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Surfaces from Stereo: Integrating Feature Matching, 
Disparity Estimation, and Contour Detection 

WILLIAM HOFF, MEMBER, IEEE, AND NARENDRA AHUJA, SENIOR MEMBER,  IEEE 

Abstract-The goal of stereo algorithms is to determine the three- 
dimensional distance, or depth, of objects from a stereo pair of images. 
The usual approach is to first identify corresponding features between 
the two images and estimate their depths, then interpolate to obtain a 
complete distance or depth map. Traditionally, finding the correspond- 
ing features has been considered to be the most difficult problem. Also, 
occluding and ridge contours (depth and orientation discontinuities) 
have not been explicitly detected which has made surface interpolation 
difficult. The approach described in this paper integrates the processes 
of feature matching, contour detection, and surface interpolation. In- 
tegration is necessary to ensure that the detected surfaces are smooth. 
Surface interpolation takes into account detected occluding and ridge 
contours in the scene; interpolation is performed within regions en- 
closed by these contours. Planar and quadratic patches are used as 
local models of the surface. Occluded regions in the image are identi- 
fied, and are not used for matching and interpolation. A coarse-to-fine 
algorithm is presented that generates a multiresolution hierarchy of 
surface maps, one at each level of resolution. Experimental results are 
given for a variety of stereo images. 

Index Terms-Boundary detection, feature matching, integration, 
stereo vision, surface interpolation, three-dimensional segmentation, 
three-dimensional vision. 

I. INTRODUCTION 
HE goal of stereo vision is the recovery of three-di- T mensional depth information from images taken from 

different viewpoints. In this paper we are concerned with 
the problem of computing the distance between the viewer 
and each point of the scene visible from two viewpoints, 
using two images recorded simultaneously from a pair of 
laterally displaced cameras. The usual paradigm for ste- 
reo algorithms includes the following steps: 

1) Features are located in each of the two images in- 
dependently. 

2) Features from one image are matched with features 
from the other image. That is, for every feature in the left 
image corresponding to a certain point in the scene, a fea- 
ture must be found in the right image such that it corre- 
sponds to the projection of the same scene point. 

3 )  The disparity between features is used, together with 
the parameters of the imaging geometry (i.e., relative 
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separation and orientation of the cameras), to determine 
the distance to the corresponding point in the scene. 

4) The resulting depth points are often sparse whereas 
depth must be computed at every point in the scene. Thus, 
the depth points are interpolated to obtain a surface, or a 
complete depth map. 

Although monocular cues expedite fusion [ 11, it may 
be sufficient to consider only syntactic or low level fea- 
tures of local gray level patterns to establish point corre- 
spondences across images [2]. Because of their simplic- 
ity, similar low level features occur commonly in the 
image. The search for the match of a point often yields 
multiple candidates, because there is little information that 
can be used to characterize low level features uniquely. 
Thus, there can be many possible matches for a given fea- 
ture, and it is necessary to choose the correct match from 
among all the candidates. The matching step above in- 
corporates a resolution of this ambiguity. Since the se- 
lected matches are crucial in determining the resulting 
surface map, this step, called the correspondence prob- 
lem, has been considered to be the central and the most 
difficult part of the stereo problem.' 

In addition to the problem of ambiguity, finding cor- 
respondences is difficult because some features may have 
no correct match due to image noise or occlusion. Also, 
the feature points may be sparse in places where there is 
little image variation. Finally, the disparity values may 
be noisy, which can be caused by uncertainty in the po- 
sitions of the feature points. 

This paper argues that the steps of matching and surface 
interpolation should be merged. The goal is to perform 
matching such that the interpolated surface is smooth ex- 
cept across ridge and occluding contours. First we review 
previous work and discuss the need for integration. Next 
we present a method for integrating surface interpolation 
and matching, and then a method for detecting ridge and 
occluding contours. A coarse-to-fine algorithm is outlined 
that implements the integration to produce a hierarchy of 
surface maps, corresponding to different levels of reso- 
lution. Results of the algorithm are presented on a variety 
of images. An early report on the work presented in this 
paper can be found in [15], [14]. See also [ 171, 1201, 1301 
for other related work on integration. 

'The use of inore than two views reduces but does not eliminate ambi- 
guities. For this reason we will concentrate on the two view situation. al- 
though in principle the approach described here could be applied to more 
than two views. 
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11. THE NEED FOR INTEGRATION 
In order to solve the correspondence problem, con- 

straints must be used to select the correct match of a fea- 
ture from among the candidate matches. Such constraints 
are often (but not always, e.g., [29]) expressed in terms 
of the relative disparities of nearby features. Thus, these 
constraints enforce specific models of spatial variation of 
depth, or surface smoothness. A realistic model of 
smoothness is suggested by the following observations. 
Objects in a scene have faces which are smooth in the 
sense that the surface normal varies slowly. The faces 
meet at surface ridges which are themselves smooth curves 
in three-dimensional space. This smoothness of the faces 
and ridges implies that the three dimensional boundary of 
any object against the background is also (piecewise) 
smooth. Thus, the image of a scene has the following 
structure. It contains regions corresponding to object 
faces. The border of a region may be composed of two 
kinds of segments: ridge segments, corresponding to sur- 
face ridges across which the surface slope is discontin- 
uous, and occlusion segments across which surface depth 
is discontinuous. In the interiors of these regions both sur- 
face depth and slope vary smoothly in some predeter- 
mined sense (in our implementation smoothness means 
planar or quadratic variation in disparity; see Section 
111-A). 

A .  Constraints Used in Previous Work 
Two types of constraints, and thus models of surface 

smoothness, have been used in most previous work on 
stereo. One popular constraint enforces the disparities of 
features in a window to have similar values. This con- 
straint, which we call the constant-local-disparity con- 
straint, has been used by a number of workers. In the 
Marr-Poggio-Grimson approach [ 3 ] - [ 5 ] ,  the matching 
ambiguity at a point is resolved such that the chosen dis- 
parity value is close to the majority of the unambiguous 
points in the neighborhood. In the algorithm of Barnard 
and Thompson [ 6 ] ,  a relaxation labeling technique [7] is 
used to resolve ambiguities, using the constraint that 
nearby points should have nearly the same disparity. In 
the algorithms of Medioni and Nevatia [8] and Ayache 
and Faverjon [9], line segments are extracted and 
matched. Again, similarity of disparity is used to resolve 
ambiguous matches. 

Another constraint, called the $figural continuity con- 
straint, restricts disparity values along edges in the image. 
Mayhew and Frisby [lo] use this constraint to resolve 
matching ambiguities along edge segments. Grimson [ 1 11 
uses the figural continuity constraint along edges at a 
coarse resolution to enforce the same at finer resolution. 
Baker and Binford [12] use the figural continuity con- 
straint along with an added restriction: if the edges along 
a certain epipolar line in one image are scanned left-to- 
right, their matches along the corresponding epipolar line 
in the other image should also have a left-to-right order- 
ing. Ohta and Kanade [13] also use the same constraint. 

There are two problems with each of these constraints. 
First, they make certain assumptions about the relation- 

ship of the detected image features to three-dimensional 
features, which may or may not hold. For example, an 
intensity edge segment may not lie on a single surface, 
but may cross an occlusion boundary. This happens when 
there are no strong intensity edges defining the boundaries 
of different surfaces. In this case, disparity will not vary 
smoothly along the edge segment and the figural conti- 
nuity constraint will fail. Likewise, enforcing constancy 
of disparity over a window will be erroneous if the win- 
dow contains an occlusion boundary. 

