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We propose the use of explicitly identified image structure to guide the solution of the single image
super-resolution (SR) problem. We treat the image as a layout of homogeneous regions, surrounded by
ramp edges of a larger contrast. Ramps are characterized by the property that any path through any ramp
pixel, monotonically leading from one to the other side, has monotonically increasing (or decreasing)
intensity values along it. Such a ramp profile thus captures the large contrast between the two homoge-
neous regions. In this paper, the SR problem is viewed primarily as one of super-resolving these ramps,
since the relatively homogeneous interiors can be handled using simpler methods. Our approach involves
learning how these ramps transform across resolutions, and applying the learnt transformations to the
ramps of a test image. To obtain our final SR reconstruction, we use the transformed ramps as priors
in a regularization framework, where the traditional backprojection constraint is used as the data term.
As compared to conventional edge based SR methods, our approach provides three distinct advantages:
(1) Conventional edge based SR methods are based on gradients, which use 2D filters with heuristically
chosen parameters and these choices result in different gradient values. This sensitivity adversely affects
learning gradient domain correspondences across different resolutions. We show that ramp profiles are
more adaptive, stable and therefore reliable representations for learning edge transformations across
resolutions. (2) Existing gradient based SR methods are often unable to sufficiently constrain the absolute
brightness levels in the image. Our approach on the other hand, operates directly in the image intensity
domain, enforcing sharpness as well as brightness consistency. (3) Unlike previous gradient based meth-
ods, we also explicitly incorporate dependency between closely spaced edges while learning ramp corre-
spondences. This allows for better recovery of contrast across thin structures such as in high spatial
frequency areas. We obtain results that are sharper and more faithful to the true image color, and show
almost no ringing artifacts.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Super-resolving an image entails estimating the intensities of a
high resolution (HR) version of the image from the smaller number
of intensities available in the given low resolution (LR) image. For
even moderate upscaling factors, this problem is fundamentally
very highly ill-posed. Choosing appropriate regularizers or priors
for the single image super-resolution (SR) problem has therefore
been a major focus of research in this area.

Priors for the SR problem can be broadly classified into patch
based and edge based priors, depending on the domains in which
they operate. Perhaps the simplest patch based priors are those
which assume simple models for image smoothness (such as linear
or cubic). Super-resolution then simply amounts to interpolation of
the patch pixels according to the chosen model to obtain the sub-
pixel values [14,15,30]. However, such methods tend to produce
overly smooth results, and tend to produces artifacts such as chess-
board effect along edges. A popular class of priors that are aimed at
preserving sharpness are those which impose constraints on the
marginal distributions of filterbank responses of the image
[12,17]. Studies on statistical properties of natural images have
found that these distributions are well modeled as Laplacians
[12] or generalized Gaussians [17]. The constraints therefore occur
in terms of fits of these distribution types to the data at hand.
These priors, however, are used as a global constraint over the
entire image. Spatial localization is incorporated only weakly at
best [18].

More recently, learning based priors have aimed at estimating
the relationship between LR and HR patches using a training data-
base [9,28,27,22,29]. These learnt mappings are then used to pre-
dict the HR version of each patch of the given LR image. Freeman
et al. [9,10] use a Markov random field (MRF) model to learn the
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Fig. 1. (a) Bicubic upsampled image. (b) Result of edge based upsampling using [7].
Although edge sharpness is restored, the original brightness level is not maintained.
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relationship between LR and HR patches. Yeung et al. [29] uses
ideas from manifold learning to capture this relationship, wherein
the manifold of HR patches is assumed to be locally linear, and
patches are expressed as a linear combinations of its neighbors.
Yang et al. [27] express image patches as linear combinations of
atoms from a dictionary of a fixed set of image patches. This is then
extended to the case where the dictionary itself is learnt to support
a sparse representation of patches [28,26].

While learning based patch priors have demonstrated success,
they do have certain shortcomings. Image patches, depending on
their size, can exhibit high degrees of complexity and variability
and it is not clear how many samples are sufficient to adequately
model the variability seen in generic images, and for effectively
learning their mappings across resolutions. The choice of patch size
in learning based methods is itself rather heuristic, and has a sig-
nificant effect on the number of patches required for learning
and on the SR result as well. Patch based approaches also tend to
be susceptible to spurious artifacts near sharp edges, since patches
containing sharp transitions in intensities may be difficult to model
using limited number of training patches, unless a very similar
patch exist in the training set.

Edge based priors attempt to overcome some of the limitations
of patch based approaches described above. Edge smoothness priors
[5,16,24] favor smooth contours (or isophotes) in the image, and
are motivated by human perceptual preferences for smooth image
boundaries [5,16,24]. These priors have been effective in minimiz-
ing artifacts along high contrast boundaries while producing
geometrically smooth contours. However, they do not directly con-
sider the sharpness of intensities across edges in the estimated HR
image. Edge profile based priors address this issue by modeling 1-D
edge profiles of the image and learning (using training data) how
these profiles transform across resolutions [21,20,7,23,25]. In [7],
statistics of 1-D edge profiles are obtained by computing moments
of the profile shape, and their transformation across resolutions is
learnt. The gradient profile prior (GPP) approach of [21,20], fits a
generalized Gaussian distribution to edge profiles, and uses a
sharpness parameter to transform them across resolutions. The
aforementioned approaches try to reap advantages of 1-D model-
ing over 2-D patch modeling. 1-D profiles are of lower dimension-
ality than rectangular patches, and can be described by one [21] or
a few [7] parameters.

