of the category.
All of these subtrees can be fused (that is, partially
matched and registered) within a canonical graph,
which we call the tree union. Hence, the tree union
subsumes all extracted category instances and thus
represents the learned category model. The tree
union specifies how segmented regions are recur-
sively laid out to comprise an object from the
category and what their geometric and photometric
properties are.

4. When a new image is encountered, any matches
between its segmentation tree and the category
model will denote the presence of the category and
simultaneously specify the exact boundaries of the
recognized objects and their constituent image
regions. The block diagram of our approach is given
in Fig. 1.

As a result of these basic steps, the performance of our

approach has desirable invariance characteristics with

respect to

1. translation, in-plane rotation, and object articulation
(changes in relative orientations of object parts)
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because the segmentation tree itself is invariant to
these changes,

2. scale because subtree matching is based on proper-
ties of nodes relative to their parents, not absolute
values,

3. occlusion in the training set because subtrees are
registered and stitched together to form the tree
union, encoding the entire (unoccluded) category
structure,

4. occlusion in the test set because subtrees corre-
sponding to visible object parts can still be matched
with the model,

5. small appearance changes (for example, due to
noise) because changed regions may still be the best
matches to the unchanged model regions,

6. region shape deformations (for example, due to
minor depth rotations of objects) because changes in
geometric/topological properties of regions (for
example, splits/mergers) are accounted for during
matching, and

7. clutter because clutter regions, being noncategory
subimages, are not repetitive and are therefore not
frequent.

The preliminary version of our approach is presented in
[48]. This paper contributes the following major extensions
to [48]:

1. Additional region properties are used.
2. The similarity between two trees is estimated using a

new measure.
3. While, in [48], all region properties are equally

weighted for recognition, here we present an
algorithm for finding the optimal weights of region
properties.

4. A more extensive experimental evaluation of the
proposed approach on both rigid and nonrigid
object categories is presented.

This paper is organized as follows: The segmentation
tree and region properties selected for modeling a category
are defined in Section 2. Section 3 discusses the tree
matching algorithm. Learning the category model is
presented in Section 4. Optimal weighting of region
properties used to learn the model is discussed in Section 5.
Experimental validation is presented in Section 6.

2 SEGMENTATION TREES AND REGION PROPERTIES

FOR CATEGORY MODELING

An input image is represented by a segmentation tree,
obtained using a multiscale segmentation algorithm, pre-
sented in [46], [47], [49]. The segmentation algorithm
partitions an image into homogeneous regions of a priori
unknown shape, size, gray-level contrast, and topological
context. Here, a region is considered to be homogeneous if
variations in intensity within the region are smaller than
intensity change across its boundary, regardless of its
absolute degree of variability. Consequently, image seg-
mentation is performed at a range of homogeneity values,
that is, intensity contrasts. As the intensity-contrast sensi-
tivity parameter increases, regions with smaller contrasts
than the current parameter value strictly merge. A sweep of
the parameter values thus results in the extraction of all the
segments present in the image. The segmentation tree is
derived by organizing the segmented regions into a tree
structure, where the root represents the whole image, nodes
closer to the root represent large regions, while their
children nodes capture smaller embedded details, as
depicted in Fig. 2. The number of nodes (typically 50-100),
branching factor (typically 0-10), and the number of levels
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Fig. 1. Block diagram of our approach: (a) A set of input images contains frequent occurrences of a car category. A specific image in the set may not
contain cars or may show more than one car. In addition, cars may appear at different scales and may be partially occluded. (b) Pairwise image
matching; black regions indicate maximally matching subimages. (c) Extracted subtrees representing maximally matching subimages shown in (b).
(d) Tree union represents a model of the car category learned from the extracted similar subtrees shown in (c). The relative significance to
recognition of model nodes is marked with different shades of gray. (e) Simultaneous object detection, recognition, and segmentation in a new
image.

Fig. 2. Segmentation tree of a Caltech-101 image [42]. (a) Segmenta-
tions obtained for two sample intensity contrast values from the
exhaustive range [1, 255]. (b) Sample nodes of the corresponding
segmentation tree, where the root represents the whole image, nodes
closer to the root represent large regions, whereas their children nodes
capture smaller embedded details.



(typically 7-10) in different parts of the tree are image
dependent.

Each node v is characterized by a vector of properties of the
corresponding region, denoted as     v. We use intrinsic
photometric and geometric properties of the region, as well
as relative interregion properties describing the spatial layout
of the region and its neighbors. In this way,     v encodes the
spatial layout of regions, while the tree structure itself
captures their recursive containment. The properties are
defined to allow scale and rotation-in-plane recognition
invariance. In particular, elements of     v are defined relative
to the corresponding properties of v’s parent-node u and,
thus, are ultimately relative to the entire image.

Let w, v, and u denote regions forming a child-parent-
grandparent triple. Then, the properties of each region v we
use are listed as follows:

1. normalized gray-level contrast gv, defined as a
function of the mean region intensity G, gv ¼� jGu�Gvj

jGv�Gwj ,

2. normalized area av ¼� Av=Au, where Av and Au are
the areas of v and u,

3. area dispersion ADv of v over its children w 2 CðvÞ,
ADv ¼� 1

jCðvÞj
P

w2CðvÞðaw � aCðvÞÞ
2, where aCðvÞ is the

mean of the normalized areas of v’s children,
4. the first central moment �11

v ,
5. squared perimeter over area PAv ¼� perimeterðvÞ2

Av
,

6. angle �v between the principal axes of v and u

(Fig. 3); the principal axis of a region is estimated as

the eigenvector of matrix 1
�00

�20 �11

�11 �02

� �
associated

with the larger eigenvalue, where the �s are the

standard central moments,
7. normalized displacement �

!
v ¼� 1ffiffiffiffiffi

Au

p d
!

v, where j d!vj
is the distance between the centroids of u and v, and

is measured relative to the principle axis of

parent node u (Fig. 3);
ffiffiffiffiffiffi
Au

p
represents an estimate of

the diameter of parent region u, and

8. context vector �
!

v ¼�
P

s2SðvÞ
As

jdvsj3
�! d
!

vs, where SðvÞ is

the set of v’s sibling regions s and j d!vwj is the

distance between the centroids of v and s and

is measured relative to the principle axis of their

parent node u (Fig. 3); the context vector records the

general direction in which v sees its sibling regions

and disallows matching of scrambled layouts of

regions at a specific tree level.

In summary, the vector of region properties associated with
node v is     v ¼ ½gv; av;ADv; �

11
v ;PAv; �v; �

!
v; �
!

v�T. Each ele-
ment of     v is normalized over all multiscale regions of all
training images to take a value in the interval [0, 1]. This list
of useful region properties can be easily modified to reflect
the needs of different applications.

