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Abstract. A popular approach for single image super-resolution (SR)
is to use scaled down versions of the given image to build an internal
training dictionary of pairs of low resolution (LR) and high resolution
(HR) image patches, which is then used to predict the HR image. This
self-similarity approach has the advantage of not requiring a separate
external training database. However, due to their limited size, internal
dictionaries are often inadequate for finding good matches for patches
containing complex structures such as textures. Furthermore, the qual-
ity of matches found are quite sensitive to factors like patch size (larger
patches contain structures of greater complexity and may be difficult to
match), and dimensions of the given image (smaller images yield smaller
internal dictionaries). In this paper we propose a self-similarity based
SR algorithm that addresses the abovementioned drawbacks. Instead of
seeking similar patches directly in the image domain, we use the self-
similarity principle independently on each of a set of different sub-band
images, obtained using a bank of orientation selective band-pass filters.
Therefore, we allow the different directional frequency components of a
patch to find matches independently, which may be in different image lo-
cations. Essentially, we decompose local image structure into component
patches defined by different sub-bands, with the following advantages:
(1) The sub-band image patches are simpler and therefore easier to find
matches, than for the more complex textural patches from the origi-
nal image. (2) The size of the dictionary defined by patches from the
sub-band images is exponential in the number of sub-bands used, thus
increasing the effective size of the internal dictionary. (3) As a result,
our algorithm exhibits a greater degree of invariance to parameters like
patch size and the dimensions of the LR image. We demonstrate these
advantages and show that our results are richer in textural content and
appear more natural than several state-of-the-art methods.

1 Introduction

The single image super-resolution (SR) problem has received significant attention
in recent years. Due to its ill-posed nature, this problem has fueled research in
various statistical properties of natural images, which are used as priors for reg-
ularizing the SR problem. Learning based approaches, which attempt to predict
high-resolution (HR) features corresponding to the low resolution (LR) features
of the given image, have become the state-of-the-art in the field [1–5].
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(a) Internal dictionary [6] (b) External dictionary [2] (c) Ours

Fig. 1. Woman (2X): Notice the hair. Methods based on internal dictionaries tend to smooth
out fine details while preserving high contrast edges. External database driven methods can appear
soft overall if the training patches are not relevant enough for super-resolving the given image.
Our algorithm does not require external training images, and is designed to address the limitation
of internal dictionaries. This helps enhance performance of internal dictionary based methods by
better synthesizing complex image structures such as fine textures. Our results appear sharper, with
more realistic details than those produced by the other schemes.

Many learning based methods first construct an external dictionary of LR-
HR patch pairs using a database of several generic LR-HR image pairs. Given a
test image to be super-resolved, this dictionary is used to predict the HR patch
corresponding to each patch in the LR given image. [7, 5, 3, 2, 8, 9].

The quality of results of such methods, however, depends heavily on the
construction of the external dictionary. The type and number of training images
required for obtaining satisfactory SR quality is not clear. If a small database is
used (for faster computations), then the results often have a strong dependence
on the specific training images chosen. If a large training database is used (for
better generalization), methods often have to rely on data reduction techniques
such as sparsification [2] or clustering [9] of the training set for computational
feasibility. This may cause a drop in performance due to loss of information in
the compact representation. If a different scaling factor is desired, re-training is
needed to learn new SR prediction functions for the new scaling factor.

