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Abstract

A real-world object category can be viewed as a charac-
teristic configuration of its parts, that are themselves sim-
pler, smaller (sub)categories. Recognition of a category
can therefore be made easier by detecting its constituent
subcategories and combing these detection results. Given
a set of training images, each labeled by an object cate-
gory contained in it, we present an approach to learning:
(1) Taxonomy defined by recursive sharing of subcategories
by multiple image categories; (2) Subcategory relevance as
the degree of evidence a subcategory offers for the pres-
ence of its parent; (3) Likelihood that the image contains a
subcategory; and (4) Prior that a subcategory occurs. The
images are represented as points in a feature space spanned
by confidences in the occurrences of the subcategories. The
subcategory relevances are estimated as weights, necessary
to rescale the corresponding axes of the feature space so
that the images with the same label are closer to each other
than to those with different labels. When a new image is en-
countered, the learned taxonomy, relevances, likelihoods,
and priors are used by a linear classifier to categorize the
image. On the challenging Caltech-256 dataset, the pro-
posed approach significantly outperforms the best catego-
rizations reported. This result is significant in that it not
only demonstrates the advantages of exploiting subcategory
taxonomy for recognition, but also suggests that a feature
space spanned by part properties, instead of direct object
properties, allows for linear separation of image classes.

1. Introduction

Suppose an image contains objects belonging to multi-
ple categories. The image is labeled by one of these cat-
egory names. Given a set of images, containing repeated
occurrences of each label, this paper is aimed at estimat-
ing the models of the category corresponding to each label.
By finding the subimages shared by the images carrying the
same label, and contrasting them with the remaining im-
ages, carrying other labels, we wish to identify the subim-
ages occupied by the category and obtain an image model

for the category. The final result is a model for each of the
label categories which is well represented in the image set.

Our approach follows from the well recognized notion
that objects consist of parts. The intrinsic nature of the parts
and their spatial configurations define the category model.
These parts themselves define their own object categories.
Thus, larger categories, in general, are hierarchical config-
urations of smaller and simpler categories. In the sequel,
we refer to the constituent categories also as subcategories.
A category model captures the observed variations in the
category instances. These variations are due to their nat-
ural diversity, as well as differences in imaging parame-
ters, e.g., illumination, viewing direction, camera charac-
teristics, and occlusion. The larger the extent of an object,
the more diverse is the range of such effects, and more com-
plex the model. Therefore, recognition of the (smaller and
simpler) object parts is more reliable than the recognition of
the entire object. This makes recognition of a category from
its subcategory detections an efficient strategy, but requires
that these detections are efficiently combined.

The approach of combining part detections for object
recognition has been pursued in [10, 2]. They build a tax-
onomy of categories found in an image set. The taxonomy
is represented by a directed acyclic graph (DAG) in which
each category node is connected to all those representing
its subcategories. The taxonomy encodes sharing of (sim-
pler, smaller) subcategories by multiple, more complex cat-
egories (e.g., “buses” and “cars” share “wheels”). The shar-
ing of a subcategory results in a node being connected to
multiple parent nodes. Recognition of the category of an
image with unknown label is achieved by maximizing its
match with the taxonomy, i.e., with subgraphs of the tax-
onomy such that the structurally matching nodes have the
most similar image properties (e.g., shape, size, and color
of image regions). The part of the taxonomy that yields the
maximal match identifies the detected category. However,
this process has limitations. First, the taxonomy contains
only the likelihoods of a category match; no prior prob-
abilities of the occurrence of different categories are esti-
mated. This amounts to using the maximum likelihood cri-
terion for detection, which is not optimal in the Bayesian
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sense. The second limitation is that matches of all parts
are given equal weight, because the taxonomy does not en-
code the relevance of a subcategory to the definition of a
specific parent category. A subcategory may be very com-
mon and appear in the hierarchical definitions of many par-
ent categories (e.g., “windows” are often shared by “build-
ings,” “houses,” “recreational-vehicles,” etc.). Detection of
such a subcategory provides poor evidence that any specific
parent occurs. On the other hand, a subcategory may ap-
pear in the definitions of only a few parents, or, in the ex-
treme case, a unique parent (e.g., “two-humps-on-the-back”
of “camels”). Detection of such a subcategory unambigu-
ously suggests the presence of its unique parent. Since de-
tections of different subcategories provide different degrees
of evidence for category recognition, estimation of the sub-
category relevances is important.