3 EXTRACTING CATEGORY INSTANCES

To extract recurring similar subimages from the given
image set TT ¼ ft1; t2; . . . tMg, all pairs of segmentation trees
ðt; t0Þ 2 TT� TT are matched to identify those pairs that have
a similarity measure above a chosen threshold (see Fig. 1).
Prior work mostly uses only the intrinsic geometry and
appearance of regions for their matching. We extend the
matching criteria to include the information about the
mutual containment of regions, which is expected to
improve the robustness of cross-image region matching.
Thus, given two segmentation trees, our matching algo-
rithm pairs those nodes whose associated region properties
match and, recursively, the same holds for their descendant
nodes. As another means of making extraction of category
instances more robust, our matching algorithm explicitly
accounts for the fact that certain image regions are less
likely to be preserved across the images than others. For
example, low-contrast regions may split or merge with
bordering regions due to slight changes in the directions of
lighting, viewing, and object orientation. This in turn
changes the segmentation tree structure and thus requires
matching to explicitly account for these uncertainties. To
accomplish these objectives, we resort to the well-known
framework of edit-distance graph matching [50], [51], [52],
[53], [54], [55].

While there are many diverse techniques for matching
image graph representations used in computer vision, we
briefly review only the two most common approaches to
focus our presentation. The structural properties of graphs
can be captured by the eigenvectors of the associated
adjacency matrix [26], [35], [56], [57]. However, the spectral
approaches to graph matching encounter the major diffi-
culty that structurally different graphs may have the same
spectrum. Another group of approaches involves trans-
forming the two graphs by applying basic edit operations
on nodes and edges—such as insertion, deletion, merging,
splitting, and relabeling—until the transformed graphs
become isomorphic. The goal of these methods is to
minimize the cost of modifications needed in the two
graphs to match them, referred to as edit distance. One
great advantage of edit-distance matching over the spectral
approaches is that edits can be naturally interpreted in the
image domain, allowing one to appropriately define edit
costs, while, in general, this is not the case for algebraic
manipulations of spectral graph representations. However,
traditionally, the edit-distance methods are based on the
assumption that there exist only one-to-one node corre-
spondences in matching [50], [51], [52], [53], [54], which is
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Fig. 3. Illustration of some region properties that we use: Region u
(marked red) contains a number of embedded regions v; v1; v2; . . .
(marked blue). The principal axes of u and v subtend angle �v, the
displacement vector ddv connects the centroids of u and v, while the
context vector ��v records the general direction in which the siblings
v1; v2; . . . of v are spatially distributed.



usually too restrictive for our case, as stated above. This
problem can be addressed by considering many-to-many
matching. For example, in [58], a subset of graph nodes are
merged into a single node (merger) when the difference
between their attributes is smaller than a chosen threshold,
after which, this combined node is matched to a node or
merger in the other graph, thereby conducting many-to-
many matching. However, since the magnitude of node
attribute disparities is a priori unknown, this method is
very sensitive to threshold selection. In [55], many-to-many
matching is considered within the edit-distance framework.
This approach, however, has a large bias toward favoring
one-to-one node correspondences over one-to-many since
the heuristically defined cost of matching a single node with
many is higher than the cost of matching two single nodes.
Spectral-based approaches also present promising solutions
to many-to-many matching [59], [60]; however, it is not
clear how to use these methods to explicitly account for
splits and mergers between bordering regions in our
segmentation trees.

In this paper, we use our edit-distance matching
algorithm presented in [48], [61]. For completeness, below,
we briefly review its main characteristics and point out the
major improvements made here. Our algorithm extends
Torsello and Hancock’s approach [54] by searching for
correspondences between individual regions, as well as
between groups of contiguous regions in two given
segmentation trees. This amounts to considering one-to-
one, one-to-many, and many-to-many region correspon-
dences, all at the same time, unlike in [54], where only one-
to-one matching is allowed. Specifically, the segmentation
trees are first modified by inserting and appropriately
connecting new nodes (that is, regions), representing
mergers, as illustrated in Fig. 4. Each merger is the union
of a few neighboring sibling nodes under a parent node. It
instantiates the hypothesis that the children are formed due
to an incorrect split, caused by, for example, lighting
changes, etc. Therefore, they should be restored together as

a single node. To cover all possibilities under a given node,
mergers are made corresponding to all members of the
power set of the node’s children sharing the same
boundary. Mergers do not eliminate their source nodes in
the tree. Instead, each merger is inserted as a parent of the
merged nodes, which converts the trees into directed acyclic
graphs (DAGs), as depicted in Fig. 4. Second, for each DAG
thus obtained, we construct its transitive closure by adding
new edges between all ancestor-descendant node pairs in
the DAG (Fig. 4). The reason for constructing transitive
closures is that their matching is more flexible than
matching DAGs and trees, allowing matches of all
descendants, instead of only children under a visited node.
Thus, we will formulate segmentation-tree matching as a
search for the maximum subtree isomorphism between the
transitive closures of segmentation DAGs. This search will
be constrained because the resulting maximum similarity
common subtree must respect ascendant-descendant rela-
tionships of the initial trees. These consistency constraints
will disallow many node-pairs from being candidates for
matching and thus improve the overall matching efficiency.
Below, we present our matching algorithm.

3.1 Formulation of the Matching Algorithm

Given two transitive closures of the segmentation DAGs,
obtained from the segmentation trees as explained above,
our edit-distance matching algorithm identifies two legal
minimum-cost sequences of basic edit-operations applied to
the two DAGs,1 respectively, which produce their common
subtrees and preserve the original node adjacency and
ascendant-descendant relationships. The edit-operations
considered here consist of only node removals and matches.
A candidate node v when paired with another node v0 is
either considered matchable, with an edit-cost mvv0 , or
considered unmatchable and “removed,” with a cost
proportional to its salience rv. The total cost associated
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1. Note that the transitive closure of a DAG is also a DAG.

Fig. 4. Matching segmentation trees. The input tree is first converted into a DAG by inserting mergers (only a few sample mergers are marked red for
clarity), which represent the union of a few neighboring sibling nodes under a parent node. Mergers correspond to all members of the power set of
children sharing the same boundary under each node. Then, the transitive closure of the DAG is constructed by adding new edges between all
ancestor-descendant node pairs in the DAG (only a few sample edges are marked red for clarity). Matching segmentation trees amounts to a search
for the maximum subtree isomorphism between the two transitive closures of the DAGs.



with the sequence of edit operations represents the edit
distance, that is, a measure of similarity between the two
DAGs. It can be shown that finding the maximum similarity
edit sequence between two DAGs, consisting of only node
removals and matches, is equivalent to finding the max-
imum similarity subtree isomorphism [53], [54]. Therefore,
the goal of our matching algorithm can also be interpreted
as finding maximum subtree isomorphism. To specify the
matching algorithm, we use the following definitions:

Definition 1 (Topological consistency). Let t and t0 be two
transitive closures of the segmentation DAGs. Node pair
ðv; v0Þ, where v 2 t and v0 2 t0, is said to be topologically
consistent with ðu; u0Þ, where u 2 t and u0 2 t0, if the
topological relation between v and u (that is, the presence/
absence of an ascendant-descendant relationship) is the same as
the topological relation between v0 and u0. Topologically
consistent node pairs are denoted as ðv; v0Þ � ðu; u0Þ.