To avoid external training databases and these problems associated with
them, several methods have been proposed that exploit self-similarities within
the given image. Similar patches are sought across scales of the given image to
build an internal dictionary of LR-HR patch pairs. This dictionary is then used
to predict the HR patch corresponding to each patch of the given image using
nearest neighbor patch-matching, linear regression, etc. [10, 6, 11–14]. The gen-
eral principle involved in such a self-similarity based SR algorithm is illustrated
in Fig. 2(a). Self-similarity methods find their roots in fractal image coding from
the 1990s [15, 16], and are based on the idea that natural image patches tend
to recur within and across scales in the same image [6, 17]. It has been shown
that internal dictionaries tend to contain more relevant training patches, and, in
general, yield nearest-neighbor matches with lower error as compared to external
dictionaries, with or without compact representation [17].
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Internal dictionaries, however, have limitations while super-resolving textural
regions. Indeed, [17] shows that the likelihood of finding a good internal match for
a patch decreases as the gradient content of the patch increases. This suggests
that textural details like hair, animal fur etc, often find suboptimal matches,
using a self-similarity approach, and are thus averaged or smoothed out in the
final SR result. The reason behind such a limitation is that the internal dictionary
obtained from the given image generally has fewer number of LR-HR patch pairs
than external dictionaries, which can potentially be as large as desired. Due
to the limited size of the internal dictionary, textural patches (which contain
complex structures) fail to find suitable representations. The size of the self-
learned dictionary furthermore depends on the dimensions of the given image;
smaller images consist of fewer patches and thereby yield fewer LR-HR patch
pairs. Additionally, the quality of matches depends on the patch size chosen. For
e.g., the complexity of structures in the patches increases with increase in patch
size, making it difficult to find accurate matches.

Our Contributions: In this paper, we propose an SR algorithm that alle-
viates the abovementioned problems of self-similarity based approaches, without
resorting to any external training database. We propose a self-similarity driven
algorithm wherein, instead of seeking self-similar patches directly in the image
domain, we use self-similarity based SR independently on images correspond-
ing to different sub-bands. These sub-bands are the responses of the image to
a bank of spatially localized, orientation selective band-pass filters. Effectively,
we unravel the complexity of the structure by representing it in terms of simpler
components, which, being simpler, are easier to find matches for. Unlike in the
case of patch matching in the image domain, we allow the different directional
frequency components of the patch to independently find their best matches in
different locations in the image. Therefore, we synthesize HR patches by com-
bining different frequency components from the best matches found at different
locations. Such a combinatorial expansion of the internal dictionary allows for
finding better (lower error) patch matches for a test image produces a better
quality HR image. Our SR results appear richer in texture and more natural
than those produced by state-of-the-art methods. We also show that our algo-
rithm leads to improvements in two other important aspects of the SR problem
that have not received much attention in the past. We show that our approach
has greater degree of invariance to the choice of patch size, which can be a
sensitive parameter, particularly for self-similarity methods. We also show that
due to the ability of our algorithm to generate richer internal dictionaries, we
are able to super-resolve extremely small images much better, thereby achieving
greater invariance to the size of the input image, as compared to the existing
self-similarity approach.

2 Previous Work

Among methods that rely on external dictionaries, Freeman et. al. [18, 7] propose
an ‘example-based’ SR algorithm, wherein a Markov random field (MRF) model
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is used to learn the relationship between LR and HR patches. [5] uses manifold
learning to learn this relationship, by assuming the manifold of HR patches to
be locally linear. Yang et. al. [3] express image patches as sparse linear combina-
tions of atoms from a fixed dictionary of image patches. [9] proposes to cluster
the patches in the dictionary to facilitate fast nearest neighbor searches. In [2,
19, 8], compact dictionaries are learnt from the raw patches, in order to support
a sparse representation of the patches to be super-resolved. [20] uses an external
database to learn first order regression functions to map ‘in-place’ (extremely
localized neighborhood) patches to high resolution. Instead of learning LR-HR
transformations using patches, several methods learn how edges transform across
resolutions [21–23]. Primal sketches (ridges, corners, etc.) are used as primitives
for super-resolution in [4]. External dictionaries are used to learn transform do-
main coefficients in [24, 25]. Higher level features are used in [26, 27] for learning
the LR-HR mapping using external training databases.

Among internal dictionary based methods, Ebrahimi and Vrscay [10] combine
ideas from fractal coding [15, 16] and example-based algorithms (such as non-
local means filtering [28]), to propose a self-similarity based SR algorithm. Glas-
ner et al. [6] fuse together multiple matched patches from the internal dictionary
of the image to generate HR patches, in a way similar to traditional multiframe
SR. Freedman and Fattal [11] show that patches tend to recur across scales within
local spatial neighborhoods, which they exploit for computational speed-up. In
[13], transform domain matching criteria are used along with the traditional
L2 distance for patch-matching. A framework for super-resolving noisy images
based on self-similarity principles in proposed in [14].