While existing edge profile methods extract 1-D profiles, these
profiles are obtained using gradients, which still invlove 2-D pro-
cessing using a predefined filter. Computing gradients using prede-
fined 2-D filters requires making strict assumptions about the
geometry and scale of structures being detected [1]. Any choice
of filter size and coefficients of the gradient operator essentially
restricts the type of structures that can be detected, in terms of
their scale and geometry. Such restrictions have a particularly
detrimental effect on the SR problem, wherein all structures in
the image, irrespective of their scale/geometry, need to be upscaled
by learning correspondences between LR structures and their HR
counterparts. Restrictions and assumptions on the scale/geometry
introduced by 2D linear pre-processing causes distortions in learn-
ing this mapping, and therefore the advantage of subsequently
using 1D profiles gets diminished.

In addition, imposing priors on gradients does not impose con-
straints on the absolute brightness values of the image. This some-
times leads to deviations in the brightness levels of the HR image
relative to the given LR image in such methods [7,21]. We show
this by an example presented in Fig. 1, which shows an upsampling
result obtained by the edge profile based method of [7].

In this paper we propose a new edge profile based prior for the
SR problem, that overcomes some of the limitations of existing
edge based methods as described above. We propose a method
which avoids 2-D preprocessing for obtaining edge information.
We do so by adopting the definition of image structure as proposed
in [2,1]. We treat the image as a layout of homogeneous regions
partitioning the image, each surrounded by ramp edges [2,1], as
shown in Fig. 3(b). Such a layout is obtained by the simple require-
ment that the intensity variation within a region interior be strictly
less than those in the ramps surrounding it. Ramps are character-
ized by the property that any path through a ramp pixel, mono-
tonically leading from one to the other side, has monotonically
increasing (or decreasing) intensity values along it. Such a ramp
profile thus consists of a sharp intensity transition over a relatively
narrow area between the interior intensities on the two sides, and
thus captures the large contrast between the two regions.

Since ramps correspond to areas most affected by a change in
resolution (as illustrated by the example in Fig. 2), we propose a
prior for the SR problem that learns how ramps transform across
resolutions. We model the 1-D ramp profiles using sigmoidal func-
tions, adequately parameterized to allow the variability seen in
ramp profiles extracted from natural images. We learn functions
that map the ramp profiles from LR images to their HR counter-
parts using a set of training images. As we demonstrate in Section 2,
ramp profiles are more robust descriptors of edge profiles as com-
pared to gradient profiles. We do not use fixed size and fixed coef-
ficient filters or templates for edge extraction. Like other edge
based methods, the remaining non-ramp, homogeneous region
interiors are super-resolved using the simple intensity conserva-
tion constraint [13].

Unlike gradient based edge profile priors, ramp profile modeling
allows us to formulate our prior in the intensity domain. Gradient
domain constraints are unable to accurately preserve brightness
[7,20]. Our prior enforces sharpness directly in the image domain,
thus avoiding deviations from the original intensities/colors.

Current edge profile based methods assume only a one-to-one
transformation between an LR edge profile and its HR counterpart.
However, we show that edge profiles across thin regions/structures
also exhibit a non-trivial inter-dependency since the distance
between two ramps (separated by a thin region) in an HR image
may be small enough to cause an overlap between their domains
of support in the corresponding LR image. We model such inter-
edge profile relationship for better recovery of contrast across thin
regions and structures.

In the next section, we describe the ramp based representation
of image structure. In Section 3 we present an overview of the
steps involved in our algorithm. Sections 4–7 describe our pro-
posed algorithm in detail. Section 8 shows our results.
2. Ramp models

We now briefly review some of the key ideas of image modeling
presented in [2] and the references therein.
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Fig. 2. (a) LR image. (b) LR image after bicubic interpolation to original image size. (c) Original ground truth HR image. (d) Intensity profiles drawn along the white line from
(b) and (c). The greatest difference between the pixel profiles occurs at the ramps, which are the sharp transitions between two relatively homogenous interiors. Notice the
difference in slopes of the LR and HR ramps, and also the difference in ramp heights, if two ramps are closely separated. Our algorithm learns how these ramps transform from
the (bicubic interpolated) LR image to the HR image.
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Fig. 3. (a) Original image. (b) Areas of the image containing ramps. (c) Edges contained within the ramps, like axes of the ramps.
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A ramp profile Rðx; hÞ at a location x in an image is defined as
the longest sequence (ordered set) of monotonically increasing
(or decreasing) pixel values along a path passing through x in a
particular direction h. Ramp profiles, computed over a sufficiently
large number of directions, quantify the intensity variations
around a given edge location and capture the local edge structure.
Ramp profiles are detected without using any predefined filters
(e.g., along horizontal and vertical directions), are fully adaptive
to structures of any width or height and they result from a bottom
up process, without any prior assumptions [2]. We elaborate a bit
more on these advantages in the context of the SR problem by a
real world example in Section 3.

Using ramp profiles, Akbas and Ahuja [2] develops a low level
segmentation algorithm that realizes the properties targeted in
[1]: (i) it uses a realistic model of the segments - each region hav-
ing a smoothly varying interior intensity profile, surrounded by a
relatively steep intensity ramps; (ii) it provides a segmentation
with quantitatively and qualitatively demonstrated accuracy that
does not assume any priors on region geometry (shape, size), and
region topology (how many regions neighbor a given region), but
rather lets the segmentation structure emerge in a bottom-up fash-
ion; (iii) it provides regions with closed contours as well as the
hierarchy of their spatial embedding, the latter not being used in
this paper; (iv) the results are perceptually valid.