Definition 2 (Consistent bijection). Let f : U ! U 0 be a
bijection between two subsets of nodes U and U 0 in two DAGs.
f is consistent if 8ðv; uÞ 2 U , ðv; uÞ � ðfðvÞ; fðuÞÞ.

Definition 3 (Matching algorithm). Given two transitive
closures of the segmentation DAGs t ¼ ðV ;E;�Þ and
t0 ¼ ðV 0; E0;�0Þ, where V and E are the sets of nodes and
edges and � is a function that assigns a vector of region
properties   v to each node v 2 V , the matching algorithm finds
a consistent bijection (that is, subtree isomorphism) f :
U ! U 0, where U � V and U 0 � V 0, which maximizes their
similarity measure Stt0 defined as

Stt0 ¼� max
f�Vt�Vt0

X
ðv;v0Þ2f

minðrv; rv0 Þ �mvv0½ �: ð1Þ

From (1), the algorithm seeks consistent matches ðv; uÞ �
ðfðvÞ; fðuÞÞ among nodes v 2 V and v0 2 V 0 whose saliencies
rv and rv0 are high, but cost mvv0 is low. Therefore, by
selecting highly salient nodes in the matching result, the
algorithm minimizes the total penalty for removing the
other nodes from the two graphs while finding their
common subgraph. The literature reports different strate-
gies for defining the edit costs rv and mvv0 , ranging from
heuristic to information-theoretic definitions [51], [52], [54].
In this paper, the node saliency rv and the cost of node
matching mvv0 are defined in terms of region properties   as

rv ¼� ��T  v; and mvv0 ¼� jrv � rv0 j; ð2Þ

where �� is a vector of coefficients weighting the relative
significance to recognition of the corresponding region
properties in   v and whose L2-norm is k�k ¼ 1 and � � 0. In
[48], [61], region properties are equally weighted, that is,
� ¼ 1=j  vj, where j  vj is the number of region properties
used. In this paper, we examine their relative contributions
to recognition, thus obtaining an optimal weighting of
region properties, as discussed in Section 5. Note that
rv;mvv0 2 ½0; 1�. From (1) and (2), we have

Stt0 ¼ max
f

X
ðv;v0Þ2f

½2 minðrv; rv0 Þ �maxðrv; rv0 Þ þ 1�; ð3Þ

where 1 is added to make the expression in the brackets
nonnegative, which does not change the solution f . Thus, we
formulate matching as an optimization problem given by (3).

The result of matching t and t0 is the set of nodes paired by a
consistent f and comprised of the two maximum similarity
common subtrees of t and t0, respectively.

In our preliminary work [48], we used a
different definition of similarity measure Sold

tt0 ¼
maxf

P
ðv;v0Þ2f 2 minðrv; rv0 Þ: Hence, to maximize Sold

tt0 , the
matching algorithm pairs only those nodes whose saliencies
are large but does not explicitly verify the discrepancy
between their associated region properties. As demon-
strated in Section 6, the new definition of similarity measure
given by (3) improves performance.

The optimization problem of (3) can be solved recur-
sively, bottom-up, starting from leaf nodes. Suppose that, at
any stage during matching, for all descendants v of u in t
and for all descendants v0 of u0 in t0, we have previously
computed Svv0 . Then, our goal is to find the optimal set of
consistent descendant pairs ðv; v0Þ 2 Cuu0 while maximizing
Suu0 . From (3), we have

Suu0 ¼ 2 minðru; ru0 Þ �maxðru; ru0 Þ þ 1

þ
X

ðv;v0Þ2Cuu0
Svv0 :

ð4Þ

As shown in [52], [54], the optimal Cuu0 can be found as
the maximum weight clique of the association graph
Auu0 ¼ ðVA; EA;SÞ, characterizing the directed acyclic sub-
graphs rooted at u and u0. In particular, VA is the set of all
possible matches fðv; v0Þg, where the v and v0 are all
descendants underneath u in t and u0 in t0, respectively. S
is a function that assigns a weight equal to the similarity
measure Svv0 to every node ðv; v0Þ. EA is the set of undirected
edges that connect only consistent nodes ðv; v0Þ 2 VA. Thus,
imposing the structural constraints in finding a consistent
subtree isomorphism is done in a simple manner during the
construction of the association graph Auu0 . To solve the
maximum weight clique problem, we use the well-known
game (replicator) dynamics approach thoroughly discussed
in [62]. This algorithm uses the Motzkin-Straus theorem to
transform the maximum clique problem, known to be NP-
hard, into a continuous quadratic programming problem
with complexity OðjVAj2Þ in the number of nodes in Auu0 .

From (4), Suu0 is directly proportional to both the quality
of match between the region properties associated with the
node pair ðu; u0Þ and the size of matched subtree structure
underneath them. Once computed, Suu0 is used to recur-
sively find the similarity measure of subgraphs rooted at
the ancestors of u and u0. In this vein, Svv0 values of all node
pairs ðv; v0Þ 2 t� t0 are obtained.

3.2 Selection of Matching Subtrees

The matching algorithm presented in the previous section is
used to extract similar subtrees from the given set of
segmentation trees TT ¼ ft1; t2; . . . tMg. Thanks to the rela-
tively small training sets considered in this paper, a total of
MðM � 1Þ tree pairs are matched to identify their common
subtrees, whose similarity measures S are above a chosen
threshold. The appropriate selection of this threshold in
unsupervised settings is a challenging research topic beyond
the scope of this paper. A straightforward strategy that we use
here is based on the frequency histogram of all Svv0 values
observed over all node pairs ðv; v0Þ across all MðM � 1Þ
image-tree pairs, denoted asHðSÞ. Note thatS accounts for all
of the properties we have chosen to define a category, namely,
the photometric, geometric, and topological properties of
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regions. Small variations in Svv0 values across subtrees
representing category instances are to be expected as they
reflect intracategory interinstance variations. It therefore
follows that the frequency histogram HðSÞ will be, in
general, characterized by a number of modes, each
corresponding to frequent occurrences of instances from a
different category present in training images. Since our
objective is to identify the most frequently occurring similar
subimages that correspond to a single most frequent
category in the training set, we extract all of those similar
subtrees whose Svv0 values are high (that is, belong to a
category) and fall in the largest mode in the histogram (that
is, occur most frequently).

