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Some Experiments with Mosaic

Models for Images

NARENDRA AHUJA, TSVI DUBITZKI, AND AZRIEL ROSENFELD, FELLOW, IEEE

Abstract- Experimental results are presented on some properties of
random mosaic models for textures. These observations are with
the theoretcally predicted values. The preditions are also compared with
observations on a real Image.

I. INTRODUCTION

S EVERAL geometric and joint pixel properties of the
patterns generated by mosaic models were studied in

[1], [2]. Among the geometric properties the theoretical
results obtained for the expected component perimeter
and expected component width for the cell structure mod-
els were not verified experimentally. Also, no experiments
involving real textures were reported.
While the component perimeter and width results for

the regular cell structure models [1], [2] are fairly straight-
forward, the results for random cell structure models may
warrant experimental verification to justify the validity of
the assumptions made in deriving them. This paper com-
pares the theoretically predicted values of the expected
component area and perimeter with the corresponding
observed values on patterns generated by the models.
Some results are also presented on how the predictions of
the models relate to observations on a real image.

Section II reviews the three random mosaic models that
we considered for the experiments reported in this paper.
Section III briefly outlines the analytical results for the
expected component perimeter and contrasts them with
the observations. Section IV presents similar results for
the expected component width. Section V presents some
concluding remarks.

II. RANDOM CELL STRUCTURE MOSAIC MODELS

Cell structure mosaics are constructed in two steps: 1)
tessellate a planar region into cells (we will only consider
tessellations composed of bounded convex polygons), and
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2) independently assign one of m colors cPCc21... ICm to
each cell according to a fixed set of probabilities

m

i=lI

The set of colors may correspond to a set of values of any
property, not necessarily gray level.

Different types of tessellations provide different types
of mosaics. This paper considers three models that use
three random tessellations of the plane. These models and
some properties of the tessellations they use are described
below (for details see [1], [8], [9]; also see [6]).

A. Poisson Line Model

Consider a system of intersecting lines in the plane with
random positions and orientations. Such a system when
derived by the following Poisson process possesses funda-
mental properties of homogeneity and isotropy. A Poisson
process of intensity X/7' determines points (O,p) in the
infinite rectangular strip [0< <r, - oo<p < ox]. Each of
these points can be used to construct a line in the plane of
the form x cos 9 +y sin9-p = 0, where p is the distance
to an arbitrarily chosen origin. One can use this process to
tessellate any finite region into convex cells having the
following properties:

E(A)_ expected cell area=-71V;
E(S)_expected cell perimeter= 2/X;
E(N)-expected number of sides of a cell = 4.

B. Occupancy Model

This model is based upon a tessellation that is the result
of a growth process. A Poisson process of intensity X
drops nuclei in the plane. Each of these points spreads out
to occupy a "Voronoi cell" consisting of all the points
which are nearer to it than to any other nucleus. The
random initial arrangement of the nuclei results in cell
edges with infinitely many slopes and, therefore, a ran-
dom tessellation. The cells are convex having the follow-
ing properties:

E(A)= p

4
E(S) =

E(N)=6
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C Delaunay Model

The Delaunay tessellation is closely related to the oc-
cupancy model. It can be constructed from the occupancy
tessellation by joining, for each vertex of the Voronoi
tessillation, all pairs of nuclei whose cells meet at the
given vertex and share a common edge. Thus the intersec-
tions of the borders of Voronoi cells are the circumcenters
of the Delaunay cells. These cells have the following
properties:

E(A)= 2A

E(S) = 32
37rV'

E(N)=3.

III. ExPECrED PERIMETER

We first briefly review computation of the expected
perimeter for connected components in the random mosa-
ics. Details can be found in [1], [2]. Then we evaluate the
expressions obtained for the expected perimeter and com-
pare these predicted values against observations on several
images.