This paper is aimed at improved category modeling and
recognition by addressing the aforementioned limitations.
We pursue five interrelated objectives. To achieve the first
two objectives, we extend and use the approach of [10, 2]
which is a prerequisite for the remaining three objectives
that are completely new and represent the major contribu-
tions of this paper. Given a set of labeled images, each
showing a category, our approach is aimed at: (1) Unsu-
pervised extraction of region-based, hierarchical definitions
of image categories in terms of their shared subcategories;
(2) Estimation of the likelihoods that a given image con-
tains any occurrences of the discovered subcategories; (3)
Estimation of the subcategory relevances to the recognition
of each image category, relative to the other category la-
bels present; (4) Estimation of the subcategory priors; and
(5) Specification of a linear classifier that will categorize
a new image by fusing the subcategory recognition results
and their learned relevances, as illustrated in Fig. 1.

Objectives (1)-(4) are aimed at overcoming the limita-
tions discussed earlier. Objective (5) is aimed at using the
learned, extended taxonomy for object recognition, while
still retaining the simplicity of the linear classifier used in
[10, 2]. Although the recognition process in [10, 2] is in-
tended to be hierarchical, as one of the contributions of this
paper, we show that their approach actually uses a linear
recognizer. They flatten the taxonomy so all parts are rep-
resented as separate object features, thus discarding their
hierarchical interdependencies. This yields a subcategory
feature space in which images are represented as points
whose coordinates are the confidences of detecting the sub-
categories. To recognize objects, they use a linear classifier
in this feature space that equally weights all the axes. De-
spite the flattening and subsequent use of a simple, linear
classifier, they achieve successful recognition on challeng-
ing benchmark datasets. This suggests that a feature space
spanned by part properties, instead of direct image prop-
erties of entire objects, allows for linear separation of im-

age classes. In particular, since each subcategory is char-
acterized by a certain combination of photometric, geo-
metric, and structural properties of regions it contains, the
subcategory feature space is obtained by a transformation
of the original feature space whose axes are these region
properties. This transformation may be viewed as serving
the same goal as intended for the kernel transforms to de-
fine higher-dimensional spaces sought by SVM’s. Although
complex, this transform is obtained by a “natural” (subcate-
gory based) definition of categories, so one may expect it to
be a reasonable direction to pursue. We do so in this paper.
Specifically, towards objective (5), we extend the work of
[10, 2] by incorporating the learned subcategory relevances
and priors in their linear classifier.

Overview of our approach: Suppose we are given a set of
labeled images, D, where each label c means that the im-
age contains at least one occurrence of category c from the
user-specified set of label categories C. Each image may
also contain occurrences of other categories from C, even
though it does not carry their labels. Where all in an im-
age the category occurs is unknown. Together, the images
with a given label are assumed to capture all representa-
tive occurrences of the category. Our approach consists of
the following four steps. Step 1: We begin with obtaining
a segmentation-tree representation of the images, to derive
subcategory based definitions of the label categories in C.
Segmentation trees capture the recursive embedding of im-
age regions, obtained through a multiscale segmentation. In
the sequel, we will refer to (sub-)trees and (sub-)images in-
terchangeably. Step 2: The subimages corresponding to
recurrences of a subcategory in D are found by identifying
subtrees across D that match. Each transitive closure of the
best matching subtrees is identified as the set of occurrences
of the corresponding subcategory. These transitive closures
are used to learn the subcategory likelihoods and priors. The
discovery of subcategories I present in D allows us to learn
the definitions of label categories C in terms of I in the fol-
lowing step. Step 3: We define the flattened feature space
in which the images are represented as points with coordi-
nates that measure the posterior probabilities of occurrence
of the subcategories from I. This subcategory feature space
is suitable for estimating the subcategory relevances. This
is done so the axes corresponding to the different subcate-
gories are rescaled such that all image points with the same
category label are closer to each other than to the points
with other labels. This rescaling increases the weights of
those subcategories that are more discriminative for a given
image category, as was the goal. Let Dc denote all training
images with the same label c. Then, the learned subcategory
relevances represent such weights of the subcategories that
jointly maximize the smallest margins between each image
point in Dc to its nearest neighbor in Dc and to its nearest
neighbor in the remaining image set. By the large-margin



Figure 1. Samples from Caltech-256: (top row) Two labeled image sets for categories c and c′, which share subcategories horses, wheels,
trees. The subcategory wagon-top frequently occurs in c′, but not in c. Recognition of c′ is particularly aided by observing wagon-top,
whereas the shared subcategories do not provide strong evidence for either category. Therefore, the learned relevance of the wagon-top
for recognizing category c′ is larger than those of shared subcategories. (bottom row) The absence of the wagon-top and the presence of
shared subcategories in x leads to the decision that x belongs to category c.

theory, the proposed learning algorithm will have good gen-
eralization over new images. Step 4: Once the subcategory
relevances, priors, and likelihoods are learned, they are used
to define a linear classifier for categorizing new images.

Sec. 2 reviews prior work, Sec. 3 describes Steps 1-2,
Sec. 5 presents Step 3, Sec. 6 presents experimental evalua-
tion, and two Appendices provide details of our algorithms.

