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Abstract 
A supervised algorithm for computing percep- 
tual groupings in dot patterns is presented. 
The algorithm uses shape features of the poly- 
gons in the Voronoi tessellation of the input 
pattern. The training patterns identified b y  
humans are used to obtain an initial non- 
contextual classification which is then refined 
b y  a probabilistic relaxation labeling. 

1 INTRODUCTION 
This paper is concerned with grouping of simple image 
plane entities - points in a dot pattern. The goal is to 
develop a set of rules as well as a computational process 
tliat makes use of the rules for identifying groupings of 
dots. 

To define a computational approach to  perceptual 
grouping, it is necessary to specify what precisely is 
the desired output of tlie grouping process given the 
input dot pattern. This was discussed in detail in [a ] .  
The possible perceived labels assigned to  dots were IN- 
TERIOR, BORDER, CURVE and ISOLATED. The 
assignment of these labels was accomplished by a set 
of independent modules each of which had its own ex- 
pertise in identifying some aspect of this grouping. 

In this paper me study the module tliat identifies 
INTERIOR and BORDER dots in a given pattern. We 
use human expertise to label tlie dots as interior and 
border in a small training set of dot patterns, and use 
this information for feature selection and supervised 
classification. As a result of tliis supervised training, 
we have been able to  systematically select the relevant 
features to be used in tliis grouping module. 

2 VORONOI NEIGHBORHOOD 
The “neighbors” of a dot has been defined in many 
ways in the literature: circular neighborhood; k-nearest 
neighbors and various extensions to near neighbors; 
the iniiiiinum spanning tree; the relative neighborhood 
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graph and tlie Gabriel graph; and tlie Voronoi tessel- 
lation [I]. We use the Voronoi tessellation as the defi- 
nition of tlie “neighborhood” of a point. 

The Voronoi tessellation of a set of points S in a 
plane is a partition of the plane (R2) into regions such 
that the region assigned to a point P consists of all 
points in R2 which are closer to P than to any other 
point in S .  This results in a polygonal region assigned 
to each point called the Voronoi polygon [3]. Two 
points are said to  be Voronoi neighbors if the Voronoi 
polygons enclosing them share a common edge. 

Features based on the shapes of the Voronoi polygons 
indicate whether a dot is IlVTERIOR or BORDER. A 
total of 23 features are initially used to characterize 
the geometric properties of the Voronoi polygons. This 
number is later reduced as a result of a feature selec- 
tion process. We now summarize the features extracted 
from tlie Voronoi polygons. 

Moments of  area: Let ( x 2 ,  yz) be the coordinates of 
dot i and let R be the Voronoi polygon containing 
dot i. Then the (p + q)th moments of area of R is 
defined as inpp = JJR(z - zi)P(y - yz)p  dx dy. We 
use the first six moments of area as well as their 
translation, scale, and rotation invariant features 
as shape features for the Voronoi polygons. A total 
of sixteen such features are used. 

Compactness: Let ak, b = 1, . . . , I ,  be tlie angles 
subtended on a dot by its successive neighbors. 
Tlie compactness or regularity of the Voronoi poly- 
gon is defined as coinpactness = (amaz - & a u g ) / x ,  

where aaug = C:=,(ait - a,,,)/(l - 1) and 
a,,, = maxak.  The interior cells are ((compact.” 

Elongatzoii: The elongation is computed by first 
identifying an ellipse (with major axis, a, and 
minor axis, b )  which has the same second-order 
moments as tlie Voronoi polygon. Tlie elonga- 
tion of the Voronoi polygon is then computed as 
d 1 q .  We also obtain the direction of the 
minor axis of tlie ellipse. 

Eccentrzczty: The eccentricity measure is a scaled 
vector indicating how much and in which direction 
a dot is off tlie center of gravity of its Voronoi 
polygon. 
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Figure 1: The steps of the algorithm to compute per- 
ceptual grouping. 