A. Theoretical Computation

We will obtain the expression for the expected perime-
ter of a black component in a binary (black and white)
mosaic for easy description, although the results also hold
for components of multicolored mosaics. Let p and I-p
denote the probability that an arbitrary cell is black or
white, respectively. Then the expected number of white
cells neighboring a black cell is (I -p)E(N), where E(N)
is the expected number of neighbors in a cell in the
tessellation. The expected number K of cells in a black
component for a given p is also known [11, [2]. Therefore,
we have

expected number of cell edges =K(l -p)E(N).
along the border of a component

Since E(N) is also the expected number of cell edges
along a cell border, we have

H= expected perimeter of a component
= K(l -p) (expected cell perimeter)
= K(l -p)E(S).

Substituting from Section II the expressions for E(S)
for the various models, we obtain the following expres-
sions for the expected perimeter.
Poisson line model:

2
H= K(I-p)X;

occupancy model:

H=K(I-p) -;

Delaunay model:
32

H=K(I-p)

Note that K is different for each of the three models.

B. Experimental Results

Results for the occupancy and Delaunay models were
tested on two sets of four mosaics each. Occupancy and
Delaunay tessellations were generated using Poisson point
processes of intensities 0.003 and 0.001, respectively. An
interior window (consisting of 100 cells) was used for the
purpose of observations in order to avoid border cells that
may have different geometrical properties. Figs. 1-4 show
the tessellations and the corresponding binary mosaics.
The perimeter was measured by following the borders of
the components and counting I for every horizontal or
vertical step and V2_ for every diagonal step. Table I lists
the average total observed perimeter for each of the two
sets of mosaics. These values are compared with the
predicted total expected perimeter values. The differences
are expressed as fractions of the observed values. Note
that the total perimeter values that we have listed in the
table differ from the component perimeter values by a
multiplicative constant equal to the expected number of
components, which is known [1], [2].

Generation of Poisson line mosaics on the grid involves
certain problems. There is a nonzero probability of a
small cell being lost due to the nonzero thickness of digital
lines. In other words, a small cell in a Poisson line
tessellation in the Eucidean plane may cease to have any
pixels in its interior in the digital version. A cell may
reduce to a small set of black pixels each belonging to one
of the surrounding digital lines. Such cells, if not properly
taken care of, may change the connectedness properties of
the digital Poisson line mosaics. To avoid this we must use
low intensity values. However, this requires working with

(a) (b)

(C) (d)

Fig. 1. Occupancy tessellations (A-0.003).
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TABLE I
EXPECTED PERIMBTER RESsuLs FOR MosAics

Model Observed average Predicted expected % Deviation
total perimeter total perimeter b-a 1
on four mosaics (=b) a
(a)

Occupancy 1525.5 1567.6 2.7

Delaunay 1666.5 1804.0 8.2

(a) (b)

(c) (d)

Fig. 2. Occupancy mosiacs (Fig. I (a)-(d) colored withp-0.3). (a) (b)

(c) (d)
(a) (b)

Fig. 5. (a) Marble picture (Plate 62 from [3D. (b)-(d) Same as (a)
thresholded at 25, 17, and 36, respectively.

large images in order to have a large number of cells, thus
l - _l increasing computational costs. We therefore considered

only the occupancy and Delaunay mosaics for the perime-
ter experiments.

(c) (d) We also investigated the predictability of the expected
component perimeter in a natural image, treating it as a

Fig. 3. Delaunaytessellations (AO -0.001). random cell structure mosaic (Fig. 5(a)). A relatively high
contrast image (Brodatz [3, plate D62D was chosen for the
reason of ease in segmentation. The image has a fairly
bimodal histogram. A threshold between the two peaks
was used to extract the components. The two parameters,
A and p, defining the binary models, were evaluated from
the observed average component area and density, using

__ _l the known nature of dependence of these features on thei _ ~~~~~~~~~~parameters.
The value of p was estimated from the fraction of the

image area occupied by the (black) components. The total
(a) (b) observed number of components in the interior of the

image and the estimated value of p, in conjunction with
the expected component area results [1], [2],,provide an
estimate of A. Then the formulas of Section III-A can be
used to predict the expected perimeter according to the

U ~~~~~~various models.Clearly, the values of the image features we are consid-
ering are sensitive to the threshold chosen. To test the
consistency of the predictions from the same model and