To summarize, for an input image, the algorithm of [2] provides
us with the following: (i) A binary valued edge map E, containing
closed, single-pixel wide boundaries of smooth, homogeneous
regions, with E ¼ fe : EðeÞ ¼ 1g, denoting the set of these edge
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Fig. 4. (a) Parameterization of a ramp in terms of the sharpness S, and the intensity levels at either end, A and B. (b) An example image from which we extract a few sample
ramp profiles and fit a sigmoid model. (c) A few ramp profiles extracted from the subimages shown in the colored boxes. The ramp profiles are denoted by the white lines in
the subimages. The plots show the parametric model (red curve) fitted to the ramps extracted (blue dots) from the subimages. The sigmoid function models ramps well. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. We extract pixel intensity profiles from an HR image and its upscaled (bicubic) LR version, along the cross section denoted by the green line. We compute gradients
along both the HR and LR profiles using various linear filters as shown. The HR gradient is quite sensitive to the filter used. Finding the location of the edge pixels, and
subsequently learning correspondences between gradient profiles (as done in [21,20,7]) can be difficult given the volatility of the gradient estimation process. On the other
hand, ramp profiles are able to obtain a more stable and correct localization of the edge, as shown in red in the rightmost column. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Given a ramp R (in red), we denote R� and Rþ to be the neighboring ramps
(in green) on either side of the ramp R. These neighbors are detected by simply
proceeding outward from either end of the ramp R, along the same cross section.
We denote the heights of the ramps as the difference between the intensity levels at
the ends of the ramps. Therefore, H ¼ A� B;H� ¼ A� � B� and Hþ ¼ Aþ � Bþ . (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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pixels. (ii) For each edge pixel e 2 E, a set of D ramp profiles
Rðe; hiÞ; i ¼ 1;2; . . . ;D, along D different directions h1; . . . ; hD pass-
ing through e. These ramp profiles characterize the local image
structure around the edge pixel e. In our work, we compute ramps
along D ¼ 4 different directions in the 2D image plane - horizontal,
vertical and the two diagonals. Also, we deem a ramp profile valid
only if it causes a specified minimum change in intensity level
across it, which is above the sensor noise level. In our application,
we set this threshold to be 15. Therefore, we deem a ramp profile
to be valid only if it causes a gray level intensity change of at least
15 across it.

Fig. 3(c) shows the edge map obtained via such a segmentation.
Fig. 3(b) shows the ramp areas, i.e., areas that are populated by the
ramp profiles at the edge pixels, which can be seen as forming a
thin border around the edges.

3. Overview of proposed algorithm

To super-resolve a given image ILR defined in the LR domain XLR,
our algorithm consists of the following steps:

3.1. Algorithm summary

(1) We first upscale ILR to the HR domain XHR by a simple bicubic
interpolation to yield IU .
(a)

(b)

Fig. 7. Example illustrating the dependency of neighboring ramps across thin structures i
two images in (a) and (b), but R1 has a neighboring ramp separated by a thin region. Afte
the influence of the neighboring ramp Rþ1 on R1 during the filtering process.
(2) We then use the algorithm of [2] to obtain the low-level
edge map E of IU , and the four ramp profiles
Rðe; hiÞ; i ¼ 1;2;3;4 for each edge pixel e.

(3) To each ramp profile, we fit a sigmoid function parameter-
ized by Zl, as detailed in Section 4.

(4) We then transform Zl to its HR counterpart Zh, using a set of
transformation functions that we learn from training
images, as described in Section 5.

(5) The transformed ramp profiles (parameterized by Zh) are
then used to create a prior image Ip in the HR domain XHR,
as described in Section 6. This prior image Ip essentially con-
tains the ramp based structural information that the HR
image is expected to have.

(6) We estimate our final HR image ÎHR using a regularization
framework, by using Ip as a prior constraint, along with the
classical backprojection formulation [13] as the data term.
This step is described in Section 7.

4. Parametric model of ramp profiles

Consider a ramp profile Rðe; hÞ that is monotonically increasing
along a direction h though the edge pixel e of an image. To fit a
parametric model to this ramp profile, we first consider a 1D spa-
tial domain t 2 ð�1;1Þ, centered at e, and along the direction h.
We can assume the ramp profile intensities to be a 1D function
rðtÞ in this domain, defined at discrete locations
t ¼ �N;�N þ 1; . . . ;0; . . . ;M � 1;M.

We model this ramp profile using a continuous sigmoid func-
tion defined as,

f ðt; A;B; SÞ ¼ Aþ B� A
1þ expð�StÞ : ð1Þ

A and B denote the intensity values at the ends of the ramp, and
H ¼ B� A denotes the height of the ramp profile. S controls the
sharpness or steepness of the ramp profile. Fig. 4(a) shows these
parameters schematically.

We set A ¼ rð�NÞ, and B ¼ rðMÞ as the intensity levels at the end
of the ramps. The least squares estimate for S can be analytically

obtained as S ¼ tT t
� ��1

tT r
� �

, where, t ¼ N;N � 1; . . . ;0; . . . ;½
�M þ 1;�M�T and r ¼ ½rð�NÞ; rð�N þ 1Þ; . . . ; rð0Þ; . . . ; rðM � 1Þ;
rðMÞ�T .

Since this parameter estimation is simple and non-iterative, we
are able to parameterize a large number of ramps relatively fast.
We show a few examples of ramps extracted an image, superim-
posed with the above sigmoidal fit in Fig. 4(c).
n the downsampling process. R1 and R2 are identical ramps across the red line in the
r using a downsampling filter, the filtered ramps Rf1 and Rf2 are not identical, due to



Fig. 8. Graphical model illustrating the dependency assumed among the various variables in our model. Bold circles indicate the observed variables. Thin circles denote the
latent variables to be estimated.

