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ABSTRACT
Mutual information (MI) is quite popular as a cost function for in-
tensity based registration of images due to its ability to handle highly
non-linear relationships between intensities of the two images. More
recently, quadratic mutual information (QMI) has been proposed as
an alternative measure that computes Euclidean distance instead of
KL divergence between the joint and the product of the marginal den-
sities of pixel intensities. In this paper, we examine the conditions
under which QMI is advantageous over the classical MI measure, for
the image registration problem. We show that QMI is a better cost
function to use for optimization methods such as stochastic gradient
descent. We show that the QMI cost function remains much smoother
than the classical MI measure on stochastic subsampling of the image
data. As a consequence, QMI has a higher probability of convergence,
even for larger degrees of initial misalignment of the images.

Index Terms— Mutual information, image registration.

1. INTRODUCTION

Mutual information (MI) has seen considerable success as a cost func-
tion for registration applications since it was first proposed (indepen-
dently) by several authors in [1, 2, 3]. As a similarity measure, it
is invariant to non-uniform changes in lighting, and different image
modalities. It has the ability to work under non-linear intensity rela-
tionships between images. It has been successfully employed to learn
a variety of parametric transformations, as well as dense deformation
fields [4, 5, 6] for aligning multimodal medical images.

Essentially, the goal of a mutual information based registration al-
gorithm is to maximize the statistical dependence between the inten-
sities of the two images. This dependence is measured in terms of the
distance between the joint density of the intensities and the product of
the marginal densities. In the classical definition of mutual informa-
tion, this ‘distance’ is the Kullback-Leibler divergence. Computing
classical mutual information therefore involves the following steps:
1) Estimating the joint and marginal densities of the intensities from
the two images, commonly done using the Parzen windowing method
[7, 8, 9] and, 2) Approximating expectations using the sample average
(for computing the KL divergence).

Quadratic mutual information (QMI) has been proposed as an al-
ternative measure of mutual information that uses the Euclidean dis-
tance instead of the KL divergence above [10]. It has been shown that
computation of QMI can be done using a simple pairwise interaction
model of samples, using Parzen windows [10].

Although QMI has been used as a registration criterion for image
alignment tasks before [11, 12, 6], the reasons and conditions under

which QMI outperforms classical MI for registration problems have
not been analysed.

In this paper, we explore the conditions under which QMI is ad-
vantageous as a cost function as compared to classic MI, for the image
registration problem. Through systematic experiments, we show that
although both involve the same complexity of computation (specifi-
cally for image registration tasks), the QMI sample estimator is more
robust to stochastic subsampling of the pixels as compared to clas-
sical MI. That is, the QMI estimator exhibits much smaller variance
as compared to classical MI when computed across different sets of
i.i.d samples. Since image data often tends to yield a large number
of intensity samples (particularly 3D images), robustness to stochas-
tic subsampling makes QMI a particularly attractive cost function for
the image registration problem. Our results show that due to these
properties, the use of QMI allows for faster convergence and higher
probability of convergence when using stochastic gradient descent op-
timization, as compared to classical MI.

2. MUTUAL INFORMATION BASED REGISTRATION

2.1. Notation and Problem Formulation

Consider two p-dimensional images I1 and I2, defined over a discrete
spatial region Ω (a bounded region of Zp).

To register the two images, we look for a transformation T : Ω→
Ω, that maximizes a cost function of the form,

I(T ) = I (I1(x), I2(T (x))) (1)

where I(T ) measures the similarity between the first image I1(x) and
the transformed second image I2(T (x)).

Let i1 = I1(x), and i2 = I2(T (x)), be d-dimensional (d = 1
for grayscale, 3 for RGB etc) intensities of the images I1 and I2 at
locations x and T (x) respectively. Furthermore, define i = [i1, i2]
and IT (x) = [I1(x), I2(T (x))].

Let the joint density of i1 and i2 be p(i, T ) and the marginal den-
sities be p(i1) and p(i2, T ) respectively.

The joint and marginal densities can be estimated using the
Parzen windowing technique [7] as follows:

p̂(i, T ) =
1

|Ω|
∑
x∈Ω

φa(IT (x)− i) (2)

p̂(i1) =
1

|Ω|
∑
x∈Ω

φa(I1(x)− i1) (3)

p̂(i2, T ) =
1

|Ω|
∑
x∈Ω

φa(I2(T (x))− i2) (4)



where φa(.) is a unit volume kernel function with width parameter a.