(c) (d) the relative performance of the different models for differ-
Fig. 4. Delaunay mosiacs (Fig. 3 (a)-(d)colored withp-0.3). ent segmentations, we used three different thresholds cor-
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TABLE II
ExpEcTED PERIMETER RESULTS FOR MARBLE IMAGE

Average Poisson line model Occupancy model Delaunay m del
Threshold Observed total Predicted total % Deviation Predicted total % Deviation Predicted total % Deviation

per)ieter perimeter (-b) b-a 100 perimeter (=c) c-a 100 perimeter (=d) d-a -100
(-a) a _a a

17 2520 3243.0 29.7 8842.0 250.0 5522.0 119.0

25 2013 2695.0 33.8 8250.0 309.0 8055.0 300.0

36 1453 1975.0 35.9 2485.0 71.0 3045.0 109.0

responding to the middle and the two ends of the valley
between the histogram peaks. Figs. 5(b)-(d) show the
three segmentations. Table II lists the observed and the
predicted expected total perimeter for each of the three
models and the three thresholds. The differences between
the predicted and the observed values are listed as frac-
tions of the observed values. The predictions according to
the Poisson line model are consistently better compared to
those from the other two models. Also the errors in the
Poisson line model predictions appear to be less sensitive
to threshold variations.

IV. EXPECTED WIDTH

The expected width of a connected component is de-
fined as the length of the intercept made by a randomly
located and oriented line transect. In [1], [2] we analyzed
this property for various models.- Here we will briefly
review these results for the three random cell structure
models and then compare these predictions with observed
values.

A. Theoretical Computation

Consider the distribution of the variate L,, the width as
measured along a transect, of a component of color c,.
This width is a sum of the widths of one or more contigu-
ous cells that happen to have received the same color c,.

If there are j contiguous cells in the component along
the sampling transect and x denotes the width of a cell,
then the desired component width is the sum ofj values of
x. A given run of length Li consists of exactlyj cells if the
first cell is followed byj- 1 cells of color ci and if thejth
cell is not of color ci. Thus the probability that a run of
color c, is of lengthj isp/-1(l -pi). If g(LiIj) denotes the
conditional probability density of the length of a run,
given that it consists ofj cells, we have

00

g(li) = 2 g(li J)p- 1(l -Pi)
j=1

Then the expected value E(Li) of the run length is given
by

00

E(L,)= 2 E(LI])pkl(1-Pi).

We will make the simplifying assumption that the widths
of adjacent cells along a given transect are independent.
This assumption may not be satisfied by the occupancy

model, whose cells are not independent. However, it seems
plausible that the correlations involved are not high and
the results for relatively large components are satisfactory.
The expression for E(Li) obtained earlier then becomes

00

E(L,)= 2 E(LijI)p/1(l-pi).
j=1

From the independence assumption, it follows that
E(L,L j) =jE(Lil 1) =j (expected cell width).

Therefore,
00

E(L,) =(I -P) 2 jp-' (expected cell width)
j=1

=1p_ (expected cell width).

For black components in binary mosaics, we have

E(L)= I_ (expected cell width).

We have not given the distribution of the cell width x
for either the occupancy or Delaunay models. However,
in one of his classic results Crofton [4] showed that the
mean length of a randomly oriented chord of a convex
region depends upon the shape of the region only through
its area A and perimeter S as follows:

'7TAmean chord length==
S

Since all of our models have convex cells, with known
expected area and perimeter, we have

expected cell width=E[ S]

{A=7rTE( )

E(A/S) is not known for any of our models. However, a
fair substitute for E(A/S) is given by E(A)/E(S) [5].
Therefore,

7T E(A)E(Li)=-p, E(S).

Using the above relations in conjunction with the ex-
pected cell area and expected cell perimeter properties
given in Section II, we now obtain specific results for the
three random models.

