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ABSTRACT

This paper presents several sufficient conditions for dou-
ble or unique solution of the problem of motion and structure
from two monocular images. We show that: /. 5 correspon-
dences of points that do not lie on two lines in the image plane
suffice to determine a pure rotation uniquely; 2. 6 correspon-
dences of points that do not lie on two lines in the image plane
and do not correspond to space points lying on a specific qua-
dric surface suffice to determine a motion with nonzero trans-
lation uniquclfl; 3. each Maybank quadric can sustain at most
two physically acceptable” motion solutions and surface
interpretations, provided that a sufficient number of
correspondences are present; 4. in the plane motion case, 6
correspondences of points that do not lie on a quadratic curve
in the image plane will only admit the true motion and struc-
ture and their duals as solutions. We list several properties of
the essential matrix TXR and the plane motion matrix
R +TNT, both of which are frequently used in the motion
and structure estimation problem.

1. Introduction

This paper concerns the uniqueness of solution of general
motion parameters of a rigid surface from two monocular
views. This problem can be stated as follows: with how many
correspondences of image points and under what conditions
can we have a unique solution for R and a solution up to a
scalar for T from the motion equation

VA X'iy'illT-—-ZiR[Xiyil]T*'T ,i=12,+- 0, (1-1)

where (x’;, ¥’ and (x;, yi) are a pair of image é)oipt correspon-
dences, R a rotation matrix, T a vector, and Z'; and Z; any
positive constants?

Under the assumption that a sufficient number of
correspondences is provided, Longuet-Higgins ([9]) and
Negahdaripour ([21]) analyzed the problem of estimating sur-
face structure. Longuet-Higgins ~obtained the following
results: /. If one interpretation of a pair of Ehotographs
locates the visible texture elements in a plane, then so does
every other. 2. Otherwise, if the images are ambiguous, every
interpretation will locate the visible elements on a special type
of quadric surface, called Maybank Quadric; but in that case
the pair of images cannot sustain more than three distinct and
physically acceptable interpretations. Negahdaripour further
concluded that: 1. In the case of hyperboloids of one sheet
and hyperbolic paraboloids, th ere can be three possible solu-
tions.” 2. In the case of circular cylinders and intersecting
planes, there are at most two solutions.

But how many correspondences are sufficient and what
surface conditions should they satisfy to yield unique or a
finite number of solutions?

The only existing sufficient condition for unique solution
of general surface motion is having 8 correspondences of
points that do not lie on a quadric surface passing through the
origin of the coordinate system and —R o' Ty, where R and
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T define the true motion ([8]{1][17]). Although for a planar
surface, we have some sufficient conditions for determining
the motion uniquely ([101{8][12][17]{18]), so far we do not
know if and under what conditions the motion of a plane
admits a solution leading to non-planar surface.

. The goal of this Ja_apcr is to present the new and less
stringent sufficient conditions for thé uniqueness problem that
are summarized in the abstract.

2. Preliminary Results
Our main results will be based on the following prelim-

inary results whose proofs are omitted due to lack of space.

We will use Equation (1-1) to represent motion. We use
@, O’ to represent vectors [xy1]T,[x"y'1]T so that
X =70 ,X'=Z'0"; wecall © as well as (x,y) a point in the
image plane.

We will frequently use the following rigidity prope
([6][17]) of a rot?l%on matrix: for any two v%:ctoé;s )?; alx)ldg(:y

R (XxX2) = RX;) x RX>), @-n
since it is equivalent to the orthonormality and unit deter-
minant property ([17][18]).

Our discussion in this paper will be based on the the so-
called essential matrix ([155

E 4 TxR =GR, 2-2)
where
0 -3t gir
G=Tx=|t3 0 -t = g{ 2-3)
-ty O gd

is a skew-symmetric matrix. A matrix is called essential or
decomposable_if and only if it is decomposable into the form
of (2-4) with T a nonzero vector and R a rotation matrix.
Lemma 2.1.