2. Relationships to Prior Work

Image categorization can be formulated as scene match-
ing that uses a hierarchical structure of local image features
(e.g., SIFTs) [5, 8]. However, the scene-based categoriza-
tion usually requires volumes of training images to robustly
learn a combinatorially large number of object configura-
tions in the scene. The generalizabilty of these approaches
to images containing occlusion and large variations in scale
is still unclear. The advantages of using object-specific fea-
tures for the purposes of image categorization have been
well argued in prior work [12, 1, 11, 10, 2, 3]. We advance
these approaches by using the region-based taxonomy of
categories, which yields significant improvements in cate-
gorization performance.

Our approach to learning the subcategory relevances is
related to general feature weighting algorithms. The com-
putationally intensive wrapper methods evaluate the perfor-
mance of a classifier to select relevant features, whereas in
the filter methods features are weighted by their information
content [12]. Our learning algorithm belongs to the group of
embedded methods that incorporate feature weighting into
the learning process of a classifier [1, 11, 4, 7, 9]. Specifi-
cally, our formulation is motivated by the well known RE-
LIEF algorithm [7] that estimates feature weights by max-
imizing the margins of the 1-NN classifier over data. A
major problem with RELIEF is that the in-class and out-
of-class nearest neighbors of a sample are computed prior

to learning, and thus are very unlikely to remain so in the
weighted feature space, once the feature weights are es-
timated. This problem has been addressed by RELIEF-F
and I-RELIEF [9], however, as with all algorithms in the
RELIEF family, the objective function they use for feature
weighting is not directly related to the goals of classifica-
tion, i.e., good separation of data samples. Also, they learn
one global set of feature weights for all classes, whereas we
learn category-specific weights. The weights thus locally
learned per category, in our case, are expected to more ro-
bustly handle large intra-category variations from image to
image than globally estimated weights over the entire train-
ing set. In [4], learning category-specific feature weights
is pushed to the extreme of estimating the weights for each
image separately. However, they formulate this estimation
as maximizing the difference in distances between the im-
age and all other in-class and out-of-class images. Since for
large training sets this is computationally infeasible, they
select, prior to learning, a fixed number of in-class and
out-of-class closest neighbors, and thus encounter the same
aforementioned problem as RELIEF.

3. Discovering Subcategories

This section presents Steps 1–2 of our approach that con-
cern deriving segmentation-tree representations of the im-
ages in training set D, and discovering subcategories present
in D. To this end, we use the approach of [10, 2], briefly re-
viewed below.

Images are represented by segmentation trees (Fig. 2)
whose nodes correspond to regions obtained via a multi-
scale segmentation, and edges capture region embedding.
A vector ψv of region properties, such as brightness, area,
perimeter, centroid location, etc., is associated with each
node v, defined relative to v’s parent, to allow scale and
rotation-in-plane invariance of recognition. In this paper,



Figure 2. Segmentation trees tn capture the recursive embedding
of regions in images. The tree-union T is the minimum-size graph
that contains all segmentation trees.

we illustrate our approach for the case when each im-
age has exactly one category label. In the training set
D={(tn, yn)}N

n=1, where y∈C denotes the label of segmen-
tation tree t, subcategories appear as similar subtrees within
the image trees, having similar node propertiesψ and struc-
ture. They can be discovered by matching the trees, and
then finding their maximum-similarity, common subtrees.
Given two trees t and t′, the goal of matching is to find the
subtree isomorphism, f={(v, v′)}⊂t×t′, which preserves
the original structure of t and t′, and maximizes their simi-
larity measure, Stt′ , defined as

Stt′�
∑

(v,v′)∈f

[2 min(‖ψv‖, ‖ψv′‖)−max(‖ψv‖, ‖ψv′‖)].

(1)
After matching the trees, we find the transitive closures

of maximally matching subtrees, to discover subcategories
present in D. Note that a subtree is uniquely defined by a
node at which the subtree is rooted. We will refer to a node
and the subtree under it interchangeably. As explained in
greater detail in [10, 2], finding the transitive closures of
maximally matching nodes is equivalent to constructing a
tree-union, T , from all the trees in D (Fig. 2). As in [10],
we construct the tree-union sequentially. In each iteration
τ , T (τ) is matched with a new tree t∈D, and then the un-
matched nodes of t are added and appropriately connected
to T (τ) to form T (τ+1). Each tree-union node i∈T records a
collection of all regions across the images in D that matched
with i (Fig. 2). That is, tree-union node i represents a tran-
sitive closure of matching regions, defining subcategory i.
Consequently, the set of nodes in T , denoted as I, repre-
sents the discovered set of subcategories. Each tree-union
node i is characterized by a Gaussian pdf, and thus by the
mean vector µi=mean{ψv}, and covariance Σi=cov{ψv}
of all matching regions v across D transitively grouped un-
der i. These parameters specify the Gaussian likelihoods of
the corresponding subcategories, P (ψ|i)�N (ψ;µi,Σi),
∀i∈I. We also compute the frequency of occurrence of each
discovered subcategory i in the training set D. For large D,
as is the case in this paper, this frequency represents the
estimate of the prior probability that i occurs, P (i).