Our proposed algorithm retains the advantages of existing self-similarity
based approaches, but also overcomes some of their limitations described in the
previous section. In the next two sections, we describe the steps involved in our
algorithm, which is conceptually quite straightforward and easy to implement. In
Section 5, we discuss a number of important implications and corollaries result-
ing out of the proposed algorithm, and discuss the key advantages it brings over
existing schemes. We demonstrate our performance vis-a-vis several other state-
of-the-art methods, and corroborate our claims through a number of systematic
experiments in Section 6.
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(a) Conventional self-similarity: (b) Proposed sub-band self-similarity:

Fig. 2. (a) Conventional self-similarity based SR framework. Each patch of the given image I0 is
matched to a patch in I−1 in step 1. The corresponding patch (in the same location) in I0 serves as

the HR predictor (step 2). This patch is then pasted in the HR image Ĩ1 (step 3). (b) The proposed
sub-band self-similarity framework. Our method follows a series of similar steps as (a), but on each
sub-band independently. Note that for super-resolving the patch shown in red, our algorithm allows
for its various sub-bands to find matches in different spatial locations. See Sections 3, 4, 5 for details.
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3 Overview of Proposed Method

Notation: We denote the given image to be super-resolved as I0. By I1 we
denote the HR version of I0, whose linear dimension, or scale, is larger by a factor
of s. Similarly, we denote by I−1, the smaller version of I0, by the scaling factor of
1/s. We denote the super-resolved image(s) obtained using our algorithm using
a hat (ˆ) symbol. Therefore, our objective is to super-resolve I0 to obtain an HR
image Î1, that best approximates the true HR image I1. We use scripted letters
to denote sets, we use lowercase boldface letters to denote image patches, and
lowercase italicized letters to denote scalars and indices.

3.1 Algorithm Summary

To super-resolve the image I0, our algorithm consists of the following steps, also
summarized in Fig. 2(b):

1. We decompose the image I0 into N sub-bands {B(j)
0 }Nj=1, which are obtained

as the responses of the image I0 to a bank of spatially localized, orientation
selective, bandpass filters. We use the steerable pyramid decomposition [29,
30] for our work, although other schemes such as contourlet transform [31]
may also be used.

2. We then apply a self-similarity based SR algorithm to each of the sub-bands

{B(j)
0 }Nj=1, independently, to yield the set of HR sub-bands {B̃(j)

1 }Nj=1. We
describe this step in detail in Section 4 and discuss the key advantages it
brings in Section 5.

3. We then recombine the HR sub-bands {B̃(j)
1 }Nj=1, by inverting the sub-band

decomposition, to yield an HR image Ĩ1.
4. Finally, in order to ensure that the downsampled version of our estimated

HR image is close to the given LR image, we enforce the backprojection
constraint [32] by minimizing,

J(Î1) = |(Î1 ∗ fpsf ) ↓ −I0|22 (1)

Starting with Ĩ1 as initialization, we minimize the above cost function using
a few iterations of gradient decent, to yield our final HR image Î1.

4 Sub-Band Self-Similarity

We independently super-resolve each sub-band B
(j)
0 of I0, using a self-similarity

approach adopted from previous work [6, 17], summarized below:

For the sub-band B
(j)
0 , we first obtain its downsampled version,

B
(j)
−1 =

(
B

(j)
0 ∗ fpsf

)
↓ (2)

where fpsf is an assumed point spread function. We then create internal dic-

tionaries L(j) and H(j) that contain patches from B
(j)
−1 and their corresponding

(higher resolution) patches from B
(j)
0 , respectively. The sets L(j) and H(j) serve

as our internal training database of LR-HR training patches, for super-resolving
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the sub-band B
(j)
0 . To super-resolve B

(j)
0 to B̃

(j)
1 , we do the following: For every

patch l of B
(j)
0 , we look for its k = 5 most similar patches {li}ki=1 in the LR set

L(j), based on L2 distances. Their corresponding HR patches {hi}ki=1 from the
set H(j) serve as individual predictors for the patch l. We compute a weighted
average of {hi}ki=1 to estimate the HR patch h̃ of l as follows,

h̃ =

∑
wi · hi∑
wi

, where, wi = exp

(
−||l− li||22

2σ2

)
. (3)

Using a larger number of patch matches (k) tends to cause oversmoothing,
whereas very small values such as k = 1 or 2 produces sharper images but

with some artifacts. We repeat the above procedure for every patch l of B
(j)
0 , to

get the corresponding HR patches. These together constitute the super-resolved

sub-band B̃
(j)
1 .