2.2. Classical Mutual Information

Mutual information is conventionally defined as the Kullback-Leibler
divergence between p(i, T ) and p(i1)p(i2, T ),

I(T ) =

∫
<2d

p(i, T ) log

(
p(i, T )

p(i1)p(i2, T )

)
di (5)

Some straightforward manipulations yield,

I(T ) = E [log p(i, T )]− C1 − E [log p(i2, T )] , (6)

where the entropy of the reference image I1 is independent of the
transformation T , and is therefore a constant (C1) for optimization
purposes.

We use the Parzen density estimators as described above to esti-
mate I(T ) yielding,

Î(T ) = E

[
log

(
1

|Ω|
∑
x∈Ω

φa(i− IT (x))

)]
− C1

−E

[
log

(
1

|Ω|
∑
x∈Ω

φa(i2 − I2(T (x)))

)]
(7)

The next step in the estimation is the approximation of the expecta-
tions. A common approach is to use the empirical distribution (or
equivalently, the strong law of large numbers), in which case the ex-
pectations can be approximated as:

Î(T ) ≈ 1

|Ω|
∑
y∈Ω

log

(
1

|Ω|
∑
x∈Ω

φa(IT (y)− IT (x))

)
− C1

− 1

|Ω|
∑
y∈Ω

log

(
1

|Ω|
∑
x∈Ω

φa(I2(T (y))− I2(T (x)))

)
(8)

2.3. Quadratic Mutual Information

Instead of the KL divergence, quadratic mutual information is the Eu-
clidean distance between p(i, T ) and p(i1)p(i2, T ) [10],

IED(T ) =

∫
<2d

(p(i, T )− p(i1)p(i2, T ))2 di (9)

This can be expanded as,

IED(T ) =

∫
<2d

p2(i, T )di +

∫
<2d

p2(i1)p2(i2, T )di

− 2

∫
<2d

p(i, T )p(i1)p(i2, T )di (10)

Let us denote the three terms in the above expression as IED1(T ),
IED2(T ) and IED3(T ), such that IED(T ) = IED1(T )+IED2(T )−
IED3(T ).

We now substitute Parzen density estimators of Eqns. 2, 3 and
4 into each of the three terms of IED(T ). The first term, IED1(T ),
now becomes,

ÎED1(T ) =
1

|Ω|2
∑
x∈Ω

∑
y∈Ω

∫
<2d

φa(IT (x)− i)φa(IT (y)− i)di (11)

We observe that the integral is now simply computing a convolution
of two kernel functions. For many commonly used kernels, this con-
volution can be easily and analytically computed. For example, con-
volving two identical Gaussian kernels yields another Gaussian kernel
with a scaled width parameter.

The above equation can therefore be exactly computed without
any approximations as,

ÎED1(T ) =
1

|Ω|2
∑
x∈Ω

∑
y∈Ω

ψb(IT (x)− IT (y)) (12)

where,
ψb(.) = φa ∗ φa(.). (13)

Such a closed form solution for the integral is not possible while
estimating mutual information using the classical definition of (5).

A similar procedure follows for computing the second term
IED2(T ) to yield,

ÎED2(T ) =
1

|Ω|2
∑
x∈Ω

∑
y∈Ω

ψb (I1(x)− I1(y))

× 1

|Ω|2
∑
x∈Ω

∑
y∈Ω

ψb (I2(T (x))− I2(T (y)))

= C2 ×
1

|Ω|2
∑
x∈Ω

∑
y∈Ω

ψb(I2(T (x))− I2(T (y))),(14)

whereC2 is computed using the reference image I1 alone and is there-
fore a constant while optimization over the transformation T . After
some algebraic manipulations with the assumption that φa(.) is a sep-
arable kernel, we can exploit the kernel convolution property again to
compute the third term IED3(T ) as,

ÎED3(T ) =
2

|Ω|3
∑
x∈Ω

∑
y∈Ω

∑
z∈Ω

[
ψb(I1(x)− I1(z))

×ψb(I2(T (x))− I2(T (y)))

]
(15)

=
2

|Ω|2
∑
x∈Ω

∑
y∈Ω

C3(x)ψb(I2(T (x))− I2(T (y))),(16)

where C3(x) = 1
|Ω|
∑

z∈Ω ψb(I1(x) − I1(z)) is a function of the
reference image I1, and is independent of T .