The second problem with the use of these constraints is 
that even when the above assumptions about the features 
are met, namely, the edge segments or windows to which 
the constraints are applied come from a single surface, the 
constraints do not enforce surface smoothness in a true 
sense. For example, the constant-local-disparity con- 
straint is too weak to truly enforce surface smoothness, 
because smoothness is actually determined by not only the 
values of disparity in an image region but also the spatial 
distribution of these values. The disparity values may ac- 
tually span a wide range without violating surface 
smoothness constraint as would be the case for a slanted 
plane in which the disparities of features in the nearest 
part are larger than those of features located in the distant 
part. If the model requires that nearby disparities have 
similar values, i.e., that the histogram of these local dis- 
parities be uniform, then disparity selection is biased in 
favor of a frontoparallel surface.' 

The figural continuity constraint correctly but weakly 
enforces the constraint of three-dimensional surface 
smoothness, because it enforces smoothness only along 
curves. Three-dimensional surface smoothness actually 
implies a stronger, two-dimensional smoothness in the 
image. 

B. The Need for Integration 
We will now argue that to enforce surface smoothness 

it is necessary to integrate the processes of matching and 
surface interpolation. Matching provides surface depth 
values at the locations of the matched features, which 
constrain the surface that will result after interpolation. 
Effectively, the matching process determines the final sur- 
face derived. Since the resulting surface is expected to be 
smooth, the correctness of the choice of matches is judged 
by the type of surfaces it produces. Therefore, the inter- 
polation process should be involved in matching so as to 
make acceptable matching decisions. The matching and 
interpolation processes thus should be integrated. 

'A pilot study was conducted to examine possible roles in human ste- 
reopsis of the surface-smoothness constraint and the constant-local-dispar- 
ity constraint [ 141. [15] .  A random dot stereogram was generated such that 
the use of the two different matching constraints would yield the perception 
of two different surfaces. The random dot stereogram portrays a surface 
whose height varies along the vertical axis as a cosine wave. and which is 
unambiguous everywhere except for a small region centered at the peak. 
This ambiguous region can he perceived as  a smooth continuatlon of the 
cosine wave, or as a surface which is locally rough hut has approximately 
constant height. We found that observers perceived the smooth surface much 
more readily than the rough surface. These results appear to support the 
hypothesis that the surface smoothness constraint is used. 
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Further, we argue that it is necessary to integrate con- 
tour detection with matching and surface interpolation. 
The presence of surface contours violates the assumption 
of local surface smoothness. It is important that contours 
be detected to avoid matching errors and to correctly in- 
terpolate the surface. In our approach, this was done by 
comparing adjacent surface patches for depth and orien- 
tation discontinuities. 

111. AN INTEGRATION ALGORITHM 

In this section, we describe an algorithm that imple- 
ments integration of matching, interpolation, and contour 
detection. We first present an overview of the algorithm 
and then briefly describe the major steps in the algorithm. 
The details of the implementation are given in the Appen- 
dix. 

A .  Overview of the Algorithm 

The algorithm is shown schematically in Fig. 1. To re- 
duce the number of ambiguous matches that must be ex- 
plored, the algorithm works in a coarse-to-fine mode, and 
obtains depth maps at multiple resolutions. The algorithm 
starts with an initial coarse estimate of the surface map, 
e.g., a flat frontal surface at some depth.3 A given coarse 
level surface predicts the locations of edge matches at the 
next finer level. Thus, only a relatively small window 
centered at the predicted location need be searched for 
each match. This multiresolution representation has been 
used by previous workers [lS], [3]. It is used in our ap- 
proach for the sake of efficiency, and is not central to the 
method. 

To obtain edge images at different resolutions, the La- 
placian-of-Gaussian ( V2G ) operator of different sizes is 
used [19]. The finest resolution edges are obtained by lo- 
cating the zero crossings of a small V2G operator con- 
volved with the original stereo images. Coarser edge im- 
ages are obtained by successively doubling the size of the 
operator and halving the size of the convolved image be- 
fore detecting zero crossings. 

At each resolution level, the following steps are per- 
formed. First, the algorithm matches individual edge 
points in one image with the corresponding points in the 
other image. Matching is driven from left to right, and 
from right to left, in two separate but identical processes. 
The result is that there are two sets of feature points, one 
for the left image, and one for the right image. Each fea- 
ture point Pi in, say, the left image has a set of possible 
matches M (  Pi) in the right image, suggested by similarity 
of feature properties. Each candidate match in M ( P , )  de- 
termines a distinct point in three dimensional space. At 
most one of these candidate matches must be chosen from 
each set M (  P i ) .  The surface smoothness constraint is used 

'The initial estimate of disparity is not critical, because the size of the 
matching window (15  pixels) is an appreciable fraction of the size of the 
image at the coarsest resolution (64 X 64) .  Also, as mentioned in the text, 
the matching window can be made larger, but at the cost of increased com- 
putation time. 
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Fig. 1. Control flow of algorithm integrating matching, interpolation and 
contour detection. 

to select a subset of matches, such that the corresponding 
3-D points lie on a smooth surface, i.e., a surface whose 
surface normal varies slowly. 

We have used specific parameterized functions as local 
models of the disparity surface, i.e., planar and quadratic 
patches. These surfaces are smooth because they are of 
low order. (Planar surfaces are also used by Eastman and 
Waxman [20].) The depth4 of a point located at (x, y )  
according to the planar and quadratic models, z,,(x, y )  
and z,(x, y ) ,  respectively, is given by 

and 

z,(x, y )  = u2x2  + b2y2 + c2xy + d2x + e2y  + f2. 
( 2 )  

4We actually fit surfaces in disparity space. rather than in depth. This 
is valid because a planar surface in depth is also planar in disparity space. 
To see this, consider a stereo pair of cameras located at ( X ,  Y ,  Z ) = ( + D ,  
0, 0 )  and ( - D ,  0, 0 )  with their optical axes along the +Z-axis. The x and 
y coordinates of the projection in the left image of a scene point (X ,  Y ,  Z ) 
are given by: X = Z x / f  - D, Y = Z y / f ,  wheref is  the focal length of the 
camera. Now consider a plane whose depth Z is given by Z = A X  + BY 
+ C; substituting for X and Y terms of x and y gives Z = A ( Z x / f  - D) 
+ B Z v / f  + C . ,  i .e.,  1 / Z  = ( 1  - Rx/ f  - B g / f ) / ( C  - A D ) .  Since the 
stereo disparity is related to Z by the expression 2 D f / Z ,  the variation of 
disparity as a function o f x  and y is given by 2 D f (  1 - A x / f  - B y / f  ) / ( C  
- A D ) ,  which is planar in x and y. 
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These models can approximate any continuous surface, 
if the regions or patches of approximation are small 
enough. In practice, however, these regions must be suf- 
ficiently large to contain enough data points so that a re- 
liable fit can be estimated. Thus, the surface reconstruc- 
tion may have large errors for surfaces that are of higher 
order than quadratic. The amount of the error depends on 
the magnitude of the higher order coefficients, and the size 
of the patches used. 

Planar patches are fit in circular image regions to the 
depth points centered at each ( x ,  y )  position on a regular 
grid in the image. A sparse grid is used to reduce the 
amount of computation. Up to two planes are found at 
each grid point that have the highest fit-rating, and pass 
the adequacy tests described in Section 111-B. The planar 
patches represent a rough approximation to the surface. 
More importantly, they determine which combinations of 
matches are mutually consistent. Quadratic patches are 
then fit at each grid point, to the combinations of matches 
found by the previous step, using a standard least squares 
technique. The quadratic patches are fit to the points 
within the planar patches centered at the current grid point 
and neighboring grid points. The quadratic surface con- 
taining the most points is kept as the fit for that grid point.5 
All matches are now unambiguous, because those which 
contribute to a quadratic patch are taken to be the correct 
matches. 

Next, depth and orientation contours are found by fit- 
ting bipartite planar patches, and detecting discontinuities 
between the two halves. The contours found from the left 
image are then combined from the contours from the right 
image. Finally, a smooth surface is interpolated away 
from contours to yield a piecewise smooth surface map at 
the given resolution. The process is then repeated at finer 
resolution using the current surface to predict matching 
locations of edges at the finer resolution. Processing at 
successively finer resolutions yields surfaces at increas- 
ingly fine resolution. 