Table 1. Frequently Used Notation
C - user-specified set of object categories, i.e., image labels;
D, Dc - training set, and its subset with images of the same label c;
I - set of subcategories discovered in D;
t - segmentation tree representation of the image;
T - tree-union of all the image trees in the training set;
v - node in the segmentation tree;
i - node in tree-union T = discovered subcategory;
x = [. . . xi . . . ]T - confidence vector representation of the image;
xi - confidence in detecting subcategory i in image x;
y - category label assigned to image x, i.e., to tree t;
w = [. . . wi . . . ]T - vector of relevances wi of subcategories i∈I;
ψ - vector of region properties;
µi, Σi - Gaussian parameters associated with subcategory i;
dxx′ - distance between images x and x′;
Mx (Hx ) - set of misses (hits) of image x;
mx (hx ) - nearest miss (hit) of image x;
σ - kernel width for probability density estimation.

4. Categorization Using a Linear Classifier

In this section, we show that the approach of [10, 2] cat-
egorizes images using a linear classifier. Recall that every
image from the training set is uniquely registered within
tree-union T . Therefore, all training images with the same
label c uniquely define subgraph Tc within T that represents
the model of category c∈C. The subset of tree-union nodes
that belong to Tc represent the subset of subcategories, de-
noted as Ic, defining category c. Thus, a previously unseen
image is categorized in [10, 2] by matching its segmentation
tree t with every Tc, ∀c∈C, which produces their similarity
measures StTc , given by (1), and then by finding the max-
imum similarity y=arg maxc∈C StTc . From (1), matching
node v∈t with node i∈Tc amounts to identifying subcate-
gory i in image t, with confidence measured heuristically as
xi=[2 min(‖ψv‖, ‖µi‖)−max(‖ψv‖, ‖µi‖)] if node pair
(v, i) is included in subtree isomorphism f⊂t×Tc, other-
wise xi=0. Therefore, we can conveniently rewrite the ex-
pression of (1) to highlight that StTc is computed as a sum
of confidences xi that the subcategories i∈Ic occur in the
image, StTc=

∑
i∈Ic

wixi, where all weighting coefficients
wi=1. This proves that [10, 2] perform linear separation
of image categories in the feature space spanned by equally
weighted confidences in subcategory detections.

5. Learning the Subcategory Weights

This section presents Step 3 of our approach (Sec. 1)
that estimates the relevance of discovered subcategories for
recognition of each individual image category. Given a dis-
tance function between two images, defined in terms of con-
fidences in subcategory detections in the images, the rel-
evances are computed so that each image from the train-
ing set is closer to its nearest in-class image pair than to its
nearest out-of-class pair. We begin with describing our vec-
tor image representation that we use to define the distance
function. The summary of notation is given in Tab. 1.



The vector of relevances of all subcategories i∈I for
a given image category c∈C is defined as wc∈W={w :
w∈R|I|, ‖w‖=1,w≥0}, where ‖·‖ is the two-norm, and
wic=0 if subcategory i does not appear in the definition of
c. In general, the vectorswc differ for distinct categories in
C. Since in this section we consider only the subcategory
relevances to one parent category, we will drop the category
indication in subscript, wc→w, for simplicity. To estimate
w, as in [10, 2], we flatten the segmentation trees of the
training images, and specify their vector representations as
x∈X={x : x∈R|I|,x≥0}, where xi is a confidence mea-
sure that subcategory i∈I occurs in image x. Since we use
segmentation tree t and vector x as two alternative repre-
sentations of the same image, in the sequel, we will refer to
image trees and image vectors interchangeably. Analogous
to the heuristic confidence measures xi used in [10, 2] for
recognition (Sec. 4), we here specify xi using the estimates
of subcategory likelihoods N (ψv;µi,Σi) and priors P (i),
obtained in Step 2 of our approach. Recall that subcategory
detections in the training images are automatically achieved
by constructing the tree-union (Sec. 3). That is, all those
nodes v from the image trees that are transitively clustered
under tree-union node i indicate the presence of subcate-
gory i in the corresponding images. For subcategories i∈I

whose occurrences v are identified in image x, we compute
xi as: xi�N (ψv;µi,Σi)P (i)∝P (i|ψv), where the prior
over region properties, P (ψv), is assumed uniform. For the
rest of subcategories i∈I that are not identified in the image,
we set xi�0. By using this vector image representation, we
define a distance function dxx′(w) between images x and
x′ as

dxx′(w) � wT|x−x′| . (2)