(a)

(b)

Fig. 9. (a) The learnt HR ramp sharpness parameter Sh , shown as a function of the
corresponding LR ramp sharpness Sl , at a few discretely sampled values of the LR
ramp height Hl . The HR ramp sharpness depends not only on the LR ramp sharpness
but also on the LR ramp height. (b) Learnt linear function for predicting B̂h as a
function of Bl , for different values of Hþl . We show the B̂h ¼ Bl line for reference. The
intensity level of the HR ramp end, B̂h , is clearly dependent on the neighboring LR
ramp height Hþl .
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To summarize, the above modeling procedure parameterizes
the shape of a ramp profile Rðx; hÞ with a parameter vector
Z ¼ ½A;B; S�.
5. Learning ramp transformations

In order to determine how an LR ramp profile, parameterized by
Zl, transforms to its HR counterpart Zh, we need to learn functions
that map Zl to Zh using a set of known pairs of LR and HR ramp pro-

files fðZðiÞl ; Z
ðiÞ
h Þg

T

i¼1. For this, we collect a set of HR images (of around
1000x1000 pixels), covering a variety of scenes, and then generate
the LR images by downsampling using a filter f psf .

5.1. Creating training data

For obtaining a pair ðZðiÞl ; Z
ðiÞ
h Þ, we need to extract a ramp profile

from an LR image and find its corresponding ramp in the HR image.
We use the segmentation algorithm [2] to obtain the edge pixels
and the associated ramp profiles for all the HR images, and the
LR images after upscaling (using bicubic interpolation) to the HR
domain. We perform this upscaling step to have both the LR and
HR image defined over the same resolution domain, as this would
facilitate in finding correspondences.

For an LR ramp profile Rlðel; hÞ through the edge pixel el along
direction h in an LR image, the corresponding ramp profile
Rhðeh; hÞ in the HR image is found at a location eh given by,

eh ¼ argmine2NðelÞ jHhðe; hÞ � Hlðel; hÞjð Þ; ð2Þ

where NðelÞ is the set of edge pixels of the HR image, in a 5 � 5
neighborhood around el. The function Hðx; hÞ quantifies the height
of the ramp profile through the pixel x, along the direction h, in
the image.

Ramp profiles allow for more accurate correspondences to be
found, as compared to using gradient profiles. This is illustrated
in Fig. 5. We show a cross section of an image from its HR version
and its upsampled LR version. The gradient profile is quite sensitive
to the type of gradient filter used, and it is difficult to infer the edge
location in the HR image and establish correspondence to LR. Mak-
ing any decision on the type of filter to use imposes strong assump-
tions of the expected geometry and scale of the image profile. On
the other hand, by definition, ramp profiles avoids any such
assumptions on scale, and detects structure bottom-up, adaptively.
It is able to correctly identify the HR edge in the example shown in
Fig. 5.

We collect T pairs of LR–HR ramp profiles from the training
images, using the matching criterion in (2).

5.2. Effect of neighboring ramps

To learn a regression function from Zl to Zh, we also need to
account for the dependency between an HR ramp profile and the
closely spaced neighbors (across thin structures etc.) of the corre-
sponding LR ramp profile. Fig. 6 shows an example of a ramp pro-
file R (in red), along with its two neighboring ramp profiles R� and
Rþ (in green) in either direction. Without loss of generality, we
denote the left neighboring ramp profile with the superscript ‘�’,
and the right neighbor with a superscript ‘þ’. The intensity values
at the ends of the ramps are respectively denoted by A and B, with
the appropriate superscript as shown in Fig. 6. Therefore, we also
can denote the heights of the neighboring ramps as H� ¼ B� � A�

and Hþ ¼ Bþ � Aþ respectively.



Fig. 10. 1D example illustrating the effect of our neighboring ramp dependency model. (a) Ground truth HR ramp in red, with a closely spaced neighboring ramp in green. (b)
LR ramp obtained by filtering (a) with a low pass filter. Note that the height of the red ramp is significantly reduced due to the effect of the neighboring ramp, as described in
the text. (c) The result of transforming the LR ramp using the proposed ramp transformation, without incorporating neighborhood dependency. While the sharpness of the
estimated HR ramp is similar to that of the corresponding ground truth HR ramp, the height is significantly smaller. (d) The estimated HR ramp with the proposed
neighbordhood dependency model. In this case, the height of the estimated HR ramp is closer to the ground truth HR ramp, because the predicted ramp end intensity level B̂h

is smaller than Bl . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Incorporating dependency between neighboring ramps across edges allows for better recovery of contrast across thin structures such as the beaks in the above
images.
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The distance between two neighboring ramps along the same
cross section in an HR image may be small enough to cause an
overlap between the spatial supports of the corresponding ramps
in the LR image. This effect of this dependency is illustrated
through a simple example in Fig. 7. In both cases of Fig. 7, as
expected, the filtering operation causes a change in sharpness of
the ramps. However, in case of Fig. 7(a), due to the presence of a
close neighboring ramp, along with sharpness, the height of the fil-
tered ramp Rf1 is also affected. The height remains unaffected if the
ramp does not have neighboring ramps such as in Fig. 7(b).