For detection of the histogram modes, we use the well-
known relaxation labeling algorithm in [63], which uses the
contextual information of neighboring histogram bins to
reduce local ambiguities in the histogram values and yields
reliable results after only a few iterations. After detecting
histogram modes, we identify the mode associated with the
largest similarity values. Formally, we compute
½Smin;Smax� ¼ arg maxmodes

P
S2modes S 	 HðSÞ. All subtrees

in TT with Svv0 values in the interval ½Smin;Smax� are
identified as category instances.

3.3 Computational Complexity

Two major steps contribute to the computational complex-
ity of discovering category instances: augmentation of given
trees with merger nodes and actual matching of the
resulting DAGs. Let s denote the average number of sibling
regions that share a portion of their boundary under a node.
Note that s is considerably smaller than the average number
of a node’s children (typically 0 
 s 
 3) and, thus, the size
of the power set of contiguous siblings is typically not very
large. Then, given a segmentation tree with jV j nodes, the
complexity of transforming the tree into a DAG by inserting
merger nodes is Oð2sjV jÞ.

In the next step, we solve 2sjV j � 2sjV j maximum weight
clique problems, as explained in Section 3.1. The replicator
dynamics algorithm used for this purpose converges for such
problems after only a few iterations. Each iteration involves
OðjAj2Þ multiplications, where jAj is the total number of
nodes in the association graph whose maximum weight
clique is computed. Thus, the complexity of tree matching is
Oð½2sjV j�4Þ, which typically amounts to Oð1010Þ computa-
tions, performed in approximately 20-30 seconds on a
2.8 GHz PC, with 2 Gbytes of RAM, for images used in
experimental evaluation discussed in Section 6. In com-
parison with the standard edit-distance tree matching
approaches (for example, [54]) typically used for matching
binary images with silhouettes of objects, ours increases
computational complexity Oð16sÞ � Oð103Þ times. This
increase is justified by significant improvements in match-
ing performance as a result of simultaneously accounting
for many-to-many, one-to-many, and one-to-one node
correspondences, which in turn allows us to address more
complex, real images with clutter and occlusion.

To extract category instances, we conduct pairwise
matching of M image trees, after which the relaxation
labeling algorithm is used for finding the largest mode of
the frequency histogram of similarity measures, as ex-
plained in Section 3.2. The complexity of relaxation labeling
is Oðn‘2Þ, where n ¼ 4 is the number of histogram bins

within the sliding window used in the algorithm and ‘ ¼ 2
is the number of classes (mode, valley) we consider.

Overall, if each segmentation tree in TT has no more than
jV j nodes, then the complexity of extracting similar subtrees
from TT is OðM216sjV j4Þ.

4 LEARNING THE CATEGORY MODEL

The set of extracted similar subtrees, DD ¼ ft1; t2; . . . ; tNg, in
the sequel simply referred to as trees, may represent fully or
partially visible objects of the discovered category, as well
as some outlier objects that do not belong to the category.
We are interested in obtaining a compact, canonical model
of the target category from DD. In this section, we explain
how to integrate the information from all visible parts of the
objects in the category by fusing the trees of DD into a tree
union and thus derive the category model.

Tree unions are well-studied graph structures, the detailed
treatment of which can be found, for example, in [53], [64],
[65], [66], [67], [68]. The tree union T is the smallest DAG,
which contains every tree in DD. Ideally, T should be
constructed by first finding the maximum common subtree
of DD and then by adding and appropriately connecting the
remaining nodes from DD to the common subtree. However,
being order dependent, finding this maximum common
subtree would require considering all orderings of trees,
factorial complexity OðN !Þ in the number of trees N in DD.2

Since such an algorithm is computationally infeasible for real
training sets DD, which are usually very large, we resort to a
suboptimal sequential approach. In each iteration, T is
extended by adding a new tree t from DD until every tree
from DD has been added to the tree union, as illustrated in
Fig. 5. As can be seen, the selected t is first matched against
the current estimate T ðnÞ, which results in their common
subtree � , and then, the unmatched nodes from t are added
and appropriately connected to � in order to form T ðnþ1Þ.

For matching t and T ðnÞ, we use the same algorithm

presented in Section 3.1. After adding the unmatched

nodes, the result is a DAG with multiple directed paths

between nodes, which preserve the node ascendant-

descendant relationships from DD. As detailed in [66], [68],

the matching algorithm of Section 3.1 can be used for

matching trees and DAGs. Imposing the same three

consistency constraints as used in matching, namely,

1) preserving node connectivity, 2) preserving ancestor-
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2. Typically, in our experiments, the number of training images M is
much smaller than the number of extracted similar subtrees N since
multiple instances of the same category may co-occur in a single image.

Fig. 5. Construction of tree union T from the extracted set of similar
trees DD ¼ ft1; t2; . . . ; tNg: in each iteration, a selected tree t from DD is
first matched against the current estimate T ðnÞ, which yields their
maximum common subtree � (marked black). Then, the unmatched
nodes from t are added and appropriately connected (marked gray) to
form T ðnþ1Þ. The result is a DAG.



descendant relationships, and 3) disallowing multiple paths

between nodes, is done in a simple manner during the

construction of the association graph, Auu0 , for each visited

node pair ðu; u0Þ 2 t� T , as explained in Section 3.1. To define

the saliency rv and the cost of node matching mvv0 of nodes

v 2 T ðnÞ, which are used for computing the similarity

measure in (3), we record the region properties    v0 associated

with all nodes v0 2 DD that got matched with v in the previous �

iterations. Then, a region-property vector     v associated with

v 2 T ðnÞ can be defined in terms of the statistics of these

recorded vectors f    v0 g. In this paper,     v is computed as the

median vector of the matched regions’ properties,

    v ¼ medianf    v0 g. Other statistics, for example, the mean

vector, may also be used. In our experiments, using the

median yields slightly better performance over the mean.

Finally, similar to the definitions in (2), we have 8v 2 T ðnÞ,
rv ¼� ����T    v, and mvv0 ¼� jrv � rv0 j, where � specifies the

relative significance to recognition of the region properties

in     v.

As stated above, sequential matching of trees from DD in

different orderings may result in different tree unions. This

problem is addressed in [66] by first merging those trees

with the maximum similarity measure. This strategy,

however, does not account for possible outliers in DD.

Outliers may be present because DD, being unsupervised, is

not guaranteed to contain occurrences of the categories.

Therefore, for our purposes, it is necessary to use an

algorithm that finds the best approximation of the tree

union while, at the same time, accounts for outliers in DD.