In summary, the processing steps for each resolution 
level are initial matching, fitting planar patches, fitting 
quadratic patches, detecting contours, and surface inter- 
polation. We describe briefly the implementation of these 
steps below; see the Appendix or [14] for details. 

B. Planar Fitting 

ture points contained in a local region R is 
The number of possible subsets of matches for the fea- 

N ,  = (card(M(P,)) + 1 )  
P , E R  

( 3 )  

where card(M(Pi))  is the number of possible matches for 
point Pi and the +1 is for the possibility of no match. 
One way of selecting the best subset of matches is to test 
each combination of matches to see if they lie on a smooth 

5The number of points is used as a criterion because reliability and ac- 
curacy increase with the number of points. In fact, it was found that dis- 
carding quadratic surfaces with less than 30 points removes most of the 
incorrect patches, caused by a local excess of spurious matches. 

surface. This exhaustive method is impractical if there are 
many ambiguous points and N ,  is very large. However, 
an alternative approach is practical: test many different 
surfaces to find the one that is most consistent with a sub- 
set of the possible matches. 

This approach was taken, using planar surfaces. From 
( l ) ,  a plane is characterized by three parameters ( a ,  b,  
c ) .  We discretize the possible values of these parameters 
and evaluate each possible planar fit, using the Hough 
transform [21]. The plane that receives the highest fit-rat- 
ing is chosen as the best estimate of the surface (actually, 
up to two planes are selected, and the best one is selected 
at a later step). Additional details are given in the Appen- 
dix. A similar Hough technique has been proposed by 
Clark [22], but he uses all the points on a given contour 
to find the best estimate of the planar parameters, whereas 
we use all points within a local area. 

To obtain the Hough transform, a constant amount of 
work is required for each possible match, where the con- 
stant is proportional to the size of the Hough space. The 
total number of candidate matches is 

N2 = c card(M(P,)) 
P , E R  

(4) 

If a small parameter space is used, the total amount of 
work using the Hough transform is much less than if the 
exhaustive method discussed in the first paragraph were 
used. 

To evaluate a particular planar fit, the matches contrib- 
uting to the plane must be identified. If a point has more 
than one possible match, only the match closest to the 
planar surface may contribute to the score. In addition, no 
match may contribute to the score if it is beyond a certain 
distance to the plane, called the outlier distance. This 
takes into account the possibility of incorrect matches that 
are not on the surface. These points should not be allowed 
to affect the surface fit. The fit-rating for a particular plane 
( a ,  b, c) is given by 

2 
fit-rating = C [D’ - (zi - z,,(x;, y ; ) )  ] ( 5 )  

ZlES 

where D is the outlier distance, S is the set of matches 
contributing to the plane, zi is the disparity of a match 
located at image point (xi, y i ) ,  and z,(xi, y i )  is the equa- 
tion of the plane evaluated at point ( x i ,  yi). 

The outlier distance may be derived from an a priori 
estimate of the noise in the depth values.6 We assume that 
the major component of this noise is due to the uncertainty 
in position of the feature points. The fluctuation of the 
zero crossings about the true edge position is due to image 
noise and the blurring effect of the edge operator. We as- 
sume that the displacement error is normally distributed, 
with standard deviation aN. From the properties of the 
normal distribution, 95 percent of the time the error will 
be less than 2aN. We assume that 2aN = uG, where UG is 
the standard deviation of the Gaussian of the edge oper- 

‘Clark (221 calculates the displacement of the zero crossing5 exactly, 
but requires a complete scale-space map of the left and right images. 
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ator. This is consistent with the displacement of zero 
crossings observed in experiments we performed with 
white noise stereograms. The distance 2uN is used as the 
outlier distance, so that points with a displacement error 
greater than 2uN are assumed to be due to incorrect 
matches. Incorrect matches are ignored for the purpose of 
calculating the surface parameters. 

The planar surface model breaks down for regions that 
are discontinuous. In the vicinity of the discontinuity, a 
sizable planar or quadratic fit will not be a good fit to the 
depth points. To detect this situation, and also the situa- 
tion where the disparity of the surface is out of range of 
the matcher, two adequacy tests are used: 1) the squared 
error of the points to the fitted surface, and 2) the number 
of points in the region which are unmatchable. 

The first measure depends on the a priori estimate of 
the noise in the depth values, aN. For a given number of 
poitns in a region, within the outlier distance to the sur- 
face, the probability of the sum of squared errors being 
less than or equal to c 2  may be determined from the x 2  
distribution. The algorithm determines the maximum ex- 
pected squared error for a 95 percent confidence level. If 
the squared error exceeds this value, the surface is re- 
jected. 

The second measure depends on an estimate of the 
probability of a point to be unmatchable. The surface 
patch should be rejected if there are too many unmatch- 
able points. If the points are independent, then the num- 
ber of unmatchable points follows the binomial distribu- 
tion. If the number of unmatchable points in a region ex- 
ceeds the value for a 95 percent confidence level, the 
surface patch is rejected.' The probability of a point to be 
unmatchable is partly a function of the disparity gradient 
of the surface due to perspective compression of the 
matching window. The acceptable fraction of unmatch- 
able points was determined empirically by projecting a 
plane with a synthetic random dot texture onto left and 
right image planes, and measuring the fraction of un- 
matchable points. 

C. Quadratic Fitting 
The planar patches fit in the previous step represent a 

rough approximation to the surface. Further, some of the 
patches are ambiguous, with two possible planes assigned 
to a patch. To improve the accuracy of the surface recon- 
struction, and to resolve any ambiguities among the planar 
patches, quadratic patches are now fit. The quadratic 
patches may be fit over a larger region of the image than 
the planar patches, because they are of higher order and 
can better follow the surface curvature. The main purpose 

'The probabilities of the various points to be unmatchable are not in- 
dependent, because the zero crossings are not scattered randomly over the 
image, but lie on continuous contours. Short segments of zero crossing 
contours may be unmatchable, and so points which are near an unmatchable 
point and on the same contour are more likely to be unmatchable than points 
which are not. However, the assumption becomes less erroneous if the 
regions over which statistics are taken are large. We will assume that the 
probabilities are independent, for the purpose of analysis here. 

of the plane-fitting step is to determine which combina- 
tions of matches are mutually consistent, so that a qua- 
dratic surface may be fit to only those combinations. 

A quadratic patch is fit at image location (x, y )  to the 
points within the planar patches centered at (x, y )  and 
neighboring locations, using a standard least-squares 
technique. If a planar patch is ambiguous, it contributes 
two different sets of matches to the quadratic patch. If 
there are n ambiguous planar patches, there are 2" com- 
binations of matches. Since we want the best fitting qua- 
dratic surface, we limit the number of combinations to 2, 
by taking the sets of planes that are most compatible, in 
the sense that their depths and orientations are similar. 
The quadratic surface containing the most points is kept 
as the fit for that location.8 All matches are now unam- 
biguous, because those which contribute to a quadratic 
patch are taken to be the correct matches. Details are in 
the Appendix. 

The quadratic patches are also used to create the global 
surface, rather than interpolating directly from the (now 
unambiguous) depth points. The depth at each point of 
the final surface is computed as a weighted combination 
of the depths of the nearby patches. 

D. Contour Detection 
At occluding and ridge contours, the assumption of lo- 

cal surface smoothness is violated. One way to detect 
contours is to find places in the image where smooth sur- 
face patches cannot be fit, or where there is a large error 
in the fit. However, this method is not reliable because 
the patches may be missing or defective for other reasons, 
such as image noise, or lack of feature points. Also, 
patches may straddle contours, if the data points in the 
vicinity are sparse. 