A matrix E can be represented as TxR with T a
nonzero vector and R a rotation matrix, if and only if it can be
represented as R 1(T ;x) for some rotation matrix R ; and some
nonzero vector T ). Or, a matrix E is essential if and only if
there exist some rotation matrices R, i = 1,2, and a non-zero
vector T 3 such that

E = Ry(T3xRy), 24

vyherei,l only one of Rj, T3, or Ry can be arbitrary at one
time.
Corollary 2. 1.

E is decomposable, if and only if RE or ER is decom-
posable, where R is any rotation matrix; E is decomposable if
and only if ET is decomposable. I

‘Many necessary and sufficient conditions have been
obtained for the essential matrix ([12][15] 516][17]); the fol-
lowing condition expressed in terms of the elements of E may
more clearlzy capture the properties of the essential matrix.
Lemma 2.

A matrix E =[e; e2e3]7 can be represented as T xR,
where T =[t;tat3 ]T 20 and R is a rotation matrix, if and
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only if there exist three distinct indices i,j.k among 1,2,3 such
tlllal one of the following three situations occurs:

€y . € _¢©3

eqy€3 €eye; eper =0, @-5)

where:
en-ey # 0, foranym#n, mp=1273. (2-6)
In this case,
ftoty # 0. @27
lesll = leylt >0, leglt =0, e;-¢5= 0. (2-8)
In this case,
G=t=0, but g # 0. 2-9)

e;re;=0, exer=0, le; H2= l?l?éj[?lfz + ey 2,

tejll >0, Heyli >0, 2-10y

In this case,
@-11)

Languet,—Hit:igins derived (2-17) (see [16]), which of
course is one of the conditions for a matrix to be essential.
“The next lemma is a generalized version of Zhuang et
al.’s ([ 1]). and can be proven using Zhuang et al.”s method.
Lemma 2.3 .
_ Assume an arbitrary matrix K _is invertible. Then KTE
is: skew-symmetric if and only if E =GK for some skew-
symmetric matrix G.. Il
Lemma24.
If E is an essential matrix then both E and E + ET are
rank reduced. I

3. Pure Rotation Case

We present the following theorems without proofs.
Theorem 3.1. ([17}{18])

If the motion is known to be a pure rotation Rg, then 2
correspondences  of i i ;=[x y 1T,
O4=Ixtyi 1L, i i
solutions, and the

=0, 4200

2 4
: LA=120 0 (3-2)

~ The above theorem: does not exclude spurious motion
solutions with nonzero translation. The next theorem deals
with: this problem.
Theorem 3.2.. (The proof uses the method in Section 4.)
~ If the motion is a pure rotation (but this condition is. not
known in advance}, then a sufficient condition for determining
the: motion uniquely is having 5 correspondences of points in
the image plane with:no 3 of the 5 points colinear. I

4. General Motion Case

In: this section, we consider general motion where T # 0.
.. The following theorem states a sufficient condition efim-
inating any,simnous solution with zero translation.
Theoremd.1.

If the true motion involves a romtion Ry and a nonzero
translation T g, a sufficient condition for excluding a pure rota-
tion as a solution is having 3 correspondences of points with
no 3 of the 5 points colinear in the image plane.

Proof: Let ©‘=(xy, )T and @ =,y DT be &
correspondence pair in the image plane. Then we should have

O T(Te<Re)8 = 0. , @1y

Now assume a pure rotation R yields the same correspon-
dence pair, then we should also have: :
8" = RO, 4-2)
where y is similarly defined as ¥; is in (3-3%. Replacing (4-2)
into (4-1) gives
(4-3) indicates that the points must lie on a quadratic curve.
Thus a sufficient condition for excluding a pure rotation as a
solution is having 5 correspondences ofﬁo‘mts with no 3 of the
5 points. colinear in: the image plane. Q.E.D.

The: next theorem states a sufficient condition eliminating
any spurious solution with nonzero translation. However, we
need to present two: lemmas dealing with two particular spuri-
ous solutions: in one enly the translation is distinct; in the
other only the rotation matrix is distinct.