Given the training set, D={(xn, yn)}N
n=1, and dxx′(w),

the relevances w are estimated so as to transform the
original space of images X into a weighted space X̃

by maximizing intra- vs. inter-category homogeneity
of the image vectors with the same label, as measured
by dxx′(w). This is done by maximizing the mar-
gins of 1-NN classifiers associated with every image, de-
fined using the image’s nearest miss and hit as follows.
For each x with label y, the other training images can
be grouped into two sets, referred to as hits Hx and
misses Mx, where Hx � {x′:(x′, y′)∈D, y′=y,x′ �=x},
and Mx � {x′:(x′, y′)∈D, y′ �=y}. The nearest miss
mx(w) � argminx′∈Mx dxx′(w) and hit hx(w) �
argminx′∈Hx dxx′(w) of x are used to define the margin
of the image’s 1-NN classifier as

rx(w)�dxmx−dxhx=wT(|x−mx(w)| − |x−hx(w)|).
(3)

By maximizing the margins rx(w) of all images x with the
same label, say, y = c ∈ C, we compute the subcategory

relevanceswc for recognition of image category c:

wc= max
w∈W

wT ∑
x∈Dc

(|x−mx(w)|−|x−hx(w)|). (4)

The optimization problem of (4) uses mx(w) and hx(w)
which require the subcategory relevances to have already
been learned. Note that different values of w may yield
completely different nearest misses and hits of x in the
weighted image space X̃ from those computed in the origi-
nal space X. To account for the uncertainty in estimating the
nearest neighbors in X̃, we reformulate (4) within a proba-
bilistic framework. In particular, we specify hx andmx as
hidden random variables characterized by certain probabil-
ity density functions (pdf’s). Given the pdf’s of these hid-
den variables,w can be estimated from (4) by averaging out
hx andmx over the entire training set. This is similar to the
EM algorithm, where the incomplete (hidden) data are sub-
stituted by their mean values. To this end, we introduce the
following probabilities: (1) Px′=hx – probability that image
x′∈Hx is the nearest hit of x; and (2) Px′=mx – probabil-
ity that x′∈Mx is the nearest miss of x. These probabilities
can be computed using the standard kernel-based density
estimation, with a kernel function κ(·), as

Px′=hx � κ(dxx′(w))∑
x′′∈Hx

κ(dxx′′(w))
, ∀x′∈Hx, (5)

Px′=mx � κ(dxx′(w))∑
x′′∈Mx

κ(dxx′′(w))
, ∀x′∈Mx. (6)

We use the exponential kernel κ(d)� exp(−d/σ), where
kernel width σ is an input parameter. As shown in Sec. 6,
our algorithm is largely insensitive to a specific (“meaning-
ful”) choice of σ. Other kernel functions can also be used.

The probabilities defined in (5) and (6) allow us to find
the expectation of the margins in (4), and thus address the
uncertainty of estimating the image’s nearest neighbors in
the weighted space X̃. Similar to the EM, our learning algo-
rithm consists of the E-step and M-step that are iterated al-
ternatively until objective function Q reaches convergence.
In the E-step, Q is computed as the expectation of rx(w)
with respect to the hidden variables hx and mx, using the
current estimate of w(τ). In the M-step, Q is maximized
with respect to w, resulting in new estimate w(τ+1). In the
E-step, we compute:

Q=wT [
∑
x∈Dc

x′∈Mx

|x−x′|P (τ)
x′=mx

−
∑
x∈Dc

x′′∈Hx

|x−x′′|P (τ)
x′′=hx

]

︸ ︷︷ ︸
z
(τ)
c

,

(7)
where P

(τ)
x′=hx

and P
(τ)
x′=mx

are obtained from (5) and (6)

usingw(τ). Then, in the M-step, we compute:

w(τ+1) = arg max
w∈W

wTz(τ)
c =

[z(τ)
c ]+

‖[z(τ)
c ]+‖

, (8)



where [a]+�max(a, 0). The detailed derivation of the up-
date rule (8) is given in Appendix I.

Learning the subcategory relevances for a given image
category is summarized in Alg. 1. The E-step and M-step
are iterated until ‖w(τ+1)−w(τ)‖<ε=10−3. Appendix II
presents the convergence analysis of Alg. 1 – specifically,
the proof of Theorem 1 that states the following attractive
properties: (1) Alg. 1 converges if the chosen kernel width σ
is sufficiently large; (2) Alg. 1 converges for a wide range of
σ values, and thus is largely insensitive to a specific choice
of σ; (3) The convergence rate of Alg. 1 increases for larger
σ; (4) Unlike many machine learning algorithms (e.g., neu-
ral nets), Alg. 1 converges always to a unique solution that
is not affected by the initialization value ofw(0). The range
of σ values that is reasonable to select for image categoriza-
tion is shown in Sec. 6. Complexity of Alg. 1 is O(|I|τ).