2.4. Comparisons

From (8), the computational complexity for computing the classical
MI is O(N2), where N = |Ω| is the number of pixels using which
MI is computed.

Fundamentally, computing QMI is anO(N3) operation [10], due
to the the third term IED3 as seen in (15). However, for the image reg-
istration problem, QMI offers a unique advantage - since the reference
image I1 remains fixed throughout, the innermost sum in Eqn. 15
(C3(x)) remains constant and can be precomputed and stored. There-
fore, while running an iterative optimization algorithm, C3(x) needs
to be computed just once, and all subsequent computations of QMI in
every iteration have complexity O(N2), which is the same as classi-
cal MI.

As described, QMI and classical MI differ in the divergence mea-
sure they employ to measure the discrepancy between the joint and the
product of the marginals. It has been argued in [13] and later justified
in [14, 15] that if the aim is not to calculate an absolute value of the



divergence but rather to find a distribution that minimizes/maximizes
the divergence, then a rather relaxed family of divergence measures
(including Euclidean distance) can be employed while keeping the
result of the optimization the same distribution. This suggests that if
both QMI and classical MI are allowed to reach their optimum values
in a registration problem, QMI cannot be expected to yield a ‘better’
solution than classical MI.

Where then does the advantage of QMI lie? The advantage lies in
the behavior of the estimator. Estimating QMI requires only smooth
Parzen windowing operations, wheres the classical MI requires ap-
proximating expectations with the empirical or sample average. The
empirical average can be viewed as a Parzen windowing procedure
with the width of the window approaching zero. It is well known that
the estimation variance of the Parzen window method grows with de-
creasing window width. This only suggests that the variance in the
estimation of classical MI should be higher than that of QMI. This
difference should manifest itself when both QMI and classic MI are
computed using stochastic subsampling of the data.

We verify this hypothesis using a set of carefully designed regis-
tration experiments using the stochastic gradient descent algorithm.

2.5. Optimization

Note that QMI and the classical MI are different cost functions and
they operate at different numerical ranges of function values. For
a fair comparison of optimization performance (rate of convergence
etc) of these two cost functions, the choice of the stepsizes µ for both
the update rules becomes critical. To make the comparison fair, we
therefore propose to normalize the size of the steps, with respect to
the magnitude of the gradient. Therefore we use an optimization rule
of the form,

T̂+ = T̂ + µ
∇ÎED(T̂ , n)

||∇ÎED(T̂ , n)||2
(17)

where n (between 0 and N = |Ω|) is the number of (randomly cho-
sen) samples using which the gradient is computed in each step.

We call the above update scheme the normalized stochastic gra-
dient descent (NSGD) algorithm. This is useful for comparing two
different cost functions since the update rule is independent of the
magnitude of the gradient (and thus independent of the scales of the
cost function). The same stepsize µ can be chosen for both the update
rules for a fair comparison.

We use the NSGD algorithm in our simulations, and we show that
even for very small n, the QMI cost function remains significantly
smoother than the classical MI cost function.

3. EXPERIMENTS

3.1. 1-D Signals

Consider a reference or a base signal as shown in Fig. 1 (left) and a
test signal that is created by adding i.i.d Gaussian noise to the base
signal, and distorting a part of it to simulate occlusion, as shown in
Fig. 1 (right).

We now plot the QMI and MI costs, as a function of a shift or
displacement parameter, between these two signals. Fig. 2 shows the
cost functions obtained when the number of samples used to compute
the quantities are n = 250, 350 and 450. We have used a Gaussian
kernel φa(.) for density estimation for both QMI and MI. The kernel
bandwidth a is computed from samples using the maximum likeli-
hood technique [16, 17, 8], and is found to be around 0.01 for this
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Fig. 1. Left: Reference signal. Right: Test signal created by altering the
reference signal between indices 300 and 400, and then adding Gaussian noise.

example. Note that the plots in Fig. 2 are displayed after appropri-
ately scaling the cost functions for a better visual comparison. The
scaling does not affect registration if the NSGD algorithm is used for
optimization, as discussed earlier.
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Fig. 2. Plots of the QMI and MI cost functions, while registering the signals
of Fig. 1. The number of samples n used for computing the functions is
different in each figure. Left: n = 450, Center: n = 350, Right: n = 250.