Lemma 4.1 . (Proof is omitted.) :

If the true motion is. given by Rg and Tg#0, then 3
correspondences of points that are non-colinear in the image
plane suffice to exclude any spurious solution with the rotation

g-and a translation T not parallel to Tq. I
Lemma4.2.

If the true motion is given by Rg and Ty, a sufficient
condition for excluding any _i;puri‘ou5«~ solution with a rotation
R #Rg and a tanslation T parallel to Tq, is having 5
correspondences of ]p,eims with no 3 of the 5 points being col-
inear in the image pl

ane.
Proof: Given a space point. correspondence X' =2'@"
and X =76, we havesp po
X" = RoX +Tp. @-4)
Although we only know © and ©, Z" and Z are uniquely
determned by (4-4) unless @ is parallel to Tg. In any case,
for the true depths Z” and Z, equation (4-4) is always satisfied.
Now assume we have a_spurious motion solution R and
T # 0. Then the motion epipolar line equation.

©TE® =0 4-5)
must be satisfied, where E =T xR . Multiplying the left side
of (4-5) by Z'Z yields

XTEX =0.
Replacing (4-4) into (4-6) we get

XTRGTE)X + T¢TEX =0. @7y

(4-7) is called Maybank Quadric ([28]). With TXT =0,
(4-7) reduces to

XTRTTXR)IX = OTRPTXR)O = OTAO =0, (4-8)

where

“-6)

C=E;+ EIT WithEy = R,QW)CR . (4-9)

(4-8) defines a quadratic curve in the image plane. Lemmas
2.1 and 2.4 state that A has a rank of at most 2. From the
planar quadratic curve theory ([20]) we kmow that if
det(C ) =0, the quadratic curve described by (4-8) can only be
a line, or two parallel or intersecting lines, or a point. Given 5
points, if no three of them: are colinear in the image plane,
then there exists no &uadraﬁff; curve of the type (4-8) passing
through all 5 points. We thus have the lemma. QE.D.,

Finally, let uws conmsider the general situation where
R #Rgand T xXTg# 0. Let usrearrange (4-7) as

XTRo'E + ETRgX +2RJTo)TRJEIX = 0. (4-10)
It has been shown ([1]) that if and only if R =Rg and
TxTe=0, (4-10) will become trivial. Therefore (4-10)
implies that spurious solutions arise only when the image
pounts. ysed for correspondences correSﬁmndi to space points on:
a quadric surface. We then have the following theorem.
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Theorem4.2.

If the true motion is Rg and T, then a sufficient condi-
tion for excluding any spurious solution R and T such that
R#Rpand T #Ty is avliy 6 correspondences of points
that do not lie on a quadric surface of the type (4-10).

Proof: We first examine the surface shapes that can be
represented by (4-10). First of all, the quadric must pass
through the origin and -RJT(. Lemma 2.1 and Lemma 2.4
indicate that RoTE is an essential matrix and therefore
Ro'E + ETR has a zero eigenvalue. From quadric surface
theory ([20]) , we know that (4-10) can only represent an
elliptic cylinder, a line, a hyperbolic cylinder, a_parabolic
cylinder, ‘or two parallel or overlapping planes. There exist
other quadrics, such as elliptic sphere, one or two sheet hyper-
boloid, and cone, which cannot be represented by (4-10).

Given a quadric surface
XT(A +ATHX +2BTX =0, 411

to express it in the form of (4-9), B must be dependent on A
and must be an essential matrix. That is, we must have
some T and R such that

A =TxR, BT = R{TpTA . (4-12)

Therefore, only the elements of A can be free variables. But
A can have only 5 free elements because the largest element
of A can be normalized to unity and A must satisfy (2-5), (2-
8), or (2-10) to be an essential matrix. It is then possible that 5
¥oims define a finite number of surfaces of the type (4-11). It
ollows that 6 points may exclude the possibility that they lie
on any quadric surface of the type (4-11), e.g., when the 6
points together with the coordinate origin and —R¢T o define
an elliptic sphere or a hyperboloid. Q.E.D.

_ Summarizing the discussion in this section and the last
section, we have the following theorem.
Theorem 4.3 .