Algorithm 1: Learning the Subcategory Relevances
Input : Image category c∈C, D={(x, y)}; I; σ; ε
Output: Optimal relevances wc ← w(τ)

Set τ=0; ∀i∈I: set w
(0)
i to a positive random value; ∀x∈Dc find1

Mx and Hx ;
repeat2

E-step: ∀x∈Dc and ∀x′∈Mx and ∀x′′∈Hx compute3

P
(τ)
x′=hx

and P
(τ)
x′′=mx

, as in (5)-(6); Compute Q as in (7);

M-step: Update w(τ+1) as in (8); τ = τ + 1;4

until ||w(τ)−w(τ−1)||<ε ;5

Algorithm 2: The Entire Learning
Input : Training image trees D={(t, y)}; σ
Output: Optimal relevances wc, ∀c∈C

Find tree-union T of D (Sec. 3);1
Interpret nodes i∈T as discovered subcategories i∈I;2
Compute the vector image representations, x, where xi is3
proportional to the posterior probability that subcategory i∈I

occurs in image x;
Compute wc, ∀c∈C, by using Alg. 1.4

The entire learning algorithm including the discovery of
subcategories and estimating the subcategory relevances of
all image categories is summarized in Alg. 2. Its complexity
is computed as follows. Complexity of image matching is
O(|t|2), where |t| is the number tree nodes. Matching two
image trees with approximately 50 nodes each, takes about
20s on a 2.8GHz, 2GB RAM PC with code implemented in
MATLAB. Also, complexity of Alg. 1 with τ iterations is
O(|I|τ). Thus, complexity of Alg. 2 is O(|I|2+|C||I|τ).

6. Results

Categorization of a new image is conducted by matching
the image’s segmentation tree with tree-union T , to identify
subcategory occurrences in the image. Then, the vector rep-
resentation x of the image is computed. Finally, the image
is categorized using the linear classifier which is parameter-
ized by the learned subcategory relevances for each image
category: ĉ=arg maxc∈Cw

T
cx.

For evaluation, we use two datasets: Caltech-101 and
Caltech-256 [6], which, at the time of conducting these ex-
periments, contained more categories by an order of mag-
nitude than any other publicly available dataset. The well-
known drawbacks of Caltech-101, such as little variation in
pose or scale within many categories, have been addressed
in Caltech-256. Specifically, in Caltech-256, the categories
are carefully selected so as to represent a broader variety
of natural and artificial objects appearing in indoor and out-
door scenes, with larger inter- and intra-category variability.
The images are acquired under challenging lighting condi-
tions, at different scales, and from diverse viewpoints. The
images also contain occlusion and background clutter. As
a major challenge to categorization, Caltech-256 contains
similar categories whose definitions share almost identical
sets of subcategories, as illustrated in Fig. 3. This help eval-
uate the generality of our approach.

Performance is evaluated as a function of: (i) the num-
ber of training images per category Nc, and (ii) the specific
choice of kernel width σ – the only input parameter. For
training, we use Nc={5:5:30}, while the remaining images
are used for testing. The convergence rate of learning is
tested for σ={0.1:0.1:1}. The average categorization error
of 10 experiments is reported.

Fig. 4 compares the best reported results on Caltech-101
and Caltech-256 with ours. For every value of Nc, our
approach outperforms the existing work. For Nc=30, we
outperform by 9.9% the best recorded result on Caltech-
256 [3]. To quantify the accuracy gain of our approach,
we compute the increase in the area under our recognition-
rate curve vs. those of competing approaches. Let
RRour(Nc) and RRold(Nc) denote the recognition rates of
our approach and prior work obtained for Nc training im-
ages per category. Then, the accuracy gain is defined as

α=
∑

Nc
(RRour(Nc)−RRold(Nc))∑

Nc
RRold(Nc)

. Table 2 presents the α val-

ues. Note that the approach of [10] is not developed to ad-
dress image categorization, and does not use any discrim-
inative information between categories. When this infor-
mation is incorporated, as in our approach, categorization
performance substantially improves. Our performance on
Caltech-256, for Nc=30, is lower by 7.3% if confidences
in subcategory detections, x, are defined using the likeli-
hoods xi=P (ψv|i) instead of the posterior of i. These re-
sults quantify the value of computing the subcategory priors
and relevances for image categorization.

Fig. 5 shows that our approach is largely insensitive to
a specific choice of kernel width σ. Also, Fig. 5 demon-
strates that larger σ values yield faster convergence rates,
as stated by Theorem 1 (Appendix II). Fig. 6 shows exam-
ples of regions occupied by subcategories that are found to
be the most and least significant to recognition. As can be
seen, our approach is capable of segmenting the most rele-
vant regions responsible for the category label of the image.