3 COMPUTING THE 
PERCEPTUAL GROUPINGS 

The flowchart of the algorithm for computing the in- 
terior and border labels to  be assigned to each dot is 
given in Figure 1. We now describe the details of each 
step. 

3.1 Training Phase 
The training phase involves (a) collecting a set of exam- 
ple dot patterns in which each dot is labeled as BOR- 
DER or INTERIOR, and (b) making use of the training 
set in (a) for effectively assigning the perceptual role 
of each dot in test patterns. The collection of training 
samples involved showing a set of six representative dot 
patterns to the human trainer and recording the per- 
ceptual role assigned to each dot in the pattern. The 
total number of dots in this set was 217 labeled BOR- 
DER and 210 labeled INTERIOR. 

The second phase of the training involved analyzing 
the contribution of each feature of the Voronoi cell in 
the classification process. A sequential forward feature 
selection algorithm was used. This algorithm gives an 
estimate of the error probability for each subset of fea- 
tures to be used. We took the first n features such that 
the error probability estimate of the set was under 0.3. 
This resulted in the selection of six features (n = 6). 
These top six features were: eccentricity magnitude, x 
direction of eccentricity vector, y direction of eccentric- 
ity vector, the elongation magnitude, the x direction of 
minor axis, the y direction of minor axis. 

The initial classification of points into perceptual 
categories was done by using the nearest neighbor clas- 
sification method in the feature space. Furthermore, 
a probability for each class was computed which was 
then fed to the relaxation labeling as the initial prob- 
abilities. We describe below the details of the initial 
probability computation and the relaxation labeling. 

3.2 Relaxation Labeling 
Relaxation labeling is defined by a collection of objects 
ai ,  i = 1,. . ., n,  and a set of labels X j ,  j = 1, . .  . ,  m. 
Each object has a set of probabilities pi(Xj), assigned to 
it that represent the likelihood of object ai having label 

X j ,  where cj pi(Xj) = 1. Each object is assigned a set 
of initial probabilities, pjo’(Xj). Then, the probabilities 
are updated iteratively as follows [4]: 

where 

The term ~ i j ( X ,  XI) in the Equation (2) represents the 
compatibility of labels X and A’ on objects ai and aj, 
respectively. N ( i )  is the set of neighbors for object ai.  
The dij’s are weights associated with the interaction 
of the pair of objects ai and a j ,  where cj dij = 1, in 
order to  keep 0 5 pi 5 1. Thus qi (k) (X)  represents the 
support given to  the label A at the object ai by all its 
neighbors, aj . 

In our formulation in this paper, the objects ai are 
the dots, the labels X i  are either interior ( A 1  = I 
for INTERIOR) or border in one of eight directions 
O0,45O, . + . ,  315 (X2, . .., A,). We have set dij = l /n i ,  
where ni is the number of neighbors of dot i. 

3.3 Initial Probability Assignments 

The initial probabilities are assigned in two steps. 
First, points are classified as non-directional BORDER 
or INTERIOR based on their Voronoi features and the 
training samples using the nearest neighbor classifier. 
Then the non-directional border classification is fur- 
ther refined to estimate the initial probabilities for the 
directional border labels. 

We now describe the computation of the non- 
directional border classification. Let SZ = { w I , w ~ }  = 
{ B ,  I }  be the set of class labels (B:  BORDER, I: IN- 

set of training features. Here xj is the six-dimensional 
feature vector for dot j and Oj E SZ is the class label for 
xj specified by the human trainer. Let xi be the fea- 
ture vector computed for dot i in a test pattern. The 
probability that dot i has the class label W k  is given by 
the expression: 

TERloR) .  Let {(XI, SI), ( ~ 2 ,  &),. + .  ., (+,  S,) } be the 

These probabilities are used along with the local ge- 
ometric distribution of the neighbors of a point to  esti- 
mate the initial probabilities of each of the nine labels. 
This was computed by observing that for a border la- 
bel with a given orientation, the interior points would 
be collected 011 one side. The label probabilities for re- 
laxation labeling is given by the following expressions: 

(4) 
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Here the term i (1- sin 8) is a weight which is max- 
imum when 6’ is r / 2  on the right hand side of the bor- 
der. The border label bk will have a large value if the 
near-neighbor based border probability p”(B) is high 
and all the neighbors on its right hand side have high 
probabilities of being I N T E R I O R .  