To incorporate this dependency of neighboring ramps in our
model, we formulate our regression function to be,

Ẑh ¼ E ZhjZl; Z
þ
l ; Z

�
l

� �
; ð3Þ

where Zþl and Z�l denote the parameters of the neighboring ramps
on either side of the ramp Zl, along the same cross section of the
image. The above equation essentially says that the parameters of
the HR ramp Zh are predicted not only by its corresponding LR ramp
Zl, but also by the LR ramp’s neighbors, Zþl and Z�l if they are close
Fig. 12. (a) Bicubic upsampled LR image. (b) Ramps extracted from LR image. (c) Transfo
the transformed ramps and the bicubic interpolated values from (a) in the non-ram
backprojection constraint.
enough. We make use of the ramp map (such as in Fig. 3(b)) to
determine if the ramps are close enough to require modeling using
(3). Neighboring ramp profiles are deemed to be close and depen-
dent on each other if there are no non-ramp pixels between them.
In the example shown in Fig. 7(a), the neighboring LR ramps profiles
Rf1 and Rfþ1 do not have any non-ramp pixels between them. There-
fore, we use the dependency model of (3) to relate them to the HR
ramps profiles R1 and Rþ1 . For all other ramp profiles, we drop the
dependency on Zþl and Z�l and simply assume a one-to-one function.

5.3. Estimating prediction functions

We make some simplifying independence assumptions among
the variables in (3) in order to make the estimation tractable: By
comparing the filtered ramps Rf1 and Rf2 in Fig. 7, we notice that
the presence of a neighboring ramp essentially reduces the height
of the ramp during the filtering process. Therefore, our regression
function must be aimed at compensating for this attenuation in
the ramp height. Furthermore, we notice that the attenuation in
height is caused by change in intensity level at only one end of
rmed ramps using learnt transformation functions. (d) Prior image Ip comprising of
p regions. (e) HR image estimated using the prior constraint image (d) and the



Fig. 13. Training images used in our algorithm.
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the ramp, that is closer to the neighboring ramp. We can therefore
incorporate the neighborhood dependency by modeling Ah and Bh

as functions of the neighboring LR ramp profiles, in the respective
directions. Therefore,

Âh ¼ E AhjAl;H
�
l

� �
ð4Þ
B̂h ¼ E BhjBl;H
þ
l

� �
ð5Þ

We assume the sharpness parameter of the HR ramp profile Sh

to always be independent of the neighborhood ramps. We model
Sh as a function of the height and sharpness of corresponding LR
ramp profile, without any neighborhood dependency.

Ŝh ¼ E ShjSl;Hlð Þ ð6Þ

Fig. 8 shows a graphical representation of the dependence and
independence relationship assumed in our model.

To estimate the prediction functions (4)–(6), we take a dis-

criminative modeling approach. We approximate Ŝh ¼ E ShjSl;Hlð Þ
using support vector regression with a polynomial kernel. We
choose the polynomial order to be 3 based on k-fold (k ¼ 10) cross
validation by partitioning the training data. Fig. 9(a) shows plots of

the learnt Ŝh as a function of the LR sharpness Sl, for different val-
ues of LR ramp heights Hl. Clearly, there is a significant dependence
of the HR ramp sharpness on not just the LR ramp sharpness, but
also the LR ramp height Hl.

We use a linear model to estimate Âh and B̂h in (4) and (5) in
terms of Al;H

�
l and Bl;H

þ
l respectively. Fig. 9(b) shows the learnt

B̂h as a function of Bl, for different values of Hþl . Âh behaves similar-
ly, and we do not show it here.

Clearly, the estimation of B̂h is dependent on the neighboring
ramp height Hþl . To better understand the plots in Fig. 9(b), let us

first focus on the B̂h ¼ Bl line that is shown in the plot for reference.
This line shows the case when the intensity level at the end of the
HR ramp Bh is the same as the intensity level Bl at the end of its cor-
responding LR ramp. Indeed, this is the case if there are no neigh-
boring ramps present. However, due to the presence of a

neighboring ramp, the predicted intensity level B̂h of the HR ramp
deviates from Bl. This deviation is dependent on the height Hþl of
the neighboring ramp. For example, let’s focus on the red curve,
which corresponds to the presence of a neighboring ramp of height
Hþl ¼ 100. Qualitatively, we show such an example in Fig. 10 (b),
where the red colored ramp is to be super-resolved, and the green
colored ramp is the neighboring ramp of height Hþl . Fig. 10(c)
shows the transformed ramp, without incorporating the neighbor-
ing ramp dependency. In this case, while the sharpress of the ramp
is appropriately transformed, the height of the ramp remains the
same as in the LR ramp of Fig. 10(b). However, this height is lower
than the ground truth HR ramp height as in Fig. 10(a). To compen-
sate for this smaller height as compared to the ground truth, our
neighboring ramp dependency model predicts a lower intensity

value B̂h at the ramp end, as compared to the LR ramp end intensity
Bl, in Fig. 10(d). This is evident by the plots of Fig. 9(b), such as the
red curve. Due tho this lower predicted intensity level of the ramp
end, the resultant ramp in Fig. 10(d) is similar in height to the
ground truth HR ramp of Fig. 10(a).

In case of real world images, the effect of incorporating our
neighboring ramp dependency on our SR results is demonstrated
in Fig. 11. Thin structures like the bird’s beak show better contrast,
owing to the correction provided by the learnt function in Fig. 9(b).
6. Ramp based prior

Given an LR image ILR (and its bicubic-upsampled version IU) to
be super-resolved, each ramp profile in IU is transformed using the
prediction functions learnt above. The transformed sigmoids are
then resampled at the positions where the corresponding LR ramp
profiles were defined, and the intensities thus obtained are placed
in a new image Ip. Let XR � XHR denote the set of pixels of IU or Ip

that is populated by ramp profiles (as shown in the example of
Fig. 3(b)).