5 Implications

Matching image patches based on intensity differences is often difficult if the
patches contain complex structures such as textural detail [17]. Using sub-band
decomposition, our algorithm essentially aims at decomposing complex textural
structures into relatively simpler ones, that are easier to find matches for. For
each image patch, our algorithm allows each of its sub-band components to find
its optimal matches at different spatial locations in the image. This is illustrated
in Fig. 2(b). The sub-bands of the red patch are allowed to find their optimal

matches in different spatial locations in the LR sub-bands B
(1)
−1 , B

(2)
−1 , B

(3)
−1 . This

is in contrast to the conventional way of matching raw patches as shown in Fig.
2(a), where all frequency components of the matched patch are restricted to be
from the same spatial location, since no sub-band decomposition is performed.

These properties of our algorithm have useful implications discussed below:
1) Lower matching error: We expect our approach to find nearest neighbor

(NN) matches with lower error, as compared to the traditional image domain
patch matching. To verify this, we compute the NN error map for the image
shown in Fig. 3. The error map is the error produced by a given LR image I0
while reconstructing itself using its internal dictionary L. In the SR algorithm,
the NN error map therefore denotes the “training error” (in pattern recognition
parlance). For the conventional self-similarity based SR, we obtain the error map

Fig. 3. Left: Input image. Center: Image indicating the errors obtained using conventional nearest
neighbor search for each image patch, in the internal LR dictionary L. Right: Corresponding error
map obtained using the proposed sub-band based patch matching approach. Our approach yields
lower matching errors, particularly around textural regions such as the fur around the faces.
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as follows: Given the image I0, we first obtain its reconstructed version Ĩ0, by
replacing each patch of I0 with its closest patch in the LR internal dictionary L.
We then compute the pixelwise difference between I0 and Ĩ0 to obtain the error
map. To obtain the error map for our approach, instead of reconstructing Ĩ0
directly, we reconstruct its sub-bands {B̃j)

0 }Nj=1 using nearest neighbor searches

in the internal sub-band dictionaries {L(j)}Nj=1. We combine the reconstructed

sub-bands {B̃j)
0 }Nj=1 to obtain Ĩ0 and compute its difference with the original

image I0 to obtain our error map.
Fig. 3, Center and Right show the error maps obtained by the conventional

approach and by our approach, respectively. Clearly, the errors are much lower
for our algorithm, particularly in textured regions such as the fur surrounding
the faces. We show in our results in Section 6 that this lower NN error translates
to better reconstruction of textural details.

2) Invariance to patch size: The choice of patch size has an important
effect on the quality of the SR results, particularly for self-similarity based meth-
ods. Using larger patch sizes for conventional patch matching leads to greater
difficulty in matching textural regions since the complexity of image structures is
larger. On the other hand, using extremely small patch sizes is also not expected
to improve results since very small patches may not contain enough structural
information to learn their transformations across resolutions. For a given image,
the optimal patch size to use is difficult to determine a priori. Using the proposed
approach, complex patches are broken down into relatively simpler sub-bands.
The simpler structure of the sub-bands decreases the variety of the sub-band
patches and thus reduces the error of the best matching patch for a given dic-
tionary size. Therefore, we expect our algorithm to suffer less if the patch size
chosen is sub-optimal. Indeed, as compared to traditional self-similarity based
SR, we find our results to be less sensitive to the choice of patch size. We show
this in our experiments later in Section 6.