Figure 3. Samples from Caltech-256, labeled as (left-to-right):
baseball-bat, computer-monitor, covered-wagon, ladder, and rain-
bow. These images contain subcategories that also appear in the
definitions of categories: people, palm-tree, car-tire, dog, and wa-
terfall. Subcategory sharing makes categorization challenging.

Table 2. Accuracy gain
α in (%)

Cal-101 Cal-256

[3] 4.5 9.6
[4] 23.2 NA

[13] 25.6 NA

[6] 26.2 51.1

[10] 37.9 57.9

Figure 4. Caltech-101 and Caltech-256: Our recognition rates and
accuracy gain α vs. [3, 8, 4, 13, 6, 10].

Figure 5. Recognition and convergence rates for varying kernel
widths σ. ε=‖w(t+1)−w(t)‖. If the algorithm converges, the
classification accuracy is insensitive to a specific choice of σ. The
convergence rate is faster for larger kernel widths. Nc=30.

Figure 6. Samples from Caltech-256: The use of regions as
features allows us to segment the occurrences of the (rele-
vant/irrelevant) subcategories in the image. Regions with the
largest weight (red) and the smallest weight (blue) for the images
in categories: billiards, camel, ostrich, and giraffe.

7. Conclusion

In this paper, we have demonstrated that using subcate-
gories as features of image categories allows efficient learn-

ing of a margin-based, linear classifier, which yields supe-
rior image categorization performance than seen in prior
work. Recognition using the proposed linear classifier si-
multaneously achieves category segmentation, by virtue of
identification of all the subcategories in the image that con-
tribute to category recognition. While this paper considers
only one label per image, our problem statement allows that
a training image may contain occurrences of multiple la-
bel categories. Thus, the generalization of our approach to
multiple labels per image is reasonably straightforward.
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Appendix I: M-step of the Learning Algorithm

The M-step of Alg. 1 reads maxwwTz, s.t. ||w||2 =
1, w ≥ 0. Its Lagrangian is L = −wTz + λ(||w||2−1) +∑|T |

i=1 ζi(−w(i)), where λ and ζ≥0 are the Lagrangian
multipliers. Taking the derivative of L with respect to w,
and setting it to zero gives

∂L/∂w = −z + 2λw − ζ = 0 ⇒ w =
z + ζ
2λ

. (9)

To derive a closed-form solution, we make the assump-
tion that there exists one node i∈T for which z(i)>0.
From (7), this assumption is very weak, since the con-
verse (i.e., z<0) would mean that there are more trees in
D closer to their misses than trees that are closer to their
hits. This case is very unlikely to occur in real applica-
tions with large datasets as we here use. This assumption
has also been used for a number of machine learning algo-
rithms that make decisions based on the distances of pat-
terns and their neighbors, such as RBF, and SVM with RBF
kernel. Given this assumption, we prove that λ>0. Suppose
the converse is true, i.e., λ<0. Since there exists z(i)>0,
then z(i)+ζ(i)>0. It follows from (9) that w(i)<0, which
contradicts the constraint w≥0. From the Karush-Kuhn-
Tucker condition, namely

∑
i ζ(i)w(i)=0, we have the fol-

lowing three cases: (1) z(i)=0 ⇒ ζ(i)=0 ⇒ w(i)=0;
(2) z(i)<0 ⇒ ζ(i)>0 ⇒ w(i)=0; and (3) z(i)>0 ⇒
z(i)+ζv>0 ⇒ w(i)>0 ⇒ ζ(i)=0 ⇒ w(i)= z(i)

2λ . It im-
mediately follows that the expression for computing w has
a closed form given by (8).

Appendix II: Convergence Analysis

This section presents the convergence analysis of Alg. 1.
We begin by studying its asymptotic behavior:

∀x, limσ→+∞ Px′=mx = 1/|Mx| , ∀x′∈Mx , (10)



since lim
σ→+∞ k(d)=1. Also, assuming that for every x,

dxx′(w)�=dxx′′(w) if x′ �=x′′, we have

lim
σ→0

Px′=mx(w)=




1, if dxx′(w)= min
x′′∈Mx

dxx′′(w)

0, if dxx′(w)> min
x′′∈Mx

dxx′′(w).

(11)
Similar asymptotic behavior holds for Px′=hx . Thus, for
σ→+∞ the algorithm converges to a unique solution in one
iteration, and for σ → 0 rarely do we empirically observe
that the algorithm converges. This suggests that the algo-
rithm’s convergence is fully controlled by the kernel width,
which is formally stated in the following theorem.