We notice that the QMI cost surface remains relatively smooth
even when using just 250 samples (out of 450 total). To better quan-
tify this difference in smoothness, we compute the variance of both
the estimators, at a displacement of 10 samples (fixed). We plot this
variance as a function of n, the number of samples used to compute
the quantities. The (normalized) variance is computed as,

V ar
(
ÎED(T, n)

)
=

E

[(
ÎED(T, n)− E

[
ÎED(T, n)

])2
]

E
[
ÎED(T, n)

]2
(18)

where the transformation T is a shift or displacement of 10 samples
in this simulation. For every n, the expectations are computed by av-
eraging over 500 Monte Carlo trials with random choice of n samples
in each trial.

Fig. 3 shows the plots of variance vs. number of samples used for
computation, for three different Parzen window kernel widths a. We
see that the QMI estimator remains very stable (low variance) with
small n, for any kernel width.

Note that for large kernel widths, both QMI and MI show similar
behavior in terms of variance. However, large kernels are unsuitable
for registration since they oversmooth the density.
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Fig. 3. Variance of the QMI and MI estimators, as a function of the number
of samples n used to compute the quantities. The Parzen window kernel width
a used for computing densities is different in each figure. Left: a = 0.003,
Center: a = 0.01 (optimal in ML sense), Right: a = 0.05.

3.2. 2-D images

Fig. 4 shows the three image pairs that we use in our simulations.
The Brain image pair consists of multimodal images of the brain, ob-
tained using T1-weighted MRI and Proton-Density MRI respectively



[18]. The Toys image pair consist a test image that is obtained after
illuminating the scene in the reference image with a closely placed
lamp. This creates non-uniform lighting, shadows and specularities,
and is therefore challenging for registration. The third image pair,
City, consists of an aerial view of a city. The test image is a cropped
out version of the reference image. This poses a registration challenge
since there is significant clutter in the reference image, with very sim-
ilar looking buildings on all sides.

Fig. 4. Image pairs used in the statistical validation of the QMI cost function.
Left: Brain image. Center: Toys image. Right: City image.

We create misalignments between the reference images and the
test images using a linear transformation model of the form,

T ∗ =

 1 + ρ1 ρ3 0
ρ2 1 + ρ4 0
0 0 1

 , (19)

where each ρi ∼ N (0, σ2) is a normally distributed random variable
with mean 0 and variance σ2. Therefore, T is a ‘random’ transforma-
tion matrix with the parameter σ2. The goal of image registration is
to estimate or recover this transformation matrix as best as possible.
Higher values of σ2 produce transformations that create greater mis-
alignments. We therefore refer to the parameter σ2 as a measure of
the degree of misalignment it produces. We use these random trans-
formation matrices to compute statistical measures of performance,
such as probability of convergence vs. degree of misalignment (σ2)
or number of samples used (n).

In our first experiment with these images, we fix the degree of
initial misalignment to be σ2 = 0.1, and then generate 100 instances
of transformation matrices from the above model. We apply these
transformations to the three reference images. We then use the test
image to estimate these transformations using the NSGD algorithm,
with both the QMI cost function and the MI cost function. In order to
define successful convergence, we define an error metric between the
estimated transform T̂ and T ∗ as the Frobenius norm:

Error metric = ||T̂ − T ∗||F (20)

We define convergence if the average value of the error metric over the
last 10 iterations of the NSGD algorithm is below 0.005. We count
the number of times (out of 100) when each of QMI and MI led to
convergence. This count gives us a measure of probability of conver-
gence for each of QMI and MI. We repeat the same procedure with
different choices of n (the number of samples used for evaluating the
cost function gradient). Fig. 5 shows these results of probability of
convergence, for n = 2000, 1000 and 500. Clearly, the QMI cost
function significantly outperforms the classical MI in all three cases.

For our next set of simulations, we fix the value of n to be 1000.
For this value of n, we again compute the probability of convergence
for both QMI and MI using 100 random transformation matrices as
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Fig. 5. Probability of convergence vs. number of samples used for compu-
tation (n), for QMI and MI cost functions. Left: Brain image. Center: Toys
image. Right: City image.
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Fig. 6. Probability of convergence vs. degree of initial misalignment (σ2),
for the three image pairs. The QMI cost function maintains a significantly
higher probability of convergence throughout. Left: Brain image. Center:
Toys image. Right: City image

described above. We now compute this probability for several differ-
ent values of σ2, which controls the degree of initial misalignment.
We therefore obtain curves that show how the probability of conver-
gence varies with the degree of initial misalignment, for each of the
cost functions. These curves are shown in Fig. 6.

