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The purpose of the article is to establish the relationship between rigid body motion and the 
optic flow image and solve motion parameters from optic flow image points. A basic equation 
relating optic flow image points to rigid body motion which involves only the instantaneous 
rotation and translation velocities without depths is established. A linear algorithm is devel- 
oped to determine the mode of motion (whether the instantaneous translation is zero or not), 
the instantaneous rotation velocity, the direction of the instantaneous translation velocity, and 
the relative depth map (or surface structure) under the rank assumption. The algorithm 
represents a simplification to the linear optic flow-motion algorithm proposed in (Zhuang and 
Haralick, in Proceedings, IEEE First Conf. on Artificial Intelligence Applications, Denver, CO, 
1984, pp. 366-375). �9 1988 Academic Press, Inc. 

I. INTRODUCTION 

The purpose of the article is to establish the relationship between rigid body 
motion and its corresponding optic flow perspective projections and solve motion 
parameters from optic flow image points. The optic flow perspective projection is 
contained in the optic flow image which for each pixel (X, Y) contains the projected 
motion (u, v). 

In the article a basic equation relating optic flow image points and rigid body 
motion (to, k)  with to being the instantaneous rotation velocity and k being the 
instantaneous translation velocity is established (see Section II). The equation called 
the opticflow-motion equation does not involve in-depth information. From the optic 
flow-motion equation, a unique instantaneous rotation velocity w and a nonzero 
vector k* which is colinear with the instantaneous translation velocity k could be 
determined under the rank assumption (see Section III). The rank assumption 
requires that at least eight (or six) optic flow image points be observed when the 
instantaneous translation velocity k is nonzero (or zero). The rank assumption will 
be violated when, for instance, the observed optic flow image points all come from 
the same rigid planar patch. A simple way to determine the mode of motion (i.e., 
whether the instantaneous translation velocity is zero or not), the direction of 
translation, and the surface structure (i.e., the relative depth map) when the 
translation is not zero, is shown in Section IV. A linear algorithm which represents a 
simplification to the previous one in [1] is given in Section V. The simulation results 
are also included there. The final section is a summary. 
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The algorithm is stable. Based on it a robust algorithm is being developed in 
order to reduce the effects caused by wrongly computed optic flow image points and 
segment multiple rigid body motions. 

II. OPTIC FLOW-MOTION EQUATION 

Suppose a rigid body is in motion in the half space, z < 0. Let p(t)  be the 
position vector of an object point at the time t, p(t)  = (x(t),  y(t), z(t)) T where T 
represents the transposition operation. Let (X(t),  Y(t)) denote the central projective 
coordinates of p (t) onto the image plane, z = 1: 

X(t)  = x ( t ) / z ( t ) ,  Y( t )  = y ( t ) / z ( t ) ,  

p ( t )  = z ( t ) ( X ( t ) , Y ( t ) ,  1) T. (1) 

Let (u(t), v(t)) denote the instantaneous velocity of the moving image point 
(X(t) ,  Y(t)), i.e., (u(t), v(t)) = (Jr(t), I~(t)), where the overdot represents the time 
derivative. 

We shall call each element [(X(t), Y(t)), (u(t), v(t))] as an optic flow image point. 
Usually, we may not be able to observe all optic flow image points. Denote a finite 
number of observed optic flow image points by qi = [(Xi(t), Yi(t)),(ui(t), vi(t))], 
i =  1 , . . . ,  n. 

The instantaneous representation of the rigid motion is described by 

p ( t )  = w( t )  x p( t )  + k( t ) .  (2) 

where to(t) = (tol(t), to2(t), to3(t)) T represents the instantaneous rotational angular 
velocity of the rigid motion and k ( t ) =  (kl(t), k2(t), k3(t)) T the instantaneous 
translational velocity. 

Differentiating (1), we could express p in (2) as 

p = ~(Z,  Y,I)  T + z(u,  O,0) T, (3) 

where for simplicity the time variable , t "  has been omitted. Combining (2) and (3), 
it follows that 

e (X,  Y, 1) T + z(u, v,0) T = zw • (X, Y, 1) y + k, (4) 

from which we could derive the optic flow-motion equation. As a matter of fact, for 
any nonzero vector k* which is colinear with k (i.e., k* x k = 0) taking its cross 
product with both sides of (4) yields 

2k* x (X ,Y,  1) T + zk* • [(U, V,0)T -- to • (X ,Y ,  1) T] = 0 .  (5) 

Since z is assumed nonzero, Eq. (5) indicates that either the vector k* x [(u, v, o) T 
-- to >( (X, ]I, 1) T] equals zero or it is parallel to k* • (X, Y, 1) T. In  the first case, 
the vector k* is parallel to [(u, v, o) T - to x (X, Y, 1)T]. The latter case implies that 
k* x (X, Y,I)  T is orthogonal to [(u, v, o) T - to • (X, Y, 1)T]. In any case, 

<k ~ • (X,  T Y, 1) , ( u , v , 0 )  T to)< (X,Y,  1) T) = 0 ,  (6) 
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o r  

- ( k *  • (X, Y, 1) T, to • (X, Y, 1)T> + ((U, V, O) T, k* X (X, Y, 1)T) = 0. (7) 

Let 

o -k~ k~ ] 
k~ 0 -k~ ], 

-k~ k~ 0 
I = 

0 -- 09 3 09 2 ] 

s 3 0 -- t.0 1 ] .  