A more reliable method to detect discontinuities is to 
look for two adjacent surface patches that differ in depth 
or orientation. We fit bipartite circular planar patches, 
which are circular patches divided into two halves by a 
diameter of a given orientation. A plane is fit indepen- 
dently to the depth points within each semicircular half of 
the bipartite patch. If the two planes differ in depth (or 
orientation) by more than a threshold, then there is evi- 
dence for an occluding (or ridge) edge in the vicinity of 
the grid point, and in the direction of the diameter used 
to obtain the two semicircles. Details are given in the Ap- 
pendix. 

In our implementation, discontinuity detection was per- 
formed after matching and surface patch fitting, so that 
the matches had already been disambiguated. However, 
it can be performed concurrently with these processes, by 
using the methods for planar patch fitting described in 
Section 111-B. In either case, surface patches that contain 
a detected discontinuity should be inhibited, because they 

'The number of points is used as a criterion because reliability and ac- 
curacy increase with the number of points. In fact, it was found that dis- 
carding quadratic surfaces with less than 30 points removes most of the 
incorrect patches, caused by a local excess of spurious matches. 
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are adversely affected by the depth points on the other side 
of the contour, resulting in an incorrect estimate. 

The result is a set of candidate edge points, lying near 
the centers of the bipartite planar patches where they were 
detected. These edge points are detected and localized 
based on local evidence. To accept an edge point we fur- 
ther require that it falls along a smooth (ridge or occlud- 
ing) contour. This enforces the property that objects as 
well as their faces have smooth borders. This constraint 
is particularly useful since the edge points are often 
sparsely located and the local evidence may place the con- 
tours only approximately, somewhere in the interfeature 
area. The requirement of contour smoothness propagates 
the placement constraints on the edges posed by matched 
features occurring in different parts of the contour, thus 
possibly resolving correctly the local uncertainty. 

In the implementation, cubic splines are fit to the lo- 
cally detected edge points to obtain a smooth contour. Cu- 
bic splines are continuous up to the second derivative, and 
are not required to pass through the given points [23]. A 
more sophisticated method would integrate contour 
smoothness with contour detection. For example, a cost 
function could be defined such that one part consisted of 
the scores for the local placement of the edge point, and 
another part would be proportional to the local curvature 
of the contour, i.e., the curvature of the curve connecting 
the edge point and its neighbors along the contour. The 
contour would be placed such that it gives a minimum 
value for the cost function, i.e., it optimizes a combina- 
tion of local placement scores and local smoothness. 

An occluding contour is easier to detect and locate from 
the viewpoint where it is not adjacent to an occluded re- 
gion, i.e., a region which is not visible to the other view- 
point and thus is unmatchable. If points within an oc- 
cluded region are matched, they match at random, and 
occasionally the matches define small, false surface 
patches. Whether an occluded region lies next to an object 
boundary depends upon the viewpoint. In the left image, 
there is a region to the left of the left object boundary 
which is occluded from the right viewpoint. In the right 
image there is an occluded region to the right of the right 
object boundary. Therefore, in two identical and almost 
completely separate processes, we construct two surface 
maps: one based on the coordinate system of the left 
viewpoint, and the other based on the coordinate system 
of the right viewpoint. Each process detects only those 
segments of occluding contours which have an orientation 
such that there is no occluded region in that viewpoint. 
Matching is driven from left to right in one process, and 
from right to left in the other process. The result is that 
there are two sets of feature points, one for the left image, 
and one for the right image. Each feature point is labeled 
with one or more disparity values. The contours detected 
in the other viewpoint are then combined with the con- 
tours detected in the current viewpoint, to give a complete 
set of contours. The surface map of either viewpoint can 
be used to display the final result; in this work, the left 
viewpoint was used. 

IV. RESULTS 
Results are presented for running the algorithm on a set 

of synthetic images and a set of real images. For each 
example, the results consist of a hierarchy of disparity 
maps, one at each level of resolution. “Occluded” and 
“unknown” regions of the surface are marked, as well as 
occluding and ridge contours. The results are evaluated 
on the basis of how close the disparity maps are to the 
true disparity maps, and how accurately the occluding and 
ridge contours are placed.’ 

For each stereo pair, the size of the finest level of res- 
olution was specified, along with a constant estimate of 
disparity to be used for the coarsest level. The finest lev- 
els were either 256 x 256 or 512 X 5 12, and the coarsest 
level was always 64 x 64. We manually measured the 
range of disparities of the stereo pair and chose the mid- 
point to obtain the constant estimate. 

Image regions which have no significant intensity tex- 
ture generate very weak edges. The zero crossings de- 
tected for such regions are due to noise for the most part, 
and are uncorrelated. A threshold on the slope of the V2G 
convolution values across the zero crossings was used to 
eliminate weak edges. With no threshold, isolated patches 
were occasionally fit in these regions. These were incor- 
rect, and appeared to be due to local groups of zero cross- 
ings that happened to lie on a smooth surface, by chance. 
The same threshold was used for most of the examples in 
this section. A higher or lower threshold was used for a 
few images because the gray level range for those images 
was different. 

A .  Synthetic Images 
The synthetic images were generated by a program, 

which wraps image textures onto three-dimensional sur- 
face patches, and displays the result in a perspective view. 
The synthetic images have the advantage that the true dis- 
parity map is known, and the results can be quantitatively 
compared to the output of the stereo algorithm at every 
point. 

The results on synthetic images are shown in Figs. 2- 
4. The original stereo pairs are shown in part (a) of each 
figure. Fig. 2(a) shows a concrete sphere on a table, Fig. 
3(a) is a cube with a random dot texture, and Fig. 4(a) 
shows a cone and a cube with a reptile skin texture and a 
brick texture [24], respectively. The sizes of the original 
stereo pairs and the disparity range are given in Table I. 
The viewing directions are parallel in each example. 

The contours and quadratic patches at the finest level 
of resolution are shown in (b) of each figure. The patches 
are centered at the locations of the star-like objects. In  
Fig. 2(b), the contours around the sphere are all occluding 
contours, and the thick band along the left side of the 
sphere represents the area of the left image that is oc- 
cluded, i.e., not visible in the right image. In Fig. 3(b), 

’The results are evaluated on the basis of disparlty rather than distance. 
because converting disparity to distance would introduce calibration errors, 
and we wish to concentrate on the performance of the algorithm. 
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Fig. 2. (a) 256 x 256 synthetic image of a sphere on a table. (b) Quadratic 
patches and contours for the finest resolution level. (c) Reconstructed 
disparity surface. ( d l )  Surface as intensity image. (d2) Shaded perspec- 
tive view. (e) Ideal disparity surface. ( f )  Points with error magnitude 
> I .  

‘ I  

Fig. 3. (a) 256 x 256 synthetic image of a cube. (b) Quadratic patches 
and contours for the finest resolution level. (c) Reconstructed disparity 
surface. ( d l )  Surface as intensity image. (d2) Shaded perspective view. 
(e)  Ideal disparity surface. ( f )  Points with error magnitude > O S .  
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Fig. 4 .  (a) 512 X 512 synthetic image a l a  cone and a cube. (b) Quadratic 
patches and contours for the finest resolution level. (c) Reconstructed 
disparity surface. ( d l )  Surface as intensity image. (d2) Shaded perspec- 
tive view. (e) Ideal disparity surface. ( f )  Points with error magnitude 
> I .  

TABLE I 
SYNTHETIC E X A M P L ~ S  

Figure Example Size Disparity Range 

2 Sphere 256 x 256 45 
3 Cube 256 x 256 15 
4 Cone 512 x 512 40 

the contours along the edges of the cube are all ridge con- 
tours. Fig. 4(b) contains ridge contours along the top edge 
of the cube and between the wall and the table. The other 
contours are all occluding contours. 

The disparity surface is shown in (c) of each figure. 
Areas of the surface which are “unknown” are assigned 
the lowest height for display purposes-no patches could 
be fit to these areas, nor were there known patches in the 
vicinity to interpolate from. The surface appears to have 
a “hole” where depth values are unknown. “Occluded” 
areas are displayed as a height slightly above “un- 
known. ” The viewpoint for displaying the reconstructed 
surface is 25” above the horizontal plane, and +25” from 
the axis running vertically through the image. 