3) Exponentially larger internal dictionary: Allowing different sub-
bands of the HR patch to come from different spatial locations of the LR image
has an important corollary. Combining sub-bands from different locations effec-
tively allows us to synthesize new patches, originally not present in the dictionary
of raw image patches. This, in a sense, leads to a combinatorial expansion of the
internal dictionaries L and H, resulting in a dictionary whose size increases ex-
ponentially with the number of sub-bands. Further, this is achieved without the

Conventional internal 

dictionary

Expanded internal dictionary

Sub-bands

Fig. 4. An example showing a conventional self-similarity based training dictionary containing just
two patches (blue box), along with their sub-band decompositions. Combining sub-bands of different
patches effectively allows us to synthesize new patches, as shown in the expanded dictionary in the
red box. Note that the size of the patches here is chosen to be quite large for illustration purposes.
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(a) Ground truth (b) Glasner [6]

(c) Freedman [11] (d) Ours

Fig. 5. Dog (2X): The dog fur, and the details on the wooden pole are better reconstructed using
our method, and bear closer resemblance to the ground truth.

use of external databases. We illustrate this with a simple example in Fig. 4.
We assume here that our raw patch dictionary L consists of only two patches as
shown in the blue box. In this example we decompose these patches into N = 3
sub-bands as depicted in the black dotted box. Now, if using traditional image
domain patch-matching, one is restricted to choosing among only two possible
candidate matches while searching for a nearest neighbor match. However, if
patch-matching is done independently for each sub-band, the number of unique
combinations possible is 2N = 8. In Fig. 4 on the right, we show the patches
resulting from each of the unique sub-band combinations. Clearly, in addition to
the original two patches, several more new textural patches have been synthe-
sized in this expanded dictionary. Note that one never has to explicitly obtain
such an expanded dictionary. Such an expansion is an implicit consequence of
independently finding best matches for the different sub-band patches.

4) Invariance to image size: We have shown that super-resolving sub-
bands independently has the overall effect of performing conventional patch-
similarity based SR, but using a much larger internal dictionary, whose elements
are generated by combining different sub-band patches from different locations
in the scene. While the use of a larger dictionary is expected to be always benefi-
cial in general, it becomes particularly useful in cases where the original internal
dictionary is small, such as while super-resolving extremely small images. Indeed,
as we show in Section 6, in such cases we observe a much greater improvement in
our results over the conventional self-similarity approach. Our algorithm there-
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(a) Bicubic (b) Glasner [6] (c) Freedman [11] (d) Ours

Fig. 6. Kangaroo (3X): Both Glasner [6] and Freedman [11] almost completely lose the textural
details of the kangaroo’s tail. Our algorithm is able to better synthesize this. Ground truth for this
image is not available so absolute error cannot be obtained.

fore yields relatively more consistent levels of performance across different image
sizes. We corroborate this claim in Section 6.

6 Experiments and Results

Implementation Details: For the steerable pyramid, we use eight different ori-
entation bands, and a single scale decomposition. Using more orientation bands
improved results in general, but the improvements became marginal beyond eight
bands. We use only a single (highest) scale decomposition since the lower scale
bands contain lower frequency information which does not pose much challenge
for SR. We perform SR in two steps. Therefore, for 3X SR, we perform

√
3X

SR twice. Our algorithm is used only on the luminance channel of color images.
The chroma components are separately upscaled using bicubic interpolation and
combined with our output to obtain the final color image.

We compare our results to eight popular single image SR methods1 [6, 11,
2, 9, 33, 23, 34, 32], as described in the paragraphs below. Additional results are
included as supplementary material.

Comparison with self-similarity methods: Our most important com-
parison is with other self-similarity methods. We compare our results to [6] and
[11], which are two very popular self-similarity based SR methods in the litera-
ture. Fig. 5 shows results on the Dog image. Our result shows more detail and
richer texture in the dog fur and the wooden pole. The self-similarity methods [6,
11] in general are quite good at preserving sharpness of high contrast edges, but
tend to smooth out finer details. [11] tends to smooth details more than [6] since
it performs only a very localized search for nearest neighbors, for computational
reasons. Our result bears closer resemblance to the ground truth.

1
The software for many of these methods were provided by the respective authors, while we im-
plemented the others.
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(a) Bicubic (b) Glasner [6] (c) Freedman [11] (d) Ours

Fig. 7. Koala (3X): Our result shows richer texture in koala’s fur and the tree trunk. Ground truth
for this image is not available so absolute error cannot be obtained.