-- 60 2 ta 1 0 

(8) 

Then 

k*x(X, Y, 1) T = K*(X, Y, 1) T, 

tox(X, Y, 1) T = l ( X ,  Y, 1) T. (9) 

And Eq. (7) could be written as 

((X,Y, 1)T,K*I(X,Y, 1)) + ((u,v,o)T,K*(X,Y, 1) T) = 0 ,  (10) 

or in a more symmetric form, 

( (X,  Y, 1) TK*I  + ilK* 2 ( X ' Y ' I ) T )  + ((U'V'o)T'K*(X'Y'I)T) = 0 ,  (11) 

which does not involve the depth z and is called the optic flow-motion equation. 
In the next section we show a necessary and sufficient condition called the rank 

assumption under which a unique rotation to and a nonzero vector k*, which is 
colinear with k, could be determined simply from the optic flow-motion equation. 

III. A LINEAR ALGORITHM FOR SOLVING OPTIC FLOW-MOTION EQUATION 

Let L be (K*fl + ilK*)/2 which is just the symmetric part of the matrix K*l .  
Then we have n linear homogeneous equations with unknowns L and K*: 

( ( X  i, Y,,1) w, L ( X  i, Y/,1) T) + ((ui, 13i, o)  T, g*(x i ,  Y/, 1)T> = 0, i= l , . . . ,n .  
(12) 

It is easy to see that Eq. (12) contains nine unknowns (six for L and three for K*). 
It is also clear that being colinear with k, k* equals either ak with a an arbitrary 
real number when k ~ 0 or an arbitrary 3 • 1 vector when k = 0. In other words, 
being the solution of (12), the pair (L, K*) will have one degree of freedom when 
k 4:0 or three degrees of freedom when k = 0. Thus, (L, K*) which is defined by 0~ 
and k* compromises the general solution to the system of n linear homogeneous 
equations, i.e., Eq. (12), if and only if the n • 9 coefficient matrix of Eq. (12) has a 
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rank eight when k :/: 0 or a rank six when x = 0. Let 

[ 1 1 1 4 1 5  ] 
t = l 4 l 2 16 , 

15 16 13 (13) 
. T 

h = (ll,  12, 13,214,215,216, k~, k~, k 3 ) , 

ai= (g?,Yi2, l, giYi, Xi, Yi ,-oi ,  ui, v i S i -  uiYi) T. 
then Eq. (12) could be written in a more readable form, 

aTi h = O, i = 1 . . . . .  n, (14) 

which are n linear homogeneous equations whose least-squares solution up to a 
scale factor is given by 

rain hT( ~ a i a T ) h .  (15) 
Ilhtl= 1 k i=1 I 

That  is, the solution to Eq. (14) coincides with the eigenvector of smallest eigenvalue 
of the 9 x 9 symmetric and nonnegative matrix W = ET=laia~ whose rank is the 
same as the n • 9 coefficient matrix, i.e., 

[ a ~ J , •  

of Eq. (14). Thus, h, which is defined by to and k* through L and K*, coincides 
with the smallest eigenvalue-vector of W if and only if the following rank assump- 
tion holds: 

Rank(W)  = 8 when k ~ 0, 
Rank(W)  = 6 when k = 0. (16) 

Since each optic flow image point contributes only one row to the coefficient matrix 
of Eq. (14), to assure (16)we need at least eight optic flow image points (n > 8) 
when k v~ 0 or six points (n > 6) when k = 0. More optic flow points are preferable 
to smooth out the effect of any noise. From now on we assume (16). 

Once a nonzero smallest eigenvalue-vector h of W is determined, L and K*( 4: 0) 
can then be determined. The rotation to could be uniquely determined through the 
equation L = (K*f~ + f~K*)/2. The latter is equivalent to 

I x - 12 - 13 
tolk~ - 2 ' (17) 

l 2 - -  1 3  - -  l 1 
to2k~' 2 ' (18)  

l 3 -- l 1 - l 2 
to2k~' = 2 ' (19) 

to2k~ ' + tolk~' = 2l 4, (20) 

t o l k ~  § to3kl* = 215, (21) 

to2k~ ' § %k~' = 216. (22) 
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When kl* 4: 0, Eqs. (17), (20), (21) could be used to determine w. When k~' v~ 0, 
Eqs. (18), (20), (22) could be used to determine o~. And when k~' r 0, Eqs. (19), 
(21), (22) could be used to determine ",. For stability, we recommend the following 
scheme to uniquely determine ",: 

Step 1. If 0 4: Ik~l >-- Ik~l, Ik~l, then use Eqs. (17), (20), (21). 