Our basic assumption is that DD contains trees with similar

structure and node properties so that each node in T should

have approximately the same frequency of matching with

nodes in DD. Nodes in T that come from outliers are likely to

have a relatively lower frequency of matching with nodes in

DD. These frequencies can be conveniently described by their

entropy. Since the majority of trees in DD are likely to

represent category instances, node frequencies of T will be

characterized by a small entropy. Therefore, to learn the

category model, we obtain a set of tree unions

fT ðP1Þ; . . . ; T ðPRÞg for R ¼ jDDj ¼ N permutations Pi,
i ¼ 1; . . . ; R, of DD. Then, we compute for each node v 2
T ðPiÞ the frequency of its matches with nodes in DD,

’v ¼ # of matches
# of nodes in DD . The best approximation of the tree union

is selected based on entropy HðPiÞ ¼ �
P

v2T ðPiÞ ’v log’v,

which achieves a minimum for the sets containing all

isomorphic trees. Thus, the permutation P̂ for which H is

minimum over all P1; . . . ;PR is selected to compute T ðPiÞ
as the best approximation of the tree union. In the case of

multiple solutions, T ðPiÞ with the smallest number of

nodes is selected.
Algorithm 1 summarizes our learning of the tree union.

Our choice of the number of permutations R ¼ N balances
accuracy versus computational complexity. Suppose no tree
in DD has more than jV j (typically about 20) nodes. Note that
jV j is much smaller than the typical number of nodes in
segmentation trees. Then, similarly to the complexity of
matching explained in Section 3.3, the complexity of
learning the tree union is OðN216sjV j4Þ.

The segmentation tree of a previously unseen image is
matched with the learned category model for identifying
similar subtrees, representing category instances. For this
matching, one may use the aforementioned definition of
node saliency rv of nodes v 2 T . Alternatively, rv may
also be defined so as to account for ’v. In our
experiments, we use both definitions: 1) rv ¼� ����T    v and
2) rv ¼� ’v����

T    v. As demonstrated in Section 6, the latter
definition improves recognition performance since it forces
the matching algorithm to remove from the subtree iso-
morphism f all those nodes in T with low frequency of
occurrence in DD, which are likely to come from outliers in DD.

5 LEARNING REGION PROPERTY WEIGHTS

We have assumed that the relative significance to recogni-
tion of the various region properties included in   can be
expressed by the perceptual weight vector �� in (2).
Estimation of the weights �� is ideally done in a supervised
psychophysical setting. In general, there is very limited past
work on determining the perceptually valid weights of
region properties without human supervision. In this paper,
we approximate these ideal weights by a vector �̂�, which
maximizes the similarity measures of those image regions
that are likely to belong to a category. To this end, we first
select a subset of image regions from DD having small
differences in their properties (that is, which are similar and
are thus candidates to represent a frequently occurring
category) and then optimize �̂� over the selected subset, as
detailed below.

For each node pair ðv; v0Þ 2 t� t0, 8t, t0 2 TT, we compute
the empirical distribution of node-property differences
k    v �     v0 k, where k	k denotes the vector 2-norm. If a
category occurs in the given image set, the distribution of
these differences may be expected to form two main modes.
One mode would correspond to pairs of regions comprising
the category subimages, having small k    v �     v0 k values.
The other mode would consist of arbitrary region pairs with
larger k    v �     v0 k values. Since there are more dissimilar
than similar regions, the latter mode would have consider-
ably larger difference values. Of course, each mode would
also contain contributions from large, chance similarities
and differences.

The frequency histogram thus obtained is modeled
as the two-component Gaussian mixture density,
P ðk    v �     v0 kÞ ¼ �1G1ðk    v �     v0 kÞ þ �2G2ðk    v �   v0 kÞ. T h e
means, variances of the Gaussian distributions G1 and
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G2, and the mixing coefficients �1 and �2 are computed

via the standard EM algorithm [69]. Then, all of the node

pairs ðv; v0Þ 2 TT� TT are partitioned into two mutually

exclusive subsets 1 and 2 corresponding to the two

components of the Gaussian mixture density G1 and G2.

Thus, a given node pair ðv; v0Þ is included in subset 1 if

�1G1ðk    v �     v0 kÞ > �2G2ðk    v �     v0 kÞ. The subset of regions,

GG � TT� TT, corresponding to the Gaussian-mixture com-

ponent with the smaller mean is taken to represent similar

regions.

Next, we optimize �� so that the sum of S values over GG is

maximum. From (1) and (2), we have minðrv; rv0 Þ � jrv �
rv0 j ¼ rvþrv0 �jrv�rv0 j

2 � jrv � rv0 j ¼ ����T 1
2 ð    v þ     v0 � 3j    v �     v0 jÞ.

Let ����vv0 ¼
� 1

2 ð    v þ     v0 � 3j    v �     v0 jÞ. Then, from (4), max-

imizing similarity measures over GG is formulated as

max
��

X
ðu;u0Þ2GG

Suu0 ð��Þ ¼

max
��

X
ðu;u0Þ2GG

��T��uu0 þ
X

ðv;v0Þ2Cuu0
��T��vv0

2
4

3
5 ¼

ðjGGj þ 1Þmax
��
��T

X
ðu;u0Þ2GG

��uu0

�
X
ðu;u0Þ2GG

min
��
��T

X
ðv;v0Þ2GGnCuu0

��vv0 �

ðjGGjþ1Þmax
��
��T

X
ðu;u0Þ2GG

��uu0

�
X
ðu;u0Þ2GG

�̂�T
X

ðv;v0Þ2GGnCuu0
��vv0 ;

ð5Þ

where the optimal �̂� is computed by maximizing the lower

bound in (5) as

max
��
��T

X
ðu;u0Þ2GG

��uu0 ; s:t: k��k ¼ 1; �� � 0: ð6Þ

From (6), we obtain

�̂� ¼

P
ðu;u0Þ2GG ��uu0

� �
þP

ðu;u0Þ2GG ��uu0
� �

þ

����
����
; ð7Þ

where ðxÞþ ¼
�

maxð0; xÞ. The detailed derivation of the last

step in (7) is given in the Appendix. Equation (7) simply

enforces that the differences in the properties of a matching

region pair should not, on average, exceed their sum. The

optimal �̂� thus obtained is used for computing the node

saliencies rv for our matching algorithm (Section 3.1).
This concludes the description of our algorithms. The

entire procedure of discovering category instances and

learning the category model is summarized in Algorithm 2.

In Section 6, we present the experimental evaluation of our

approach.

6 RESULTS

This section presents a two-pronged empirical validation of
our approach: 1) qualitative evaluation of tree union models
learned on arbitrary image sets and 2) quantitative
evaluation of simultaneous detection, recognition, and
segmentation of all instances of a learned category present
in a test image. To this end, we use the following
benchmark data sets:

1. Caltech-101 faces (435 images), motorbikes
(800 images), and airplanes (800 images) [42],

2. Caltech rear-view cars (526 images) [12],
3. UIUC multiscale side-view cars (108 images), and
4. Weizmann side-view horses (328 images) [70] and

TUD side-view cows (111 images) [37].