Fig. 6 shows results on the Kangaroo image. Notice here that both [6] and
[11] almost completely lose the textural details of the tail. Our algorithm is able
to better preserve this texture.

Fig. 7 shows results on the Koala image. Here as well, our algorithm is able
to synthesize richer texture in the fur and the tree trunk, than both [6] and [11].
Note that the Koala and Kangaroo images do not have ground truth available.

Comparison with external dictionary based methods: We now com-
pare our results with methods that use external dictionaries for SR. Specifically,
we consider [2] which is a popular method based on dictionary learning and
sparse representations, the method in [33] that uses ridge regression for predict-
ing HR patches, and the more recent method [9], which is based on using simple
regression functions on a pre-clustered training dictionary. We also compare to
the classic iterative backprojection algorithm [32] for reference.

(a) Ground truth (b) Backproj. [32] (c) Kim [33]

(d) Simple Functions [9] (e) Sparse Rep. [2] (f) Ours

Fig. 8. Tiger (4X): Notice the grass above and below the tiger. Our result shows greater textural
detail in the grass regions (red box), as compared to most methods. While [9] also seems to produce
rich texture, it also produces ringing artifacts such as on the stripes of the tiger (yellow box).
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(a) Ground truth (b) Backproj. [32] (c) Kim [33]

(d) Simple Fns. [9] (e) Sparse Rep. [2] (f) Ours

Fig. 9. Sunlight (4X): Notice the woman’s hair. [33] and [19] do not produce sufficient detail in
the hair, whereas [9] and [32] show excessive ringing artifacts. Our result appears more natural.

Fig. 8 shows the results on the Tiger image. While Kim [33] reconstructs high
contrast edges almost as sharp as ours, textural details appear highly washed
out. The result of [2] also appears a little soft, both along high contrast edges
as well as in textural regions such as the grass (red box). [9] appears slightly
more detailed than [2], but it shows excessive ringing artifacts such as along the
stripes of the tiger (yellow box), much like the backprojection algorithm [32].
Overall, our result has richer textural details without excessive ringing artifacts.

Fig. 9 shows results on the Sunlight image. Notice that the woman’s hair
appears most natural in our result. [9] and [32] clearly show more ringing artifacts
in the hair, whereas [2] and [33] are not able to reconstruct sufficient detail.

Comparison with other methods: We also compare our approach with
two other methods popularly used in literature - the gradient profile prior (GPP)
method [23], that is based on learning gradient profile transformations across res-
olutions, and the method in [34] that uses iterative feedback based upsampling,
without any external databases. Fig. 10 shows our results on the Red hair image.
The fine strands of hair in the blue box are clearly visible in our result, but is
lost in the results of [23] and [34]. Our result appears almost indistinguishable
from the ground truth in this example.
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(a) Ground truth (b) GPP [23] (c) Shan [34] (d) Ours

Fig. 10. Red Hair (2X): Notice the details of the hair as shown in the blue box. Fine strands of
hair are discernible in our result, whereas they are smoothed out in the result of [23] and [34]. Our
result seems almost indistinguishable from the ground truth in this example.

Performance vs. patch size: The chosen patch size can have a significant
effect on the quality of the SR results particularly for internal dictionary based
methods. We have shown earlier that using the proposed approach, complex
patches are broken down into simpler sub-bands, that can find closer (lower error)
matches. Therefore, our algorithm should suffer less if patch size is increased. To
verify this empirically, we do the following: We super-resolve 100 natural images
(with known ground truth) using our method and also using the conventional
self-similarity method of [6], with several different patch sizes, ranging from 2×2
to 11 × 11. We then plot the average output image quality (in terms of PSNR
and SSIM [35]) as a function of the patch size used. The plots in Fig. 11 show our
results. As expected, the performance of our algorithm not only remains higher
throughout the tested range, but the loss of PSNR and SSIM is also much slower
than the conventional self-similarity approach.

Patch size = 5x5 Patch size = 11x11

Ground truth

(33.6685, 0.9117) (33.4060, 0.9068)

(33.0587, 0.8978) (32.2092, 0.8801)

Conventional 

self-similarity

Sub-band

self-similarity

Fig. 11. Left: Plots of PSNR and SSIM as a function of the patch size used, for our algorithm as
well as the conventional self-similarity method of [6]. Right: An example showing the effect of patch
size on the results of both algorithms. Our result remains more consistent with patch size variation
as compared to [6]. Numbers in brackets denote (PSNR in dB, SSIM [35]).