One can see a large unknown area on the top face of 
the cube in Fig. 4(c), and Fig. 4(b) shows that not many 
patches were fit in this area. This is because the brick 
texture in this area yields intensity edges which are pre- 
dominantly horizontal. The algorithm does not attempt to 
match zero crossings which are near horizontal, because 
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the disparity of horizontal zero crossings is subject to large 
error. Thus, there are not enough points in the area to fit 
patches, and so the surface is unknown there. 

Another way to display the resulting surface is to en- 
code the height by an intensity value proportional to sur- 
face height. Yet another way is to show the shaded image 
of the surface from a given viewpoint and a given light 
source position. Part (d) of each figure shows the resulting 
surface as an intensity image, or shaded, or both. In these 
displays, black indicates “unknown” areas. 

The ideal surface is shown in (e) of each figure. Points 
which are different from the ideal surface by more than 
one pixel of disparity are shown in Figs. 2(f) and 4(f). 
Most of these large errors are due to a small misplacement 
of the occluding boundarj. Fig. 3(f) shows the points 
which are different from the ideal surface by more than 
0.5 pixel of disparity. Since there are no occluding con- 
tours in this scene, there were no large errors. (b) 

B. Real Imuges 
The results on real images are shown in Figs. 5-13. 

Most of the real stereo images were taken using a single 
camera at two different positions. The positions and ori- 
entations of the cameras were approximately, but not pre- 
cisely measured. Several example images were obtained 
from other laboratories. Some of the images were not ver- 
tically registered, because the view directions were not - -  
exactly parallel, causing the epipolar lines to be nonhor- 
izonta]. Although it is not difficult in principle to calculate 
the positions and orientations of the epipolar lines from 

Fig. 5. (a) 256 x 256 real image of a baseball. (b) Quadratic patches and 
contours for the finest resolution level. (c) Reconatructed disparity wr-  
face. (d) Surface as intensity image. 

~. 

the camera parameters and imaging geometry, we found 
it easier to correct the images manually so that they were 
vertically registered. This was done by compressing or 
stretching one of the images in the vertical direction until 
it was aligned with the other. This procedure was just a 
first approximation to the task of correctly registering the 
two images, and was done so that the program could be 
run on examples that it otherwise would not be able to 

(a)  handle. The procedure was not intended to completely - ~ 

correct for all nonideal camera optics and viewing situa- 
tions. 

The baseball image (Fig. 5 ) ,  the circuit board image 
(Fig. 9), and the books image (Fig. 10) were digitized 
directly from a TV camera with a 25 mm lens. The ruts 
image (Fig. 6), rocks image (Fig. 7), sandwich image 
(Fig. 8), and fruit image (Fig. 11) were taken with a 35 
mm camera using a 50 mm lens, and were digitized from 
the negatives. The Pentagon image in (Fig. 12) was ob- 
tained from Prof. Takeo Kanade of Carnegie-Mellon Uni- 
versity. The Renault image (Fig. 13) was obtained from 
Prof. Gerard Medioni of the USC Institute for Robotics 
and Intelligent Systems. 

The original stereo pair is shown in (a) of each figure. 
Table I1 gives the size of the images, the disparity range 
in pixels, and approximate measurements for camera sep- 
aration and subject distance. Also shown for each exam- 
ple are the contours and patches for the finest resolution 
level (b), and the surface for the finest resolution level 

( d l )  (d2) 
Fig. 6 .  (a) 512 x 512 real image of ruts. (b) Quadratic patches and 

tours for the finest resolution level. (c) Reconstructed disparity S U I  

( d l )  Surface as intensity image. (d2) Shaded perspective view. 

con- 
rfacc. 
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( d l )  (d2) 
Fig. 7 .  (a) 512 x 512 real image of a mound of rocks. (b) Quadr 

patches and contours for the finest resolution level. (c) Reconstruc 
disparity surface. ( d l )  Surface as intensity image. (d2) Shaded pe rq  
tive view. 

( d l )  (d2) 

at ic  
:ted 
,ec. 

Fig. 9. (a) 512 x 512 real image of a circuit board. (b) Quadratic patches 
and contours for the finest resolution level. (c) Reconstructed disparity 
surface. ( d l )  Surface as intensity image. (d2) Shaded perspective view. 

(d l )  (d2) 
Fig. 8. (a)  512 X 512 real image o f a  sandwich. (b) Quadratic patches 

contours for the finest resolution level. (c) Reconstructed disparity 
face. ( d l )  Surface as intensity image. (d2) Shaded perspective view 

( d l )  (d2 )  
and 
sur- 

Fig. IO .  (a)  512 x 512 real image of books. ( b )  Quadratic patches and 
contours for the finest resolution level. (c) Reconstructed disparity sur- 
face. ( d l )  Surface as intensity image. (d2) Shaded perspective view. 
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( d l )  (d2) 
Fig. 1 1 .  (a) 512 X 512 real image of fruit. (b) Quadratic patches and con- 

tours for the finest resolution level. (c) Reconstructed disparity surface. 
( d l )  Surface as intensity image. (d2) Shaded perspective view. 

(d) 
Fig. 12. (a) 512 x 512 real image of the Pentagon. (b) Quadratic patches 

and contours for the finest resolution level. (c) Reconstructed disparity 
surface. (d) Surface as intensity image. 

Fig. 13. (a) 512 X 512 real image of Renault auto part. (b) Quadratic 
patches and contours for the finest resolution level. (c) Reconstructed 
disparity surface. ( d l )  Surface as intensity image. (d2) Shaded perspec- 
tive view. 

(c). In (d), the surface is shown as an intensity image, or 
shaded, or both (black indicates “unknown” or “OC- 
cluded”). 

Since accurate measurements were not taken of the 
camera parameters and object distances, the resulting sur- 
faces cannot be compared point by point to the ground 
truth. However, the disparity was measured by hand at 
selected points, to confirm the accuracy of the results. The 
reconstructed surfaces were also qualitatively compared 
to the surfaces perceived by one of the authors (Hoff). 
The overall shapes of the surfaces appear correct, al- 
though there are problems in some places. 

One problem is that there are “unknown” places in 
each surface, where surface patches could not be fit. One 
reason for this is the lack of significant image texture, 
most noticeably in the background of the sandwich ex- 
ample (Fig. 8).  In that example, most of the zero cross- 
ings detected in the background were eliminated by the 
thresholding on the magnitude of the slope. The remain- 
ing zero crossings in the background were relatively un- 
correlated, due to noise, and thus smooth surface patches 
could not be fit there. Another cause of “unknown” 
places is the presence of predominantly horizontal edges, 
for example in the topmost wing of the Pentagon building 
(Fig. 12). The algorithm does not attempt to match pre- 
dominantly horizontal edges, because the disparity cannot 
be reliably measured. Finally, misregistration of the im- 
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TABLE I1 
REAL EXAMPLES 

Disparity Approximate Approximate 
Figure Example Size Range Baseline Subject Distance 

5 
6 
1 
8 
9 

10 
11 
12 
13 

Baseball 256 x 256 
Ruts 512 X 512 

Rocks 512 X 512 
Sandwich 512 X 512 

Circuit Board 512 x 512 
Books 512 x 512 
Fruit 512 x 512 

Renault 512 x 512 
Pentagon 512 X 512 

13 
61  

150 
50” 
12 
46 
39 
10 
36h 

1 foot 
1 foot 
2 feet 

3 inches 
6 inches 

1 foot 
3 inches 
unknown 
unknown 

4 feet 
6 feet 

10-20 feet 
1.5 feet 
1.5 feet 
4 feet 

1-2 feet 
unknown 
unknown 

“Disparity range of sandwich only. 
bDisparity range of auto part only. 

ages in the vertical direction can cause matching to fail. 
This happened in parts of the fruit example (Fig. l l ) ,  
which were misaligned vertically by about 4 pixels. This 
could be due to nonideal camera optics. 