In the sequel, we will refer to faces, motorbikes, airplanes,
cars, horses, and cows as target categories since their
instances will most frequently occur in our training sets as
compared to some other categories (for example, grass, trees,
bookshelves, etc.). The Caltech-101 images are captured
under varying illumination conditions and contain a single,
prominently featured object from the category amidst clutter.
The Caltech cars and the UIUC cars increase complexity since
the images contain multiple cars which appear at different
resolutions, have low contrast with the textured background,
and may be partially occluded. The other two data sets
contain sideviews of walking/galloping horses and cows in
their natural (cluttered) habitat. They help evaluate our
algorithm’s capability of handling articulated nonrigid
objects. We also use a total of 100 background images from
Caltech-101 that do not contain the target categories. These
background images will be referred to as negative exam-
ples, while images showing objects from the target category
will be referred to as positive examples.

We use three different strategies to form training and test
sets, which leads to three types of experiments. In
Experiment 1, one half of the training set consists of
positive images, while the other half consists of negative
examples. The training images are not labeled positive or
negative to ensure unsupervised training, that is, it is not
known a priori whether any specific training image
contains objects from the category. The test set is formed
from the remaining positive and negative examples. In
Experiment 2, the training and test sets are selected as in
Experiment 1, but the test images are randomly rotated to
evaluate rotation-in-plane recognition invariance. The im-
age size is preserved by “filling out” the background,
vacated by rotation, with a randomly selected negative
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example. Finally, Experiment 3 is aimed at testing the effect
of varying the numbers of positive Mp and negative
Mn examples in the training set. Two cases are considered:
1) Mp is fixed, while Mn increases, and 2) Mn is fixed, while
Mp increases. The test set differs from that used in
Experiments 1 and 2 in that it contains the remaining
positive examples of all target categories but not negative
examples. Each experiment is repeated 10 times and the
average performance is reported.

Object detection, recognition, and segmentation are
conducted jointly by matching the learned tree union model
with the test-image trees. Those common subtrees whose
similarity measure is larger than a specified threshold are
adjudged as detected objects. The threshold is varied to plot
a recall-precision curve (RPC) as a preferred measure of
performance with respect to object detection and segmenta-
tion compared to those used by classification-based
techniques (for example, ROC curve and equal error rate)
[38]. The results presented in this section are obtained for
the similarity-measure threshold that yields the highest
F -measure, F ¼� 2 	 Precision 	 Recall=ðPrecisionþ RecallÞ. To
obtain the ground truth, we manually delineated the outer
contours of cars in Caltech and UIUC images. Manually
annotated target objects (that is, ground truth) for the Caltech-
101 faces, motorbikes, airplanes, Weizmann horses, and TUD
cows are publicly available. Let Ad denote the area of a
detected object in the test image and letAg denote the ground-
truth area of an object in the test image. Then, a detected
object is said to be false positive (FP) if

Ad\Ag

Ad[Ag
< 0:5, where

[ denotes union, and \ denotes intersection. The remaining
cases are declared true positives (TPs). Segmentation error
is defined only for TPs as

XORðAd;AgÞ
Ad[Ag

. Average segmentation
error is defined as the mean of segmentation errors on all
TPs. We observe that these detection and segmentation
performance criteria appear to agree with our own
subjective judgment. We also define measures of recogni-
tion performance, evaluated in Experiment 3. Let np denote
the number of TP detections whose ground-truth category
(verified by visual inspection) is the same as that identified
by our algorithm. Then, precision of recognition is defined
as the ratio of np and the total number of TP detections. In
addition, the recall of recognition is defined as the ratio of
np and the total number of target objects in the test set. Note
the difference between the notions of precision and recall of
detection and of precision and recall of recognition that we
use in this paper. To distinguish between the two sets of
measures, in the sequel, we will use the terms precision and
recall to denote measures of detection performance and the
terms recognition precision and recognition recall to denote
measures of recognition performance.

In Experiments 1-3, we test the following variants of our
approach. Ours0 corresponds to our preliminary work,
presented in [48], where region properties are equally
weighted to compute the node saliency (that is, �� ¼ 1) and
where the similarity measure characterizing subtree iso-
morphism f between two trees t and t0 is computed as
Sold
tt0 ¼

P
ðv;v0Þ2f 2 minðrv; rv0 Þ. In Ours1, instead of Sold

tt0 , we
use the new similarity measure defined by (3), while �� ¼ 1.
In addition to the new similarity measure, Ours2 also uses
the optimal weights of region properties given by (7).
Finally, we also evaluate Ours2 when the saliency of

nodes v in the tree union are not weighted by their
frequencies ’v (end of Section 4), referred to as Ours2�.

Regarding the comparison with prior work, there is very
limited past work on segmenting (that is, delineating the
boundaries of) category instances in test images. Though
the data sets used in our experiments are very popular
benchmarks, at the time of the initial submission of this
work, no quantitative segmentation results had been
reported for Caltech-101, UIUC, and TUD cow images.
For Weizmann horses, the best segmentation results are
presented in [41], [70]. While the approach in [41] is
semisupervised, requiring the training images to contain
only horses, the approach in [70] requires additional human
supervision in terms of manually segmenting horses in
training images. Thus, except for the segmentation results
on Weizmann horses, our comparison with prior work is
mostly in terms of detection accuracy. To this end, we
consider the semisupervised methods in [12], [37], [38], [40],
[41], [43], which require the training images to be labeled
with respect to the category they contain. Note that our
evaluation of detection error is also more rigorous than that
of the referred methods. We consider the precise extent
(segmentation) of objects in the images, whereas, in [12],
[37], [43], bounding boxes around detections and true
objects are used, in [38], correct detection is required to lie
within an ellipse of a certain size centered at the true
object’s centroid, and, in [40], correct detection is marked
when a detected object’s centroid lies within 25 pixels of the
true centroid. We use the method in [37] without the
postprocessing step of pruning the FPs. Therefore, for fair
comparison, we report two sets of our results, one obtained
using the aforementioned more demanding evaluation
criteria and the other using the same experimental
procedures as those of the corresponding baseline methods.

Experiment 1—Qualitative evaluation of category mod-
els. Fig. 6 illustrates two tree unions T learned in
Experiment 1 by Ours2 on two training sets TT, which
contain four and six positive examples of Caltech-101 faces
and Weizmann horses, respectively. The figure also shows
the extracted similar subtrees DD from the Caltech-101
training set. The nodes of T are depicted as rectangles that
contain those regions in DD that got matched with the
corresponding node in T during learning. As can be seen,
the structure of T correctly captures the recursive contain-
ment and spatial layout of regions that comprise the
category instances appearing in the training set. For
example, in the face tree union, nodes “left eye” “nose,”
and “right eye” are found to be children of the node
representing a larger “eyes-and-nose” region, which in turn
is correctly identified as a child of the “face” node. In
addition, since context vector associated with “left eye”
points toward the locations of “nose” and “right eye,” the
tree union encodes that “left eye” is positioned to the left
from “nose” and “right eye.” Similarly, “nostrils” are found
to be above “mouth.” Note that none of the extracted
similar subtrees in DD of Caltech-101 faces has a node that
corresponds to “face and hair,” which is the root of the tree
union. This root is obtained during augmenting similar
subtrees with merger nodes for the purposes of many-to-
many matching. The tree union of horses contains two
roots, one of which represents “head and fence.” This root is
assigned a relatively low frequency of occurrence in DD
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ð’v ¼ 2=137Þ, as compared to the other tree union nodes,
which indicates that it may represent an outlier.