Poisson line model:

E(L) wE(A)
E(S)(1-p) 2X(I -p)
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TABLE III
EXPECTED CoMPoNENT WIDTH RESULTS FOR MOSAICS

Model Observed average Predicted expected % Deviation
total perimeter total perimeter b-a 100
on four mosaics (=b) a
(=a)

Occupancy 20.00 19.45 2.65

Delaunay 16.31 14. 76 10. 5

TABLE IV
EXPECTED COMPONENT WIDTH RESULTS FOR MARBLE IMAGE

Average Poisson line model Occupanc model Delaunay model

Threshold Observed Predicted % Deviation Predicted % Deviation Predicted % Deviation
camponent width csxnponent width = b-a 100 caponent width c-a *100 conponent width = d-a 100

(=a) (-b) a (-c) a -100a

17 21.06 19.27 8.5 7.02 65.8 11.27 46.4

25 20.95 19.07 8.9 11.86 43.3 12.19 42.0

36 21.43 19.14 10.6 15.11 29.4 12.43 42.0

For the Poisson line model we also know the distribu-
tion of the length of a random chord of a cell. Therefore,
we can also obtain the distribution of the component
width in [1], [7]. In fact, the probability density function
of the width of a component has the same form as that of
the width of a single cell, i.e., exponential. The knowledge
of the distribution of the component width is another
result of the extreme mathematical tractability of the
Poisson line model. The corresponding property is not
known for either of the remaining models.
Occupancy model:

E(L) 4 (4V'A (I1-p)
Delaunay model:

3iT2
E(L)=

64VX (1-p)

B. Experimental Results

The component size grows rapidly with increasing val-
ues of p. If we have large components we need large
images for measurement of component properties, in order
to have access to a large number of components. Thus the
p value must be kept relatively low to work with images of
reasonable size. We used ap value of 0.3, as in Section III,
and a set of four mosaics each to estimate the average
component width in the occupancy and the Delaunay
mosaics. Since the expected component width is indepen-
dent of the direction in which it is measured, we can use
run lengths of black points in horizontal (and vertical)
directions to estimate the component width. Table III lists
the observed average run lengths of black pixels and the
predicted expected component widths for the occupancy
and the Delaunay models. The deviations normalized by
the observed values are also listed. The Poisson line mosa-
ics were not generated for the reasons mentioned in Sec-
tion III. However, we may note that the results for this

model were obtained completely analytically and hence
may not have to be verified experimentally. Between the
occupancy and the Delaunay models, the predictions made
by the former are closer to observations.
The marble image from [3] used in Section Ill-B was

also used to test the width results. The model parameters
were evaluated based upon the observed total black area
and the total number of components in the interior of the
image. The predicted and observed expected width values
for the three models and the three different thresholds are
given in Table IV. The normalized deviations are also
listed. The Poisson line model gives the least error in
predicting the average component width, and the error is
relatively insensitive to the variations in the threshold
value chosen for segmentation.

V. CONCLUSION

We have presented the observed and predicted expected
component perimeter and width values for the occupancy
and Delaunay models. The error for the Delaunay model
is higher than that for the occupancy model for each
property. It is hard to assess the significance of these
errors since we do not know the probability distributions
involved. As pointed out earlier, the results for the Pois-
son line model were derived analytically and hence may
not have to be tested through experiments. On the marble
image, the Poisson line model gives consistently lower
errors compared to the other two models. The absolute
significance of these errors is once again hard to evaluate
except, perhaps, for the Poisson line model. This model
also exhibits relatively stable performance with varying
threshold value used for segmentation.

ACKNOWLEDGMENT

The help of Kathryn Riley in preparing this paper is
gratefully acknowledged.

----j

748



IEEE TRANSACTONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-lO, NO. 11, NOVEMER 1980

REFERENCES

[1] N. Ahuja, "Mosaic models for image analysis and synthesis," Doc-
toral dissertation, Dep. Comput. Sci., Univ. of Maryland, College
Park, Mar. 1979.

[2] N. Ahuja, "Connectivity in lattices and mosaics," in Proc. 4th Int.
Joint Conf. Pattern Recognition, pp. 488-493.

[3] P. Brodatz, Textures: A Photographic Album for Artists and Desig-
ners. New York: Dover, 1966.

[4] M. W. Crofton, "Probability," in Encyclopedia Britannica, 9th ed.,
1885.