The surfaces in the “unknown” places could be esti- 
mated by other methods; for example, by using the sur- 
face from the coarser levels, if known. Alternatively, a 
more global interpolation could be done: patches could be 
used from further away, or the surface could be interpo- 
lated using the depth points over the entire surface. 

Occasionally, incorrect patches may be fit in the “un- 
known” regions described above. These are visible in the 
reconstructed surfaces of the rocks example (Fig. 7), 
books example (Fig. lo), and the fruit example (Fig. 11). 
Sometimes incorrect patches are caused by a local regu- 
larity in the image texture. For example, in the upper right 
comer of the books image (Fig. lo), the grain of the wood 
table is periodic, causing a large number of points to be 
mismatched. This is unavoidable because locally the 
patches are a good fit to the data, but globally they are 
not. The current algorithm performs only local matching 
and interpolation, and so is unable to recognize the error. 
A solution to this is to use more global information in 
deciding which patch is correct. 

The circuit board in Fig. 9 does not appear planar in 
the disparity surface, as one would expect. However, fu- 
sion of this stereo pair is not perceived as planar to the 
human visual system, either. This may be due to distor- 
tion in the wide angle (25 mm) lens used to take the pic- 
tures, or it may be due to the transformation used to ver- 
tically register the images, as the angle between the view 
directions for this example is larger than any of the other 
image pairs. The surface appears to be correct by man- 
ually checking at isolated points. 

Although the auto part is the main object in the example 
of Fig. 13, the table on which the auto part is resting is 
slightly dirty and has enough texture so that fusion of that 
area is possible. This shows the noise tolerance and gen- 
erality of the method. 

The contours found by the program are occasionally 
misplaced or missing, resulting in large disparity errors 
near occluding contours. The main reason for this is that 
the contours are detected and placed on the basis of local 

information, and the zero crossings in the vicinity of the 
contour may be sparse, or distorted by the blurring of dif- 
ferent regions across the contour. Since we expect con- 
tours in the real world to be smooth and continuous, the 
detection and location of contours should be done while 
enforcing this constraint. The present algorithm only par- 
tially enforces smoothness, by fitting cubic splines to the 
detected contour points. 

The edges detected are inaccurate many times, causing 
errors in disparity. Usually this is not a problem because 
the surface patches are fit to many points, and the errors 
tend to cancel out. However, in some cases artifacts are 
created, i.e., zero crossing contour segments which are 
present in one image but not in the other. This causes 
mismatched or unmatchable points. A smaller edge op- 
erator might give better localization, with fewer artifacts. 

Occasionally the coarse levels provide an incorrect dis- 
parity estimate to the fine levels, causing the fine level to 
be unable to match the points. This usually happens when 
the surface at the coarse level is extrapolated into a un- 
known area, so that an estimate can be provided for that 
area. Since there are no points to constrain the surface 
there, a small error in the parameters of the known surface 
patch can cause a large error in the extrapolated surface. 
One solution to this would be to use a wider matching 
window in an effort to match the points, although this 
would be computationally expensive. 

Finally, our algorithm would not work for images with- 
out texture. The simplest example would be a single ver- 
tical line segment in each image. The algorithm would not 
be able to fit a surface patch to the line segment, and so 
would not be able to match it. Since it is not uncommon 
for man made objects to have little or no surface texture, 
intensity edges may occur mainly along occluding or ridge 
contours in images of such objects. Thus, our algorithm 
alone is not capable of surface estimation in general, and 
complimentary stereo algorithms are necessary that could 
estimate surface from sparse image features. 

V.  ADVANTAGES OF INTEGRATION 
The main advantage of integrating matching and sur- 

face interpolation is the implementation of the surface 
smoothness constraint. However, there are additional ad- 
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vantages: first, the availability of surface information al- 
lows occluded regions to be identified, so that matching 
of points within them is not attempted. Second, in the 
case of transparent surfaces, the features belonging to sur- 
faces at different depths would be spatially intermixed in 
the image, and a two dimensional, local matching rule 
will not suffice. However, the surface fitting process only 
requires that the patches should have significant support 
from the depth points, and so it can yield multiple patches 
at any image location, one for each existing transparent 
surface at that location.’’ Because the depth points are 
separated in three dimensions, they can be identified as 
belonging to different surfaces. Finally, the disparity 
range over which matches are sought is completely ad- 
justable, and does not have to be related to the parameters 
of the feature detector, e.g., V2G, as done in the Marr- 
Poggio approach [3] and as pointed out by Mayhew and 
Frisby [25]. In principle, the range could be equal to the 
size of the image. This is because the number of false 
targets is irrelevant to the matching and surface fitting 
process; rather, the process relies on the existence of a set 
of depth points that define a smooth surface. 

The advantage of explicitly detecting ridge and occlu- 
sion contours is that they can be constrained to be smooth 
because their counterparts in three dimensions are as- 
sumed to be smooth. This constraint is very useful be- 
cause the feature locations in the image are usually sparse, 
particularly near a boundary of a steep surface. The con- 
tours could locally move in the interfeature (or “no-in- 
formation”) space without becoming inconsistent with the 
surface patches. The contour smoothness constraint makes 
it possible to propagate information between different 
parts of the boundaries to appropriately select the location 
of the contour when the local evidence does not lead to 
an unambiguous choice, or when it suggests a location 
that results in a large curvature. This should help in re- 
ducing the usually large number of depth errors that occur 
near surface boundaries. This step is implemented par- 
tially in the current implementation, in that although the 
contours are detected, only a coarse test of contour 
smoothness is used. 

There are also advantages in using an explicit surface 
representation, at each resolution level. The explicit sur- 
face representation provides the common ground for in- 
teraction among different resolution levels. One such in- 
teraction is to use the coarse resolution surface to predict 
the locations of matches of finer resolution features. An- 
other is to use the orientation of the coarse level surface 
to predict the difference in edge orientation between the 
left and right views. The difference in apparent orienta- 
tion is due to the difference in perspective between the 
left and right views, when viewing the same three-dimen- 
sional edge. We can thus limit the candidate matches to 
those whose orientations are close to that expected, given 
the coarse level surface. A related effect is that of per- 
spective compression. A surface region projected onto the 

The current implementation fits only a single patch at any location: I O  

thus, it does not handle transparent surfaces. 

left image will in general have a different image area than 
the same region projected onto the right image. Since the 
V2G operator generally yields edges of constant density, 
there will be fewer features in the compressed image re- 
gion than in the uncompressed image region. If matching 
is done from the larger to the smaller region, this will 
cause unmatchable points. The coarse level surface can 
be used to predict the increase in the number of unmatch- 
able points. This is important to know for feature match- 
ing. In our case, it is of immediate use since we have used 
the number of unmatchable points as a criterion for 
whether a surface patch is a good fit to a set of depth 
points. 

Finally, the availability of explicit surface and bound- 
ary information at any given level makes it possible to 
change the focus of attention at the next finer level of pro- 
cessing. Thus, the algorithm may not spend a large 
amount of computation at the next finer level in process- 
ing an area which is relatively featureless. Rather, it may 
concentrate on areas near object borders, in order to more 
precisely locate them. The explicit knowledge of border 
locations may serve to guide the processing at finer levels, 
thus allowing a surface representation to be computed in 
a shorter time. This may relate well with the savings ob- 
served in fusion time in humans for scenes containing 
depth discontinuities, as reported by Gilliam et al. [26]. 