Experiments 1 and 2—Qualitative evaluation of detec-

tion and segmentation. Figs. 7, 8, 9, and 10 illustrate
simultaneous object detection and segmentation. As can be
seen, all occurrences of the target categories in the images

are detected without hypothesizing the number of category
instances appearing in a specific image, as done in prior
work (for example, in [37]). In addition, object detection and
segmentation are accurate for relatively small training sets,
despite background clutter and occlusions. Performance is
good even in cases when

1. the object edges are jagged and blurred (for example,
motorbikes in Fig. 8a),

2. the object parts are thin regions with low intensity
contrast (for example, airplanes in Fig. 8b),

3. the target objects appear at different scales in the test
images (for example, Caltech cars in Fig. 9a),

4. the category instances are partially occluded (for
example, UIUC cars in Fig. 9b), and

5. the target objects are randomly rotated in the image
plane (for example, UIUC cars in Fig. 9c and
Caltech-101 faces in Fig. 7).

Category instances that are not detected for the most part
have low-intensity contrasts with the surround and, thus,
their corresponding subtrees in test-image trees do not
appear similar to the learned model structure. Some
partially occluded Caltech and UIUC cars are not detected
since their matches with the model have lower similarity
measures than the threshold, determined by the highest
F -measure. In addition, huge variations in the appearance of
car windows, due to the reflections of surround, lead to the
appearance of spurious regions in varying locations, not
consistently present in training images that do not become
part of the learned model and, therefore, are not matched
with the model (Fig. 9a). Typically, the aforementioned
effects are large enough to penalize the corresponding
matched subimage from being interpreted as a TP but
localized enough for the subimage to be evaluated as an FP.

Experiments 1-3—Quantitative evaluation. Table 1 pre-
sents the average recall, precision, and segmentation errors
obtained using Ours2 in Experiment 1 for the highest
F -measure. The training set contains M ¼ 100 images, out of
which only Mp ¼ 50 are positive. The last two rows show
the recall reported in [40], [43]. As mentioned before, these
state-of-the-art methods require training images to be
labeled with respect to the category they contain and, for
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Fig. 6. Two tree unions T constructed from four and six positive training

images of Caltech-101 faces and Weizmann horses. Negative images

are not shown. The structure of T correctly captures the recursive

containment and spatial layout of object regions.

Fig. 7. Experiment 2 on the Caltech-101 faces. (a) Sample training set consisting of six positive and negative examples. People appearing in the

training set do not have beards. (b) Sample test images randomly rotated in the image plane, showing people not seen during training. (c) Detection

and segmentation using Ours2.



training, use 50 images drawn from only positive examples.
In addition, their evaluation criteria are less rigorous than
ours since they use bounding boxes or an object’s centroid
estimates instead of object segmentation and report results
obtained for equal-error rate. The top three rows in Table 1
show the price we pay for reducing the degree of super-
vision using random negative examples in the training set,
whose total number is the same as positive examples, and
conducting a more demanding evaluation. Since prior work
uses a different experimental setup, for fair comparison, we
have also run our algorithms using their experimental
procedures—specifically, discarding negative examples in
training and using the same numbers of training and test
images and the evaluation criteria for object detection, as
those used in [43]. The resulting equal-error-rate recall of
Ours2 is reported in the fourth row in Table 1. In this case,
Ours2 outperforms the approaches in [40], [43] for almost

all categories, except for the category motorbikes, with the

loss of only 1.3 percent with respect to [43]. In addition, for

purposes of comparison with the approach in [41] on the

category Weizmann horses, we have used their setup:

20 positive training examples, 200 test images, and flipping

all horses in test and train images to face a consistent

direction, for which we have obtained the segmentation
error of 4.3 percent, compared to theirs of 7 percent.

In Experiment 2, we obtained similar results to those in

Experiment 1 (Table 1). The corresponding recall, precision,
and segmentation errors of Experiments 1 and 2 differ in

less than one half of standard deviation on all seven data

sets. This small difference (in part due to the quantization

error accompanying rotation with arbitrary digital rotation

angles) demonstrates that our approach is invariant to

rotations in the image plane.
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Fig. 8. Experiment 1. Detection and segmentation on the Caltech-101 images showing motorbikes and airplanes using Ours2. The training set of

each target category consists of 10 positive and 10 negative examples that are not labeled as positive or negative. (a) Caltech-101 motorbikes.

(b) Caltech-101 airplanes.

Fig. 9. Experiments 1 and 2. Detection and segmentation on the Caltech and UIUC car images using Ours2. The training set consists of 10 positive

and 10 negative examples. Ours2 successfully handles variations in (a) scale, (b) partial occlusions, and is invariant to (c) rotation in plane.

(a) Caltech cars rear-view. (b) UIUC cars. (c) Rotated UIUC cars.

Fig. 10. Experiment 1. Detection and segmentation on the TUD cows and Weizmann horses using Ours2. The training set consists of 10 positive and

10 negative examples. The small images represent zoomed-in details (enclosed by the rectangles) of the larger image. Object segmentation fails on

those object parts (for example, zoomed-in details) that have low-intensity contrasts with the surround and, thus, do not form category-characteristic

subtrees in the segmentation tree which can be matched with the category model.



Fig. 11 presents RPCs obtained using Ours0, Ours1, and
Ours2 on the Caltech-101 faces and UIUC cars in Experi-
ment 1. As expected, an increase in the number of positive
training examples improves performance. The figure also
compares the RPC of Ours2 against those in [12], [37], [38],
[40]. For this comparison, we have adopted the same
experimental procedure as described in these methods—
specifically, we have used 50 training images randomly
selected only from positive examples and detection is
measured with respect to an ellipse around the true object.
As can be seen, Ours2 yields a slightly better performance
than the competing methods under the same experimental
conditions. For example, an increase in the area under the
RPCs of Ours2 versus that in [40] is 2.3 percent.