Theorem 1 There exists σ∗>0 such that for any kernel
width σ>σ∗ Alg. 1 converges, lim

τ→+∞ ||w(τ+1)−w(τ)||=0,

where w(τ) ∈ W = {w : w∈R|I|, ‖w‖=1,w≥0}. More-
over, for a fixed σ>σ∗, Alg. 1 converges to a unique solution
for any initialw(0)∈W.

To prove Theorem 1, we use the well-known Banach
fixed point theorem, stated below without proof.
Definitions: Let U be a subset of a normed space Z ,
with norm ‖·‖. Operator T : U→Z is called a contrac-
tion operator if there exists a constant q∈[0, 1) such that
‖T (x)−T (y)‖≤q‖x−y‖, ∀x, y∈U . q is called the contrac-
tion number of T . An element of a normed space Z is called
a fixed point of T : U→Z if T (x)=x.

Theorem 2 (Fixed Point Theorem) Let T be a contrac-
tion operator mapping a complete subset U of a normed
space Z into itself. Then the sequence generated as
x(τ+1) = T (x(τ)), with arbitrary x(0) ∈ U , converges to
the unique fixed point x∗ of T . Moreover, the following esti-
mation error bounds hold: ‖x(t)−x∗‖ ≤ qt

1−q ‖x(1)−x(0)‖,

and ‖x(t) − x∗‖ ≤ q
1−q ‖x(t) − x(t−1)‖.

Proof of Theorem 1: The proof identifies a contraction op-
erator of Alg. 1, and makes sure that the conditions of The-
orem 2 are met. Let us define P�{(Px′=mx , Px′=hx)},
∀x �=x′ from the training set D. Then E-step and M-
step of Alg. 1 can be specified in a functional form as
E:W→P, and M:P→W, i.e., Alg. 1 can be expressed as
w(τ+1)=(E◦M)(w(τ))=T (w(τ)), where (◦) denotes func-
tional composition, and T :W→W. Since W is a closed
subset of normed space R|I| and complete, T is an opera-
tor mapping complete subset W into itself.

Recall that limσ→+∞ Px′=mx=|Mx|−1, ∀w∈W, and
that similar asymptotic behavior holds for Px′=hx .
Then, limσ→+∞[T (w′, σ)−T (w′′, σ)]=0, ∀w′,w′′∈W.
Since the 2-norm is a continuous function, it follows
that limσ→+∞ ||T (w′, σ)−T (w′′, σ)||=0, ∀w′,w′′∈W.
Therefore, in the limit, T is a contraction operator with con-
traction constant lim

σ→+∞ q(σ)=0. Consequently, for every

ε>0, there exists σ∗ such that q(σ)≤ε, whenever σ>σ∗. By
setting ε<1, the resulting T is a contraction operator. From
the Banach theorem, it immediately follows that Alg. 1 con-
verges to a unique fixed point, provided σ is sufficiently
large. Also, the error bound in Theorem 2 guarantees that a
larger σ yields a faster convergence rate. �

References

[1] S. Agarwal, A. Awan, and D. Roth. Learning to detect ob-
jects in images via a sparse, part-based representation. IEEE
TPAMI, 26(11):1475–1490, 2004.

[2] N. Ahuja and S. Todorovic. Learning the taxonomy and mod-
els of categories present in arbitrary images. In ICCV, 2007.

[3] A. Bosch, A. Zisserman, and X. Munoz. Image classification
using random forests and ferns. In ICCV, 2007.

[4] A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-
consistent local distance functions for shape-based image re-
trieval and classification. In ICCV, 2007.

[5] K. Grauman and T. Darrell. The pyramid match kernel:
Discriminative classification with sets of image features. In
ICCV, volume 2, pages 1458–1465, 2005.

[6] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-
egory dataset. Technical Report 7694, California Institute of
Technology, 2007.

[7] K. Kira and L. A. Rendell. A practical approach to feature
selection. In ICML, pages 249256, vol.1, 1992.

[8] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006.

[9] Y. Sun. Iterative RELIEF for feature weighting: Algorithms,
theories, and applications. IEEE TPAMI, 29(6), 2007.

[10] S. Todorovic and N. Ahuja. Extracting subimages of an un-
known category from a set of images. In CVPR, 2006.

[11] A. Torralba, K. Murphy, and W. Freeman. Sharing features:
efficient boosting procedures for multiclass object detection.
In CVPR, volume 2, pages 762–769, 2004.

[12] M. Vidal-Naquet and S. Ullman. Object recognition with
informative features and linear classification. In ICCV, pages
281–288, vol.1, 2003.

[13] H. Zhang, A. Berg, M. Maire, and J. Malik. Svm-knn: Dis-
criminative nearest neighbor classification for visual cate-
gory recognition. In CVPR, pages 2126–2136, 2006.