Unlike previous gradient based approaches that model gradient
profiles in only one direction (in the direction of the gradient), we
extract and transform ramp profiles in four directions. As a result,
the value IpðxÞ of a particular ramp pixel x 2 XR is typically predict-
ed by multiple transformed ramp profiles. We perform a weighted
average of all these predictions, to get the final predicted value of
IpðxÞ.

IpðxÞ ¼
P

jShðx; hjÞHhðx; hjÞIphj
ðxÞP

jShðx; hjÞHhðx; hjÞ
; x 2 XR: ð7Þ

Shðx; hjÞ and Hhðx; hjÞ are the sharpness and height of the (trans-
formed) ramp profiles through x in direction hj, and Iphj

ðxÞ is the
intensity predicted at x by the (transformed) ramp profile along
direction hj alone. Intensities predicted by high contrast and sharp
ramp profiles have higher weight.



(a) Ground truth (b) Bicubic

(c) Backprojection [13] (d) GPP [21]

(e) Yang et. al. [28] (f) Ours

Fig. 14. Leaves (4X). Thin structures (e.g., the stem) are well reconstructed in our result, and sharpness along the leaves is also better maintained as compared to other
methods.

Fig. 15. Leaves 1-D profiles. We extract 1-D intensity profiles (along the white lines) from the results of the Leaves image of Fig. 14, and plot them. As evident from the plots,
our algorithm is able to better reconstruct the ramp transitions, and our profile bears closer resemblance to the ground truth. We can see that thin/narrow structures are
flattened out by other methods, while our result does a better job of preserving such details.
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(a) Ground truth (b) Bicubic

(c) Backprojection [13] (d) GPP [21, 20]

(e) Yang et. al. [28, 27] (f) Ours

Fig. 16. Bird (4X). GPP [21] is unable to preserve the color of the sky. Yang et al. [28] exhibits ringing artifacts along the bird’s beak. Our results are sharp, preserve the original
image color, and show little or no ringing artifacts.
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Due to this averaging, smoothness is automatically achieved
between neighboring pixels in Ip, without an explicit Markov chain
based inference [7,22].

For the non-ramp locations in Ip, we simply retain the bicubic
interpolated values from IU . This new image Ip serves as our ramp
based prior constraint.

Fig. 12 shows an example where we extract ramps from an
upsampled LR image, transform the ramps using the learnt func-
tions, and obtain the prior image Ip.
7. SR reconstruction

We use the prior Ip together with the intensity conservation
constraint in the LR domain to estimate the HR image. The cost
function to minimize is therefore,

Jð̂IHRÞ ¼ ð1�KÞ # � ð̂IHR � f psf Þ # �ILR

h i���
���

2
þ K � ð̂IHR � IpÞ
���

���
2

ð8Þ

‘�’ denotes the Hadamard (entry-wise) product between matrices.
K is a matrix containing spatially adaptive regularization



(a) Ground truth (b) Bicubic

(c) Backprojection [13] (d) GPP [21]

(e) Yang et. al. [28] (f) Ours

Fig. 17. Monarch image (4X). Yang et al. [28] (e) produces considerable ringing around high contrast edges. GPP [21] (d) is less sharp and the image color is slightly off
compared to the original. Our result is closest to the original, with sharp edges and no visible ringing effect.
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parameters, defined as, K ¼ kM � g, where MðxÞ ¼ 1 if x 2 XR, and 0
everywhere else. M is therefore a binary valued matrix used as a
map to indicate the ramp regions. K is obtained by smoothing out
the map M using Gaussian filter g and rescaling it by k.

K gives high weight to our prior in the ramp areas. In smooth

regions, Jð̂IHRÞ defaults to the backprojection formulation [13]. We
minimize (8) using gradient descent.
8. Experimental results

8.1. Implementation details

We used a training set of 10 LR–HR image pairs, as shown in
Fig. 13. We used a 7 � 7 Gaussian filter of width 1.6 as f psf for
downsampling the HR training images by a factor of 4, to create
the LR versions. The same f psf is used for the reconstruction in
(8) as well. We extracted around T ¼ 200;000 pairs of LR–HR ramp
profile pairs for learning. We found that learning with even
T ¼ 20;000 produced comparable results. We trained our ramp
transformations for an upscaling factor of 4X. We choose k ¼ :8
as the regularization parameter in (8), as this yielded the most
visually pleasing results. For processing color images, we apply
the proposed SR method only on the luma component. The chroma
channels are upscaled using bicubic interpolation.
8.2. Evaluation strategy

Despite the growing interest in the single image SR problem
within the image processing and vision communities, it still lacks
a common benchmark for objective evaluation and comparisons.
Accurate numerical and quantitative evaluation is also an open
problem. Peak signal-to-noise ratio (PSNR) and structural similarity
measure (SSIM) [31] have been two commonly used numerical
measures in the past. However, their correlation with human per-
ception of image quality (which tends to be sharpness-driven) is
debatable. Numerical measures like PSNR often tend to favor
smoother images, whereas the challenge in the SR problem is to
recover adequate sharpness. Sharp reconstructed edges yielded by
SR algorithms are susceptible to high numerical errors due to the
ambiguity in edge localization in the HR domain. Perhaps for this
reason, several recent state-of-the-art SR methods (such as
[11,8,7,19]) emphasize visual quality rather than quantitative com-
parisons, and provide results without any ground truth HR versions.

For evaluation, we show most of our results on images that have
ground truth HR versions. For these images we report both PSNR
and SSIM measures. Although we report these numbers, for better
evaluation we encourage the reader to examine the visual similar-
ity of our results with the ground truth images, as compared to
competing methods. In some cases where our numerical results
are close to those of others, visually our results appear better and



Fig. 18. Stripes (4X). The stripes in our result are sharp, without ringing effect, and bears close visual resemblance to the original image.