Table 2 shows increase in the area under the RPCs of Ours2
as the number of training images becomes larger for the
Caltech-101 faces, UIUC cars, and Weizmann horses. This
increase is expressed as a percentage of the RPC area obtained
for the smaller training set. Interestingly, for larger training
sets, we get only modest improvements. This suggests that
our learning algorithm saturates after reaching a certain size
of the training set (for example, > 40 positive examples for
the Caltech-101 faces). Thus, for example, Table 2 details that
an increase from 10 to 20 positive examples enlarges the area
under the RPC of Ours2 by 2.1 percent and 1.7 percent for the
Caltech-101 faces and UIUC cars, respectively. The corre-
sponding performance measures for the same data sets are
only 1 percent and 0.8 percent when the number of positive
training images increases from 20 to 30. When more than
50 positive examples are used for training (see also Fig. 12),

performance of any of Ours0, Ours1, and Ours2 does not
downgrade, which suggests that our learning algorithm does
not suffer from overfitting. Similar results are observed for
the other data sets. Fig. 11 and Table 2 also demonstrate
accuracy gains of Ours1 and Ours2 over Ours0, measured as
an increase in the area under RPCs. This increase is expressed
as a percentage of the area for Ours0. Thus, for example, the
new similarity measure used in Ours1 yields 7.3 percent area
increase over Ours0 for the UIUC cars. In addition, we get a
3.6 percent area increase of Ours2 over Ours1 for the Caltech-
101 faces. This result demonstrates the value of using
perceptually motivated weights of region properties
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TABLE 1
Average Results Using Ours2 in Experiment 1 for 50 Positive Training Examples (in Percent)

Fig. 11. RPCs: (a) Results on Caltech-101 faces obtained using Ours0, Ours1, and Ours2 for 10 and 20 positive training images in Experiment 1.

(b) Performance of Ours2 on Caltech-101 faces for the highest F -measure improves as the number of positive training examples increases. (c) RPCs

of Ours2 on UIUC cars as the number of positive training examples increases. (d) Comparison of Ours2 with that in [12], [37], [38], [40] on UIUC cars

(multiscale) using the setup of the cited work: 50 positive training images and detection is measured with respect to an ellipse around the true object.

TABLE 2
Increase in the Area under RPC in Experiment 1

Fig. 12. Experiment 3. Recognition recall and precision of Ours2 for the
highest F -measure of detection, averaged over the seven target
categories. Mp and Mn are the numbers of positive and negative
training examples, respectively. We consider two cases: 1) Mp ¼ 10 is
fixed, while Mn increases, and 2) Mn ¼ 10 is fixed, while Mp increases.



obtained by the algorithm discussed in Section 5. In addition,
Table 2 shows the gain in detection performance of Ours2
versus Ours2�, where outlier nodes are not accounted for in
the tree union. For example, for UIUC cars, this gain is
reflected in a 4.4 percent increase in the area under RPC.

Fig. 12 and Table 3 show the recognition performance of
Ours2, evaluated in Experiment 3. Recognition recall and
recognition precision are averaged over the seven target
categories. As can be seen, a small increase in negative
examples Mn does not downgrade performance. As Mn

becomes larger, it so happens that, in our training set,
objects belonging to other categories start appearing more
frequently. Therefore, by our basic definition, these objects
become the target category. As a result, the algorithm now
correctly learns the new category instances, as expected.
Thus, with an increase of Mn, the training set becomes
inappropriate. Increasing the number of positive training
examples yields higher recognition recall and precision.

7 CONCLUSION

In this paper, we have formulated a new problem, which is
that of completely unsupervised extraction and learning of
a visual category frequently occurring in a given arbitrary
image set, and presented its solution. The visual category is
defined as a set of subimages characterized by similar
geometric, photometric, and topological properties. Unsu-
pervised means that the target category is not defined by
the user and whether and where any instances of the
category appear in a specific image is not known. To
discover category occurrences in the unlabeled image set,
we have proposed using a many-to-many matching algo-
rithm that finds matching subimages within every pair of
images. We have defined a new similarity measure between
matching subimages that is recursively computed in terms
of differences in geometric, photometric, and topological
properties of subregions embedded within the subimages.
This similarity measure fuses the information of similarities
of the embedded subimages, where the similarities are
weighted with respect to their relative significance to
recognition. We have presented an algorithm for estimating
these weights without using any supervision. We have also
proposed computing a union of all matching subimages in
the image set, interpreted as category instances, and thus
obtaining the category model. The category model registers
all (partial) views of category occurrences in the image set,
yielding a representation of the complete (unoccluded)
object. Empirical validation on seven benchmark data sets
which present challenges such as object articulation,
occlusion, and significant background clutter demonstrates
high recall and precision of category detection and
recognition, as well as high accuracy of segmentation of

category occurrences, in completely unsupervised settings.
In weakly supervised settings, using the same experimental
procedures as those presented in prior work, our approach
outperforms existing baseline methods in object detection
and segmentation on almost all categories tested, with one
exception where our performance is slightly inferior within
standard deviation. Our qualitative empirical evaluation
demonstrates that the learned category model correctly
captures the recursive containment and spatial layout of
regions comprising the category instances in the image set.

APPENDIX

DERIVATION OF THE OPTIMAL WEIGHTS OF REGION

PROPERTIES

In this section, we derive the optimal weights of region

properties �̂� as a solution of the optimization problem stated

in (7). Recall that ��uu0 is a function of region properties of

those node pairs ðu; u0Þ that belong to the set of similar

regions GG, as explained in Section 5. Specifically, we have

��uu0 ¼ 1
2 ð    u þ     u0 � 3j    u �     u0 jÞ. Let �� ¼�

P
ðu;u0Þ2GG ��uu0 . Then,

�̂� can be found by solving the following problem:

max
��
��T��; s:t: k��k2 ¼ 1; �� � 0: ð8Þ

The Lagrangian of (8) reads L ¼ ���T�� þ �ðk��k2 � 1Þ þP
i 	ið��iÞ, where � and 				 � 0 are the Lagrangian multi-

pliers. Taking the derivative of L with respect to �� and
setting it to zero gives

@L=@�� ¼ ����� þ 2����� � 				 ¼ 0) �� ¼ �� þ 		
2�

: ð9Þ

To derive a closed-form solution of (8), we make the weak
assumption that there exists one region property i for which
the corresponding element �i of �� is positive. This
assumption is very weak, since from the definition of ��,
the converse (that is, �� < 0) would mean that there are on
the average more node pairs in GG whose differences of
region properties are larger than their sums. This in turn is
very unlikely because nodes considered for estimating �̂�
belong to GG, which is a large set of similar regions with very
small differences in their properties.

By making use of the above assumption, we prove that
� > 0. Suppose the converse, that is, � < 0. Since there exists
�i > 0, then �i þ 	i > 0. It follows from (9) that �i < 0, which
contradicts the constraint �� � 0. From the Karush-Kuhn-
Tucker condition [71], namely,

P
i 	i�i ¼ 0, it follows that

1. if �i ¼ 0) 	i ¼ 0) �i ¼ 0,
2. if �i < 0) 	i > 0) �i ¼ 0, and
3. if �i > 0) �i þ 	i > 0) �i > 0) 	i ¼ 0) �i ¼ �i

2� .

It immediately follows that the optimal �̂� ¼ ð��Þþ
kð��Þþk

, where
ðxÞþ ¼

�
maxð0; xÞ.
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TABLE 3
Recognition Recall and Precision of Ours2 in Experiment 3
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