Finally, these label probabilities are normalized so 
that the sum zApi(O)(X) = 1. 

3.4 Computation of Compatibility 

The reason for using the relaxation labeling is so that 
contextual information can be included into the classi- 
fication process and that certain global constraints can 
be enforced. This is accomplished in the relaxation 
labeling process through the interaction of neighbor- 
ing dots. This interaction is defined by specifying the 
compatibility coeficients. We now describe the com- 
putation of the compatibility coefficients. 

The global constraints enforced in this problem are: 
(a) Borders are smooth, and (b) the liltelihood that a 
point has INTERIOR label is higher if the neighboring 
points also have INTERIOR labels. In order to define 
the border smoothness constraint, the border label is 
broken into eight discrete directions: O’, 45’, . . . ,315’. 
Therefore, each dot can have one of nine labels assigned 
to it. Based on these, the following are the compatibil- 

Coefficients 

ity coefficients: 

r i j ( I , I )  = 

Tij(I,bk) = 

ri j (bk,I)  = 

T i j ( b k ,  bf)  = 

The (1 +sin 0) and (1 - sin 0) terms in Equations (8) 
and (9) enforce the riglit hand rule mentioned before. 
That is, a border label has interior labeled dots on 
its right hand side. The expression [2 + C O S ( Q ~  - 
al)(cos 2(ak - 8ij) + cos 2(al + Oij ) ) ]  in Equation (9) 
is the term enforcing the smoothness along the cluster 
borders. 

4 EXPERIMENTAL RESULTS 
We have run our supervised perceptual grouping al- 
gorithm on two types of dot patterns. The first was 
the set of patterns which were used to select training 
samples. The second set of patterns were completely 
new dot patterns which were not used as training ex- 

amples at all. Figure 2(a) shows various example dot 
patterns. Only the example in (i) is one of the train- 
ing samples. All the remaining four are new test pat- 
terns. Figure 2(b) shows the non-contextual classifica- 
tion produced by the nearest neighbor method using 
the training data, and (c) shows the output of the re- 
laxation labeling. 

The algorithm produces acceptable results in most of 
the dot patterns. There are some dot patterns which 
do not result in good groupings (example (iv)). The 
main reason for this is that in this pattern the features 
do not have sufficient information to  distinguish the 
border and interior points of the outer sparse cluster. 
This results in poor initial classification which is very 
difficult to correct later with the relaxation labeling. 

We can also see that the relaxation labeling is clean- 
ing up some of the misclassifications produced by the 
nearest neighbor classifier. For example, in example 
(ii), there are many dots in the interiors of the clusters 
which are classified as border dots. These are cleaned 
up and classified as interior dots as a result of the re- 
laxation labeling. 

5 CONCLUSION 
This paper presents two extensions to  the perceptual 
grouping algorithm presented in [2]. The first is the use 
of human training to identify the various perceptual 
roles that a dot can play. The second is the use of 
systematic feature selection techniques to identify the 
most relevant features in the computation of perceptual 
grouping. 

As a result of this systematic feature selection pro- 
cess, we have shown that the following six features are 
the most useful: (a) eccentricity magnitude, (b) x di- 
rection and (c) y direction of the eccentricity vector, 
d) the elongation magnitude, (e) the x direction and 
f )  the y direction of the major axis of the cell. 

The approach of using training patterns to charac- 
terize the various perceptual roles for the dots can be 
used in other applications. For example, each of the 
modules in the algorithm presented in [2] can be im- 
plemented using this approach. 
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Figure 2: (a) Example dot patterns. (b) Initial nearest neighbor classification of the dots. (c) The result of 
relaxation labeling. 
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