Performance vs. image size: Earlier, we showed that our algorithm has
the effect of synthesizing a much larger internal dictionary, by combining sub-
bands from different spatial locations in the image. We therefore expected our
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Fig. 12. Left: Data used for studying the performance of our algorithm as a function of the size
of the input image. We use a series of cropped images as shown. We study how the common sub-
image (red box) gets super-resolved in each of these images. Right: Plots showing the PSNR (in
dB) and SSIM of the super-resolved sub-image as a function of the size of the image containing it.
Our algorithm shows a much gradual decline in performance for smaller images, as compared to the
conventional self-similarity method [6].

algorithm to perform significantly better than conventional self-similarity, if the
input image size was very small. To verify this claim, we perform the following
experiment: Consider super-resolving the set of images as shown in Fig. 12 on the
left. Each image here is a cropped version of the image on its right. The leftmost
(smallest) image, therefore, is a sub-image of all the other images, and appears
in all of them, as marked by the red box. We now wish to see how well this
sub-image gets super-resolved in each of these images. Clearly, in the rightmost
(largest) image, the sub-image has access to all the patches from its surrounding
regions as well, which should therefore result in better SR. We compute SR
quality (in terms of PSNR and SSIM [35]) of this sub-image, as a function of
the size of the image containing it, and plot the result in Fig. 12 on the right.
As expected, the conventional self-similarity approach [6] shows a more drastic
reduction in performance for smaller image sizes, as compared to our method.

To visualize this effect of image size in a more practical SR problem, we
perform the following experiment: We consider super-resolving two input images,
as shown in the black dotted box in Fig. 13. The first image shows a group
photograph, whereas the second is a cropped version containing just one of the
faces, measuring only 20×25 pixels. We super-resolve both these images using the
method of [6] as well as our proposed algorithm and show the results in the blue
and red dotted boxes respectively. We compare the quality of the super-resolved
faces obtained using each method, in both the images. We make the following two
observations: 1) In both images, the face is super-resolved better (visually) by our
algorithm than the conventional internal dictionary based approach [6]. 2) There
is a significant difference in the quality of the super-resolved faces from the bigger
and the cropped images, using either method. Using our algorithm, however, this
difference is smaller. Our algorithm is able to super-resolve the extremely small
cropped image better than the conventional self-similarity approach.

In practice, small images are more commonly encountered as candidates for
super-resolution than large ones. Our algorithm is therefore useful for practical
applications like super-resolution of thumbnail images, detection/recognition of
distant (small) faces in images/videos captured using surveillance cameras, etc.
Like any self similarity based algorithm, our algorithm does not require manu-
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Sub-band self-similarity

Conventional self-similarity

Input LR images

Fig. 13. An example showing the performance of our algorithm for very small input images. We
super-resolve the two images shown in the black dotted box, the right one being a one face sub-image
cropped from the left image. Our algorithm is able to super-resolve this small face image much better
than the conventional self-similarity approach of [6].

ally chosen training images, which makes it all the more attractive in terms of
portability and ease of implementation.

Computational Cost: Our algorithm applies a self-similarity SR algorithm
(such as [6]) on R different sub-bands. A naive implementation would be R times
slower than the corresponding self-similarity SR algorithm. But since each sub-
band is super-resolved independently, they can be easily parallelized. Using such
a parallelization, our algorithm is just around 1.5 times slower than the baseline
self-similarity SR algorithm of [6].

7 Conclusion

While external dictionary based methods can produce good results in general,
they are hindered by the problems associated with the choice and construction
of the external training database. Internal dictionary based methods provide
an attractive way to circumvent these issues, but also sacrifice some ability to
reconstruct textural details well, particularly while super-resolving small sized
images and/or when the optimal patch size not used. In this paper we have
proposed a self-similarity based algorithm that overcomes these limitations. Our
algorithm produces better SR results that remain fairly consistent across several
scenarios commonly encountered in practice.
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