Fig. 19. Stripes 1-D profiles. We extract 1-D intensity profiles (along the red lines) from the results of the Stripes image of Fig. 18, and plot them. Our algorithm is able to
produce ramps that bear closer resemblance to the ground truth. The ramp transitions produced by other methods are not as sharp. Also, the GPP algorithm [21] is not able to
reproduce the correct intensity level for the black stripes.

Table 1
Comparison of PSNR (db) and structural similarity measure (SSIM) [31] for the Leaves, Bird, Monarch and Stripes images. Values in bold indicate the best performance among the
different methods.

Image Bicubic Backproj. [13] Yang [28] GPP [21] Ours

Leaves 28.88 29.78 30.94 26.98 30.96
.9197 .9148 .9316 .9164 .9344

Bird 27.29 28.08 29.43 24.16 29.84
.8677 .8718 .8917 .8364 .8938

Monarch 24.23 24.97 25.81 22.54 25.67
.8426 .8451 .8656 .8261 .8661

Stripes 18.58 19.85 20.77 16.04 20.31
.7203 .7585 .8191 .6620 .8146
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Fig. 20. Penguin image (4X). NEDI [14] tends to oversmooth the image. NL backprojection [6] shows less ringing than the classical backprojection algorithm [13], but
introduces other artifacts along edges. Shan et al. [19] produces good results, but also shows some ringing artifacts along the beaks. Our result is sharp, without ringing effect,
and match the original image closely.

Fig. 21. Penguin 1-D profiles. We extract 1-D intensity profiles (along the red lines) from the results of the Penguin image of Fig. 20, and plot them. Most other algorithms are
not able to produce ramp transitions as sharp as ours. Our profile bears the closest resemblance to the ground truth. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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bear closer resemblance to the ground truth images when com-
pared to them. In some results, we also extract a few 1-D pixel pro-
files, in order to visually examine the quality of the reconstructed
ramps of our method vs the others, and compare to the ground
truth.
We also show some results on LR images that do not have
ground truth HR versions, but have been used by several recent
methods and have been provided online [11,8,7]. This allows us
to visually compare our results with these methods, albeit without
any ground truth.



Fig. 22. Zebra image (4X). The stripes in our result are sharp, without any ringing effect such as in Shan et al. [19], and match the original image closely. NL backprojection [6]
maintains sharpness but introduces spurious black artifacts in the interior of the white stripes. Best viewed when zoomed in.

Table 2
Comparison of PSNR (db) and structural similarity measure (SSIM) [31] for the Penguin, Zebra, and Flower images. Values in bold indicate the best performance among the different
methods.

Image Backproj. [13] NEDI [14] Shan [19] NL Backproj. [6] Ours

Penguin 26.15 24.32 26.15 23.54 25.46
.8576 .8565 .8766 .8170 .8799

Zebra 20.06 18.74 20.20 19.68 20.23
.6755 .6539 .7123 .6750 .7145

Flower 29.61 27.32 29.99 26.03 30.08
.8574 .8185 .8554 .7734 .8591
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8.3. Comparison with learning based methods

We first compare our results to the gradient profile prior (GPP)
[21,20] method, which is a learning based approach, most related
to our method. We also compare to the patch based dictionary
learning approach of Yang et al. [28]. In addition, as baselines we
also compare to the classical bicubic interpolation as well as the
backprojection algorithm [13], which is equivalent to setting
k ¼ 0 in (8).

Fig. 14 shows our comparisons on the Leaves image. Both the
GPP based approach [21] as well as the dictionary based approach
[28] do not produce sufficiently sharp results. Our edges are recon-
structed better and are most similar to the ground truth image
shown in Fig. 14(a). In Fig. 15, we show a 1-D profile extracted
from the Leaves image. We can see that the ramp transitions are
better reconstructed by our algorithm as compared to the others.
Thin/fine structures are blurred and flattened out by other meth-
ods, but our algorithm is able to better preserve such structures.

Fig. 16 compares results on the Bird image. Here we highlight an
important drawback of gradient based edge priors such as GPP
[21]: As shown in Fig. 16(d), the GPP result fails to accurately
reproduce the color of the sky, as compared to the ground truth fig-
ure of Fig. 16(a). The gradient domain constraint in [21] does not
enforce brightness consistency. Edges are also not as sharp as those
obtained by our method in Fig. 16(f). Although sharper than GPP,
the dictionary based method by Yang et al [28] produces ringing
artifacts along edges, such as along the bird’s beak in Fig. 16(e).
Our result is free of such artifacts.



(a) Ground truth (b) Backprojection [13] (c) NEDI [14]

(d) Shan et. al. [19] (e) NL Backprojection [6] (f) Ours

Fig. 23. Flower image (4X). NL backprojection [6] maintains sharpness but introduces artifacts near edges. Shan et al. [19] yields results comparable to ours, but fine textural
details (such as in the interior of leaves) appear slightly faded.
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Fig. 18 and Fig. 17 show two more similar comparisons. Our
results are consistently sharper than other methods, and bear clo-
ser visual resemblance to the ground truth, with almost no ringing
artifacts. Fig. 19 shows 1-D profiles extracted from the results of
Fig. 18. Our ramps bear the closest resemblance to the ground
truth. Other methods produce ramp transitions that are less sharp.