6 correspondences of image points that do not lie on two
lines in the image plane and do not correspond to space points
lying on a Maybank Quadric suffice to determine a motion
uniquely. 1l

We will now discuss the following problem: if the May-
bank Quadric is uniquely defined, how many spurious solu-
tions can the surface sustain? We will show that at most one
spurious solution can be sustained.

Assume Ry, T represent the true motion, and Ry, T,
and Rg, T, are two sets of spurious solutions such that
Ri#R;, T;xT;#0, forany i #j, ij € {0,1,2}. Other situa-
tions have been discussed in Lemma 4.1 and Lemma 4.2.
Then for a given correspondence ©’ and © in the image
plane, we should have .

70’ = ZR¢® + Ty, (4-13)
where Z’ and Z are the true depths for ©” and © respectively.
Similarly, for the two spurious solutions, there must exist
positive numbers D’, D, p’, and p such that

D@’ = DR1© +T;. (4-14)
p’@' = pR,® +T;. (4-15)

From (4-14) and (4-15), we have the following motion epipo-
lar line equations:

OTTxRDO & ©TE S =0,

(4-16)
and
OTT xR0 2 @TEHNO = 0.

(4-17)

Now multiplying equations (4-16) and (4-17) by the true
depths Z’ and substituting Z’@ by (4-13), we get

ZOTRJE)O +TJE® =0, (4-18)

ZOTRJE2O +TJE,® = 0. (4-19)

Each of (4-18) and (4-19) defines a Maybank Quadric. They
must give the same depth for any correspondence except one,

as the depths Z’ and Z for all correspondences except one are
uniquely determined by (4-13). The exception occurs when
©'XT o= 0. But in this case, the translation is uniquely deter-
mined, and Lemma 4.2 shows that 5 correspondences of
points with no 3 of the 5 points being colinear in the image
plane uniquely determine the rotation. Therefore the motion in
the exce&ional case can be uniquely determined. In the dis-
cussion below we assume such exceptions do not occur for all
motion solutions and correspondence data. That is, T;x® " 0
for any available correspondence ©” and any T;,i=0,1,2.

Since (4-18) and (4-19) must give the same depth for any
correspondence, they must be identical. Thus we must have

TJE; = TJE,, (4-20)
and
RJE; +ETRg = RFE,+EJRy. (4-21)
Rewrite (4-21) we get |
RJ(E,-Ey = —(E;-E»™Re. 4-22)

The above equation shows that RJ(E;-Ej) must be skew-
symmetric. Lemma 2.3 states that there must exist some vec-
tor T 5 such that

E;-E; = T5xR,. (4-23)

Then from (4-20) we know that T o must be parallel to T3
since

TFE;-Ey) = TJ(T3xRg) = 0. (4-24)
Therefore we can assume that T3 = 0T o. Then (4-23) gives
Ei-E; = ogToxRg = ogEg. (4-25)

For the same reason, for Ry and T to constitute a valid
motion, we must have the following equations

DOTRTE)® +T{E; = 0, (4-26)
DOT(R{E)® +T{E, = 0. 4-27)
From (4-26) and (4-27) we have
E;-Ey =04E; (4-28)
for some constant o). Similarly
Eo—-E; = ipE;. 4-29)

For all three solutions to be acce%table simultaneously, (4-25),

(4-28), and (4-29) must hold at the same time. If any constant

o, i = 0,1,2 is zero, then one of the solution must be identical

to another, contradicting the assumption that the three solu-

tions are distinct. So in the following we assume o;#0, 1 =
)

0,1,2. Adding (4-25), (4-28), and (4-29) gives
0= ogEg+E; + E,, (4-30)
Comparing (4-30) with (4-25) we have:
(o +DE; =(1-p)E; = 0. (4-31)

It is well known that an essential matrix can have at most two
decompositions of the form VXU with V a nonzero vector
and U a rotation matrix (see also Appendix). And if VxU,
and V,xU, are two distinct decompositions of an essential
matrix then we must have V; =-V,. Since E, and E, are all
essential matrices and T xXT,#0 by assumption, we then
must have

o =-1, g =1. (4-32)
But comparing (4-30) with (4-28) we also have
=1, o =-1, (4-33)

which contradicts (4-32). Therefore, there exist no three
motion solutions which are mutually compatible. As the true
motion solution must always hold, therefore there is at most
one other solution which gives an alternate interpretation of
the surface and the motion.