VI. CONCLUSIONS 

We have presented an integrated approach to extracting 
surfaces from stereo. Along with performing matching and 
interpolation, depth and ridge contours are detected so as 
to enforce surface smoothness everywhere except across 
such contours. The contours are constrained to be smooth. 
The approach thus integrates matching, contour detec- 
tion, and surface interpolation. These modules help ex- 
ploit redundancy of information present in the image [27]. 
The integration approach is in contrast to existing stereo 
algorithms which complete the matching process before 
interpolating to obtain a dense depth map. As a conse- 
quence of integration, the computational effort is rela- 
tively uniformly distributed across the various integrated 
processes, unlike existing algorithms where most of the 
computation is devoted to feature point matching. The ap- 
proach described is fairly domain independent since it uses 
no constraint other than the assumption of piecewise 
smoothness. The results are usually accurate to within a 
pixel of disparity. The errors occur mainly around the oc- 
cluding boundaries, apparently because of errors in the 
locations of the boundaries. 

The approach described lends itself to a parallel imple- 
mentation since the processing in different parts of the 
image can be carried out in parallel. In fact, the algorithm 
was run on a network of Sun 31160 and 3/75 workstations. 
At each of the major steps in the algorithm, the appropri- 
ate program is copied to each machine, along with the 
data needed by the program. Each machine independently 
processes a part of the image. Then the results are copied 
back to the original workstation and combined there. A 
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simple Shell script is used to automatically copy files to 
other workstations and execute the programs on them. Up 
to eight workstations were used simultaneously, although 
usually only about three were used. The factor of speedup 
provided by using multiple machines approached the 
number of machines as the number of machines used in- 
creased. 

Zero crossings are detected using an array processor to 
implement the convolution via Fourier transforms. This 
program takes about 2 minutes to process a 512 x 512 
image. The program which fits planar patches using the 
Hough transform is the most time-consuming part of the 
algorithm. It takes about 3 hours for the 512 X 512 level, 
on one machine. The program which fits quadratic patches 
takes about 50 minutes at the 5 12 X 5 12 level. The reason 
that these programs are so slow is the sheer number of 
patches-over 7000 at the 512 X 512 level. The program 
which finds contour points takes about 10 minutes at the 
512 X 512 level, but this depends on the number of con- 
tour points present. The interpolation program takes about 
45 minutes at the 512 X 512 level. The other programs 
have negligible execution times compared to these. Run- 
ning an example usually took most of the night. 

Although the implementation of this algorithm is quite 
slow, it is potentially quite fast, given the right architec- 
ture. The ideal situation would be to assign a processor to 
compute each patch. Additionally, special purpose hard- 
ware could be used to implement the Hough transform. 

APPEND I x 
DETAILS OF IMPLEMENTATION 

A .  Features Detected 

The left and right images are each convolved with the 
V2G operator of the size (width of the Gaussian) corre- 
sponding to each resolution level. Zero crossings are then 
detected, and labeled with the orientation of the gradient. 
The result is a pair of edge images for each level. Due to 
subsampling, the effective width w of the V2G operator 
(the diameter of the central negative region) was the same 
for each level, i.e., 6 pixels. 

We assume that the camera model is known, so that 
epipolar lines can be computed. The current implemen- 
tation assumes horizontal epipolar lines, corresponding to 
parallel image planes. Searching for candidate matches is 
restricted to one dimension. The algorithm attempts to 
match only nonhorizontal zero crossings, since the dis- 
parity of horizontal zero crossings is subject to large er- 
ror. In our experiments, a zero crossing at an angle of 22" 
or less from the horizontal axis was classified as horizon- 
tal. 

For each zero crossing, candidate matches are found by 
searching a window of width 2w centered on the predicted 
location in the other image. Those zero crossings within 
f35" of the expected orientation are taken to be candi- 
date matches. The expected orientation is calculated from 
the surface orientation from the previous level. A large 
discrepancy in angle is allowed because experimentally 
we have found that the orientations of the right image zero 

crossings are not very close to those predicted by the ori- 
entations of the left image zero crossings and the camera 
geometry. 

The reason for the discrepancy between actual and pre- 
dicted orientation changes is that the zero crossings are 
not located at the true edge position, but are displaced if 
the image intensities are locally nonlinear, or if the edge 
is not straight, etc. In general, the displacement from the 
true position of the left image zero crossing and that of 
the right image zero crossing are different, because the 
local image structure is different due to differences in per- 
spective compression, noise, etc. Therefore, the shape of 
the zero crossing contour is distorted from the left to the 
right image in ways other than predicted by perspective 
difference, and so the orientation changes between cor- 
responding pieces of a contour may be different than pre- 
dicted. 

B. Fitting Planar Patches 

Planar patches are fit in circular image regions centered 
at each point along a regular grid. The spacing of this grid 
is w, the filter size. A sparse grid is used to reduce the 
amount of computation. At each grid point ( i ,  j ) ,  the 
quadratic surface estimate z ; , ,  (x, y )  obtained from the 
previous level is used to match the zero crossings in the 
circular region. Up to two planes are then fit to the depth 
values obtained by matching the points. This is done for 
a sequence of radii, starting at a radius of w, up to a max- 
imum of 2w. The largest possible disk is identified at each 
point under the constraint that the depth points in the disc 
are a good fit to a plane, using the two adequacy measures 
described in Section 111-B. 

Two planar fits are obtained instead of one, in order to 
delay the final choice until information from adjacent re- 
gions is available to reliably choose between the two. 
Also, if there are two surface estimates for this point from 
the previous level, the process is repeated for the second 
estimate, resulting in up to four planes for the region. 

To ensure a reliable planar fit, the data points must be 
distributed over the entire region. This condition is tested 
by examining if the convex hull of the points on the image 
plane contains the region center; or equivalently, that the 
vectors to the points from the region center span an ori- 
entation range greater than 180". If this condition is not 
satisfied, the plane solution is rejected. 

A crucial part of this algorithm is the use of the Hough 
transform [21] to fit planar patches. Identifying the best- 
fitting planar patches in the vicinity of an image point re- 
quires selecting the most planar subsets of depth points 
among all possible combinations of mismatched and am- 
biguous points. Using a standard least squares method 
such as Gaussian elimination would lead to combinatorial 
explosion, because a different plane would have to be fit 
to each possible subset of depth points in a region. The 
Hough transform is a relatively inexpensive and robust 
method of fitting planes having least squared error. 

To implement the Hough transform, a three-dimen- 
sional parameter space is set up with each dimension cor- 
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responding to a parameter in the equation of the plane: 

z = ax + by + c. 

For each depth point (xi, yi, zi) in a circular region, cells 
in quantized parameter space are incremented at the lo- 
cations corresponding to the solutions ( a ,  b, c )  of the 
equation 

( 6 )  

c = zi - axi - byi + e i ,  for ( e i [  < D ( 7 )  

where e;  represents the amount of error of fit of the point 
(xi, yi, zi) to the plane represented by ( a ,  b ,  c ) ,  and D is 
the outlier distance. The array is incremented at each lo- 
cation ( a ,  b ,  c )  by the amount ( D2 - E ? ) .  After all points 
have been considered in this manner, the maximum entry 
in the parameter array represents the solution with the 
minimum squared error. 

In the case of ambiguous points, only one of the depth 
values contributes to any plane: the one which is closest 
in depth. There are two kinds of ambiguities: two left fea- 
ture points matching the same right point, and two right 
feature points matching the same left point. Both kinds of 
ambiguities are taken into account. Because of outliers 
and ambiguous points, the solution found is not the true 
least squared error solution, but the solution with the least 
squared error among the points satisfying the above con- 
ditions. 