For these images, we tabulate the PSNR (db) and SSIM [31] val-
ues in Table 1. Our numerical results are significantly better than
GPP [21] and also the bicubic and backprojection [13] baselines.
Our values are quite close to those of Yang et al. [28], although
visually our results appear better, particularly along strong edges.

We also compare our results with the edge statistics driven
method of Fattal [7] in Figs. 24 and 25. Note that no ground truths
are available for these images. In the Wheel image of Fig. 24, the
result of Fattal [7] exhibits more ringing artifacts than our result,
and it also appears overly smooth in places. In the Sculpture image
of Fig. 25, Fattal [7] exhibits disparity in brightness due to reasons
mentioned earlier. Our method, while also being edge driven, is
fundamentally free from this drawback.

8.4. Comparisons with interpolation and reconstruction based
methods

We now compare our results to some methods that do not uti-
lize any learning based prior knowledge. In particular, we compare
our results to those of Shan et al. [19] that is based on iterative
feedback based filtering. We also compare to the edge directed
interpolation method called NEDI [14], and non-local (NL)
backprojection [6] which is an edge-aware extension to the classi-
cal backprojection algorithm [13].

Fig. 20 shows our comparison on the Penguin image. NL backpro-
jection [6] overcomes some of the excessive ringing effect seen in the
classical backprojection algorithm [13], but also introduces other
artifacts along the edges. The edge directed interpolation method
in NEDI [14] produces overly smooth results. Shan et al. [19] pro-
duces good results, but shows slightly more ringing artifacts as com-
pared to our result, such as along the beak of the penguin. We again
show 1-D profiles in Fig. 21, extracted from the Penguin results. Our
algorithm is able to accurately reconstruct the sharpness of the
ground truth ramps. Other methods typically are not that sharp.

In the Zebra image of Fig. 22, Shan et al. [19] exhibits ringing or
zig-zag like effects along the stripe edges. NL backprojection [6],
although sharp, creates unwanted dark streaks in the interior of
the white stripes. This is better visualized by zooming in on
Fig. 20(e). Our result is free of such artifacts.

Fig. 23 shows another set of results. Although the ringing effect
of Shan et al. [19] is not very evident in this result, fine textural
details (such as in the interior of leaves) seem to be slightly washed
out as compared to our result.

We show quantitative results of these three images in Table 2.
Overall, our results are better quantitatively as well.

8.5. Comparison with self similarity based methods

Freedman [8] and Glasner [11] have proposed SR methods that
exploit self similarity within images. While they produce visually



(a) Bicubic (b) Backproj. [13] (c) Yang [13]

(d) Fattal [7] (e) Freedman [8] (f) Ours

Fig. 24. Steering Wheel image (4X). Our result shows less ringing than Fattal [7] and Yang [28]. The self-similarity approach of Freedman [8] does not look very photo-realistic
(e.g. the circular rim in the center of the wheel), and some textural details are smoothed out. Our result seems well balanced overall. No ground truth is available for this
image.

(a) Bicubic (b) Backprojection [13] (c) GPP [21]

(d) Fattal [7] (e) Glasner [11] (f) Ours

Fig. 25. Sculpture (4X). Fattal [7] does not maintain the original brightness level of the image. Our result for this image looks better than the edge based methods of GPP [21]
and Fattal [7]. Glasner et al. [11] appears slightly sharper than ours. No ground truth is available for this image.
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pleasing results with sharp edges, they often do not appear very
photorealistic, and tend to smooth out fine details.

Fig. 24(e) shows the result of the method by Freedman [8] on
the Wheel image. The circular rim in the center of the steering
wheel appears un-natural as compared to the other results, and
fine textural details also appear to be smoothed out as compared
to our result in Fig. 24(f). Fig. 25(e) shows the result of Glasner
et al. [11] on the Sculpture image. Objective evaluation on this
image is difficult since the ground truth HR image is not available.
9. Discussion and conclusion

Quantifying structure accurately is a fundamental problem in
several low level vision tasks. Conventional methods are based
on using pre-defined filters and linear convolution. In this paper,
we have shown some drawbacks of such a formulation, for the sin-
gle image SR problem. We have presented a ramp profile based
model of structure around image edges for learning a prior for
SR, that overcomes the important drawbacks of edge based priors
using gradients. In addition, we have also proposed in our model
a simple, but novel idea of incorporating dependency between
closely spaced edges, while recovering the HR image. Our method
is based on characterizing structure around edges, as detected by a
low level segmentation procedure. For dealing with region interi-
ors, our algorithm simply defaults to the classical backprojection
algorithm. We have obtained better results than several state-of-
the-art techniques. Our primary improvement and contribution
lies in the better reconstruction of edges as compared to other
methods.

A limitation of our algorithm is the lack of robustness to noise.
Our definition of ramps as described in the paper assumes a
relatively noise free image. In the presence of noise, spurious or
distorted ramps may be detected which may hinder performance
in the subsequent steps, particularly during the learning phase.
In such noisy scenarios, we preprocess the images with a denoising
algorithm [4,3] before using the proposed SR method.

Note that noise sensitivity is an issue for other edge based SR
methods as well [21,20,7]. Presence of noise significantly affects
gradient computations on which algorithms such as GPP [21] are
based. Patch based methods generally tend to perform relatively
better in presence of noise [28].

In our algorithm, the relatively smooth region interiors are
super-resolved using the backprojection constraint alone.
Although from a perceptual standpoint, we are justified in focusing
on edges and the structures around them for the SR problem,
improvement in results may be expected through better modeling
of region interiors as well. One approach of doing so could be the
integration of both edge based and patch based priors, in order
to reap the advantages of each. This would also lend some noise
robustness to our approach. We would be exploring these ideas
in the future.
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