As 6 points together with the origin and -RJTg can
uniquely define a quadric surface, to summarize the discussion
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above, we have the following theorem.
Theorem 4.4 .

If 6 correspondences of image points correspond to space
points. that together with the origin and —R?}El' o _uniquely
define a quadric surface and the image points do not lie on two
lines in one. or both views, then the 6 correspondences suffice
to determine. the motion parameters to within 2 sets if the qua-
dric surface is a Maybank Quadric, or determine the motion
uniquely if the quadric surface is not a Maybank Quadric. Il

5. Planar Surface Case

It has been shown ([TJ[103{12][18]) that when the points
are coplanar in space, there generally exists a dual motion
which always accompanies the true motion and cannot be
removed wath: rigidity constraint; uniqueness is guaranteed
unless the dual motion is identical with the true motion or
yields negative depths for some visible: points. Even worse.
there existy an uncertain situation where an infinite number of
motion solutions arises, although this situation occurs with
zero probability ([91{17]). Longuet-Higgins has proven ([9])
that a planar surface only admits spurious motion solutions
leading to planar surfaces. But how many correspondences are
needeg and what conditions should they satisfy to exclude
other solutions leading to non-planar surfaces?

Assume a plane in the space has an equation

Ng'™X =1, (5-13

and is subject to a motion Rg and Tg¢. [5-1] is the non-
degeneracy condition of the projection of a plane Q,IZS%); Ouly
when the projection of a plane is not degenerate in both image
planes is 1t possible to find point correspondences. Then it is
well known that an fmage point correspondence pair ®” and
©: are interrelated by

19" = Re+TNHO & Ko, [5-21
where ‘ :
f QTKT < a1
r="\ 25l (531
and

A matrix K of the type [S-4]} is called a plane motion matrix ,
and R, Ty, and Ny are called a motion decomposition of K.
It has been shown (Hu [18], Tsai [3]) that unless RTT is
parallel to N, the plane motion matrix in [5-4] will still have

other decomposition Ry, T4 and Ny, called dual solution,
with NgxNg# 0. Therefore, as we have shown in [18], the

rigidity constraint, although it can sometimes be identified

using positive: depth constraint ([10}). There exists an_uncer-
- tain situation where KTK =1 and det (K ) =~I. In this case,
K has an infinite number of plane motion decompositions

1) For this to occur, either the object is transparent and
rotated by a half revolution, or one of the image is taken
through a mirror. The following theorem is true.

Theerem 5.1 . (Proof is omitted due to lack of space.)}

If the points used for correspondences are coplanar and
the uncertain situation defined by KTK =1 and det (K}=-1
does not occur, then 6 correspondences of image points that
do not lie on a quadratic curve in the image plane suffice to
exclude all spurious metion solutions other than the true solu-
tion and the dual solution. 1l

6. Summary

Our main results here can be summarized as follows:
1. When the motion is a pure rotation, 5 correspondences of
points with no 3 of the 5 points being colinear in the image
gl ane suffice to determine the metion uniquely.

". When the motion involves a translation, 6 correspondences
of image points that do not lie on two lines in the. image plane.
and do not correspond to space points lying on a Maybank
Quadric suffice to-determine the motion uniquely.

3. When the points all lie on a plane and the uncertain

situation characterized by KTK =1 and det(K )= -1 does not
occur, 6 correspondences of points that do- not lie on a qua-
dratic curve in the image plane suffice to restrict the motion to-
the true and the dual plane motion solutions. o
4. Each Maybank quadric can sustain at most two physically
acceptable solutions. Therefore;, if a Maybank Quadric surface
is uniquely defined by 5 or more space points, and the projec-
tions of the space points in the image plane do not lie on two
lines, then the motion and the surface can be determined to
within two solutions.
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