We can observe that for QMI, the probability of convergence re-
mains significantly higher throughout, for all three image pairs. The
QMI cost function, therefore, has a bigger range of convergence as
compared to the classical MI.

4. CONCLUSION

In this paper we have investigated the conditions under which QMI
is advantageous as a cost function as compared to classic MI, for the
image registration problem. We have shown that the QMI cost func-
tion remains much smoother when computed with stochastic subsam-
pling, and this leads to greater probability of convergence and greater
range of convergence when optimized. Our simulations, though sim-
ple, have been chosen to clearly characterize and demonstrate this
advantage. To the best of our knowledge, the comparative behavior of
these two cost functions under stochastic subsampling for the image
registration problem has not been investigated before. In future work,
we would be looking into a more principled and theoretical justifica-
tion of our observations. It would also be interesting to explore how
other QMI and MI approximation schemes fit into such a comparison.

5. ACKNOWLEDGMENTS

This work was supported by US Office of Naval Research grant N00014-12-
1-0259, the Joan and Lalit Bahl Fellowship and the Computational Science &
Engineering Fellowship at UIUC.

6. REFERENCES

[1] P. Viola and III W.M. Wells, “Alignment by maximization of mutual
information,” in IEEE ICCV, 1995.

[2] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
“Multimodality image registration by maximization of mutual informa-
tion,” Medical Imaging, IEEE Transactions on, vol. 16, no. 2, pp. 187
–198, april 1997.



[3] Studhol C., D. L. G. Hill, and D. J. Hawkes, “Automated 3d registration
of truncated mr and ct images of the head,” in BMVC, 1995, BMVC ’95,
pp. 27–36.

[4] C. Chefd’hotel, G. Hermosillo, and O. Faugeras, “Flows of diffeomor-
phisms for multimodal image registration,” in IEEE ISBI, 2002, pp. 753
– 756.

[5] Gerardo Hermosillo, Christophe Chefd’Hotel, and Olivier Faugeras,
“Variational methods for multimodal image matching,” IJCV, vol. 50,
pp. 329–343, 2002.

[6] Abhishek Singh, Ying Zhu, and Christophe Chefd’hotel, “A variational
approach for optimizing quadratic mutual information for medical image
registration,” in IEEE ICASSP, 2012.

[7] Emanuel Parzen, “On estimation of a probability density function and
mode,” The Annals of Mathematical Statistics, vol. 33, no. 3, pp. pp.
1065–1076, 1962.

[8] P Viola and W.M. Wells, “Alignment by maximization of mutual infor-
mation,” IJCV, vol. 24, pp. 137–154, 1997.

[9] William M. Wells III, Paul Viola, Hideki Atsumi, Shin Nakajima, and
Ron Kikinis, “Multi-modal volume registration by maximization of mu-
tual information,” Medical Image Analysis, vol. 1, no. 1, pp. 35 – 51,
1996.

[10] Jose C. Principe, Information Theoretic Learning: Renyi’s Entropy and
Kernel Perspectives, Springer, 2010.

[11] J. Atif, X. Ripoche, C. Coussinet, and A. Osorio, “Non rigid medical
image registration based on the maximization of quadratic mutual infor-
mation,” in IEEE Bioengineering Conference, 2003.

[12] J. Atif, X. Ripoche, and A. Osorio, “Combined quadratic mutual infor-
mation to a new adaptive kernel density estimator for non rigid image
registration,” in SPIE Medical Imaging Conference, 2004.

[13] J.N. Kapur, Measures of information and their applications, Wiley, New
Delhi, 1994.

[14] K. Torkkola, “Feature extraction by non-parametric mutual information
maximization,” JMLR, 2003.

[15] F. Topsoe, “Some inequalities for information divergence and related
measures of discrimination,” IEEE Trans. Information Theory, 2000.

[16] Abhishek Singh and Jose Principe, “Information theoretic learning with
adaptive kernels,” Signal Processing, vol. 91, no. 2, pp. 2003–2013,
2010.

[17] Abhishek Singh and Jose Principe, “Kernel width adaptation in informa-
tion theoretic cost functions,” in IEEE ICASSP, 2010.

[18] Chris A. Cocosco, Vasken Kollokian, Remi K.-S. Kwan, G. Bruce Pike,
and Alan C. Evans, “Brainweb: Online interface to a 3d mri simulated
brain database,” NeuroImage, vol. 5, pp. 425, 1997.