[5] R. E. Miles, "On the homogeneous planar Poisson point process,"
Math. Biosci., vol 6, pp. 85-127, 1970.

[6] J. W. Modestino, R. W. Fries, and A. L. Vickers, "Stochastic image
models generated by random tessellations of the plane," Conputer
Graphics Image Processing, vol., 12, pp. 74-98, 1980.

[7] E. Pielou, Mathematical Ecology. New York: Wiley, 1977.
(8] B. Schachter, A. Rosenfeld, and L. Davis, "Random mosaic models

for textures," IEEE Trans. Syst. Man, Cybern., vol. SMC-8, pp.
694-702, 1978.

(9] B. Schachter and N. Ahuja, "Random pattern generation processes,"
ComWuter Graphics Image Processing, vol. 10, pp. 95-114, 1979.

Correspondence

An Energy Use Model of the Residential Sector

DENNIS L. O'NEAL AND ERIC HIRST

Abstrat-A model to simulate energy use in the residential sector from
1970 though 2000 is described. The model provides considerable detail on

residential energy uses and associated costs. It esimates annual energy
uses for four fuels, eight end uses, and three housing types. Each fuel use

component Is calculated as a function of stocks of occupied housing units
and new consruton, average housing size, equipment ownership by fuel
and end use, thermal perfornance of housing unis, average unit energy
requirements for each equipment type, and usage factors that reflet
household behavior. The model also estimates annual equipment instala-

tions and ownership, equipment costs, and costs for improving therma
performanc of new and existing housing units. Tbe model is a useful tool
for evaluating alternative energy conservation policies, programs, and
technolgies for their energy and economic effects during the next quarter
century. An example of Its application in estimating the energy and
economic impact of alternate water heating conservation options is pro-
vided. Results from this application indicate the attractiveness of heat.
pump water heaters over both conventional and solar heaters. lhe esti-

mated cumulative energy savings of heat pump and solar heaters (with
Federal tax credits) were 1.6 and 1.0 EJ, respectively.

INTRODUCTION
In 1975, development began at the Oak Ridge National

Laboratory (ORNL) of a model of energy use for the residential
sector. The initial version of the model was completed in 1976
and has since been improved and expanded [1], [2]. The primary
purpose of the modeling effort was to develop an analytical tool
which would assist decisionmakers in federal agencies and other
organizations in their evaluation of conservation strategies and
programs. The model has been used in such diverse applications
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ORNL RESIDENTIAL MODEL SENSITIVE TO MAJOR DETERMINANTS
OF ENERGY USE

DEMOGRAPHICS

HOUSING STOCKS,
NEW CONSTRUCTION

RESIDENTIAL
ECONOMICS FUEL PRICE-, EQUIPMENT ENERGY USE

PRICE-, INCOME-ELASTICITIES SIMULATION

ENERGY USE/INITIAL COST
RELATIONSHIPS FOR EQUIPMENT
AND STRUCTURES

TECHNOLOGIES
DETAILED FUEL USES
FUEL EXPENDITURES
CAPITAL COST:

EQUIPMENT
STRUCTURES

Fig. 1. Schematic, ORI4L residential energy use model.

as evaluating the residential sector programs in the national
Energy Plan (NEP) [31, estimating the impact of residential
RD&D [41, and evaluating residential energy use trends for the
National Academy of Sciences Committee on Nuclear and Al-
ternative Energy Systems (CONAES). Over 20 organizations
(both public and private) have used the residential model.
The energy model consists of three kinds of submodels: demo-

graphic, technological, and economic (see Fig. 1). The demo-
graphics submodel calculates stocks of occupied housing units
by type for each year of the simulation based on calculations of
household formation and retirements from the existing stock of
occupied housing units.
The technologies submodels evaluate changes in energy re-

quirements and purchase price as functions of alternative de-
signs for both equipment (e.g., furnaces, refrigerators, etc.) and
the thermal integrity of structures.
The economics submodels calculate elasticities that determine

the responsiveness of households to changes in economic vari-
ables: incomes, fuel prices, and equipment prices. Elasticities are
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