An important advantage of the Hough transform is that 
it requires a constant amount of work for each depth value, 
and the amount of work is not exponential in the number 
of ambiguous points or mismatches, as would be the case 
with Gaussian elimination. A disadvantage of the Hough 
transform is the limited resolution of the parameter space. 
Higher resolution requires additional computation. One 
way of circumventing this problem is to use a Hough ar- 
ray with adaptive resolution; the resolution is dynamically 
increased in the parts of the parameter space where peaks 
are found at the coarser level. However, because the 
planes obtained are only local approximations, a very fine 
resolution is not crucial. In the implementation, the pa- 
rameter space was 7 x 7 x 16, with the first two dimen- 
sions used for the x and y slopes from -0.6 to 0.6, and 
the third dimension for the z offset. This allowed a reso- 
lution of 0.2 in the slope, and 1.0 in the z value. A max- 
imum allowed slope of f0 .6  is used because the proba- 
bility of a point to be unmatchable increases with slope 
(as described earlier), and planes having greater slopes 
than this would have so many unmatchable points that they 
could not be distinguished from planes fit to random 
matches. 

C. Fitting Quadratic Patches 

To fit a quadratic surface centered at grid point ( i ,  j ) ,  
the following procedure is used. The planar patches cen- 
tered at the neighbors of ( i ,  j ) are tested for mutual com- 
patibility. Two neighboring planes are compatible if the 
depth and the orientation differences between them are less 
than certain thresholds. In the implementation, the dis- 

parity difference threshold is w / 2  and the orientation dif- 
ference threshold (i.e., the threshold on the difference in 
slopes) is 0.25. Two incompatible planar patches at 
neighboring grid points are likely to be separated by an 
occluding or ridge contour, and the two patches should 
not be part of the same quadratic surface. (These contours 
are found in later processing.) 

To obtain all compatible planes at a given point ( i ,  j ), 
the planes in the neighborhood up to two grid points away 
from ( i ,  j ) are placed into sets, such that the members of 
each set are compatible with each other. This is done by 
the following procedure: for each plane in the neighbor- 
hood," the parameters of the plane are transformed so 
that it is centered at ( i ,  j ). The transformed parameters 
are then compared with the averaged parameters of each 
set. If it is compatible with the average of one of the sets, 
then it becomes a member of the set; else it becomes a 
member of a new set. The two sets with the most members 
are now chosen, and the rest are discarded. 

For each set, the planes in the set should be local ap- 
proximations of the same quadratic surface. Therefore, 
the matches consistent with these planes should lie on or 
near the quadratic surface. These matches are obtained by 
taking the closest alternative to the plane within the out- 
lier distance. A least squares quadratic surface is fit to 
these matches, using Gaussian elimination. As before, the 
squared error is compared to the maximum expected error 
as given by the x 2  distribution, and the fit is rejected if 
the error is too large. The quadratic surface containing the 
most points is kept as the fit for the grid point ( i ,  j ). 

D. Locating Contours 
To find occluding contours, we use the model of a bi- 

partite surface patch: a circular region with two indepen- 
dent smooth (planar) halves, separated by a depth discon- 
tinuity at the center. The approach is analogous to that 
described by Leclerc and Zucker [28] for finding discon- 
tinuities in image intensities: it is necessary to find the 
local structure of the image (or surface) about the discon- 
tinuity in order to locate the discontinuity accurately. Our 
approach differs in that a fixed threshold is used to signal 
a discontinuity, instead of a statistical test. To find ridge 
contours, the model is the same, except that it uses an 
orientation discontinuity instead of a depth discontinuity. 

To obtain the depth points needed for the plane fitting, 
the closest matches to the surface specified by the nearest 
quadratic patch are used. Only matches within the outlier 
distance to that surface are used. To help increase the re- 
liability of the planar fit, the radius of each semicircle is 
increased until it contains at least 15 points, from a min- 
imum radius of 3w to a maximum radius of 5w. The same 
two tests are used as before to decide if the planes are a 
good fit to the data points: 1) the binomial test, for the 

I 'Currently, the neighboring planes arc examined in arbitrary order. 
However, a more precise method would be to represent all neighboring 
planes as points in parameter space, and then search for clusters in this 
space. 
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number of unmatchable points, and 2) the x 2  test, for the 
total error of fit of the points to the plane. 

If the two planes are a good fit to the data points, and 
they differ in disparity (or orientation) by more than a 
threshold, then there is evidence for an edge point in the 
vicinity of the grid point. The threshold used was w for 
the disparity difference, and 0.25 for orientation differ- 
ence (slope difference). To locate the edge point more ac- 
curately, the following procedure is used: the bisector of 
the bipartite circular patch forms an edge segment that 
partitions the matches into two sets, belonging to one side 
or the other. This edge segment is moved to and fro be- 
tween the two sides. As the edge segment moves, some 
data points that were originally in one side of the bipartite 
patch become members of the other side. At each posi- 
tion, a score is computed, which is the average squared 
error of fit of the points to the surface whose side they are 
currently in. The edge point is placed at the position with 
the lowest score. This method yields good localization of 
the edge point, while saving the expense of fitting the edge 
detector at every point. 

For occluding edge points, the above procedure is mod- 
ified by establishing a “dead zone” adjacent to the edge 
segment, on each side of the segment. Any matches inside 
the dead zone are ignored and they do not contribute to 
the score. The reason for this is that the zero crossings 
near occluding contours are typically distorted by the con- 
tour and the matches are not reliable. The distortion is 
typically significant out to a distance of w/3 ,  and so this 
is the width of the dead zone that was used. 

The bipartite circular edge detector is applied four times 
at each grid point to detect edges at the four orientations: 
vertical, horizontal, and the two diagonals. If an edge is 
detected at a particular orientation, it is localized and 
given a score, as described above. The edge orientation 
at this grid point with the best score is retained. 

This edge detector may have multiple responses, i.e., 
it may signal the presence of an edge at multiple locations 
in the vicinity of the true edge, along a line perpendicular 
to the true edge. However, the best score should ideally 
occur at the position of the true edge. Therefore, the edge 
points which are not local minima in the direction per- 
pendicular to their orientations are suppressed. 

False ridge contours are occasionally detected parallel 
to occluding contours, on either side. These arise because 
surface patches are occasionally fit across the occluding 
edge, forming a steep ramp. To eliminate these false ridge 
contours, the algorithm eliminates ridge edge points near 
occluding contours. In addition, patches which overlap 
contours are eliminated, because they are adversely af- 
fected by the depth points on the other side of the contour, 
resulting in an incorrect surface estimate. 

E. Generating a Surface Map 
The final step is to interpolate to obtain a complete depth 

map, and predict matching locations for features at the 
next finer level. The quadratic patches are a good local 
estimate of the surface, defined at the grid points. To in- 

terpolate the depth at each point P on the surface, the 
closest patch or patches to point P are used, which do not 
lie across any occluding or ridge contour. In the imple- 
mentation, patches were used if their centers were up to 
2 w  from point P.  The computed height at point P is the 
average of the heights of individual patches weighted ac- 
cording to their distance to P .  If there are no patches 
within 2 w  of P,  then no attempt is made to interpolate a 
depth at P ,  and it is marked “unknown.” If the point P 
is in an occluded region, no attempt is made to interpolate 
a depth, and it is marked “occluded.” A reasonable guess 
for the depth at such a point can be made by extending 
the surface which is more distant out to P ;  this, however, 
was not done. 

To predict matching locations for the next level, the set 
of quadratic patches is copied to a new grid, twice the size 
of the old. There are now new grid points which do not 
have quadratic estimates, and these must be interpolated 
from the existing ones. In addition, in the vicinity of oc- 
cluding contours, we would like to provide two depth es- 
timates-one from the high side of the surface, and one 
from the low side. This is done because the location of 
the occluding contour is known only coarsely, and we 
would like to be able to match the zero crossings in the 
vicinity of the contour. 

To accomplish the above, the following procedure is 
repeated N times, to propagate the known estimates to the 
unknown areas ( N  = 4 in our implementation). At each 
grid point on the new level for which there are less than 
two estimates, examine the 8 neighboring quadratic 
patches. If these patches are mutually compatible (mean- 
ing their parameters have similar values), then average 
them to determine the quadratic estimate at the new point. 
If they are not all compatible, divide them into compatible 
sets, and average the ones in each set to determine up to 
two estimates. 
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