_ k *  Step 2. Otherwise, if [k~'l > [ 3 [, then use Eqs. (18), (20), (22). 

Step 3. Otherwise, use Eqs. (19), (21), (22). 

Therefore, under the rank assumption (16) the optic flow-motion equation uniquely 
determines the instantaneous rotation of ", and a nonzero vector k* which is 
colinear with k. As mentioned before, k* equals ak when k 4:0 or could be an 
arbitrary nonzero vector when k = 0. Apparently, ", and k* are all we can get from 
the optic flow-motion equation. 

In the next section we show how to simply determine the mode of motion (i.e., 
whether k = 0 or not), the direction of k, and the surface structure, i.e., the relative 
depths when k 4: 0. 

IV. MODE OF MOTION, DIRECTION OF TRANSLATION, AND SURFACE STRUCTURE 

From Eq. (4) we see that 

 =z[2 
Using Eq. (23) to eliminate ~ in Eq. (4), it follows that 

Let 

z{[;: ;1, [; 
+{k3(X ,y )T-  (kl, k2) T} = 0 .  

O9 2 

gi(k) = k3(Si, y/)T _ ( k l ,  k2)T.  

", 

(23) 

(24) 

(25) 

Then we obtain n equations of the form (24) as follows: 

z i ( f i ( " , ) + ( u i ,  vi)'r} + g i ( k ) = O ,  i = 1  . . . . .  n. (26) 

As is easily seen, k --- 0 if and only if for at least two points g~(k) = 0. Thus, since 
z i ~ O, k ~ 0 if and only if for all except possibly one point fi(o~) + (ui, vi) "r -~ O. 
This means that the mode of motion could be uniquely determined. When k 4:0 is 
confirmed, the direction of translation and the surface structure could be simply 
determined as follows: From Eq. (26) we obtain 

{ fj(",) + (ui, vi)T)zi/Itk[I + gi(k/l[kl[) = 0, (27) 

ILL( ' )  + (ug, v,)TII2zJllkll + (f~(",) + (u,, Vi) T, g,(k/l lkll))  = 0. (28) 
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Since all Zi'S are negative, it is clear from Eq. (28) that (f~(to) + (ui, vi) T, gi(k / l lk l l ) )  
is positive except possibly one point where it is zero. It is also clear that k/llkll 
equals k*/ l lk*l l  or -k*/ l lk*l l  (depending on whether the translation k has the 
same direction as k* or - k * )  and correspondingly 

( f i ( to)  "[- (Ui, Vi) T, g , ( k / l l k l l ) )  = +_(~(to) + (u , ,  v,) T, g , (k* / l l k* l l ) ) .  (29) 

Thus, combining Eqs. (28) and (29) it follows that 

zi/llkll = - I ( f / ( t o  ) -t- + (u,, o,)TI 2. (30) 

Furthermore, the translation k has the same direction as k* or - k *  if and only if 
Ei(ft.(oJ) + (U i, Oi) T, gi(k*)) is positive or negative. 

As seen from the previous and current sections there exists a linear algorithm to 
uniquely determine to, the mode of motion, the direction of translation, and the 
relative depth map or surface structure zJllkll ,  i = 1 . . . . .  n, when k ~ 0. In the 
next section we give that algorithm which is simpler than the one in [1] and some 
simulation results. 

V. A L G O R I T H M  AND S I M U L A T I O N  R E S U L T S  

Now comes the following algorithm: 

Step 1. Compute rninllhll=lhtl, l,'k. 
Set k* = (h 7, h8, h9) T. 

_ k *  Step 2. If ([ki*[ > [k~'[, [ 3 [), then set 
031 = ( h  1 - h 2 - h a ) / ( 2 k ~ )  , 
toE = (h4 - k ~ t o l ) / k ~ ,  
r 3 = (h 5 - k ~ t o l ) / k  ~. 

_ k *  Step 3. Otherwise, if (Ik~'l > I 3 I), then set 
to2 = ( h 2  - h 3  - hx)/(2k~),  
60 3 = ( h  6 - k ~ ' t o 2 ) / / k ~ ,  ' 

60 1 = ( h  4 - k~to2)/k~. 
Step 4. Otherwise, set 

60 3 = ( h  3 - h 1 - h 2 ) / ( 2 k ~ )  , 
02 1 = ( h  5 - k~to3)/k~, 
r 2 = ( h  6 - k~c%)/k~. 

Step 5. If (Eillf~(to) + (ui, vi)rll = 0), then set 
k = 0. Stop. 

Step 6. Otherwise, set 

z,/ l lkll  = - + / + (u , ,v , )  2. 
Step 7. The translation k has the same direction as k* or - k *  if E~(f~(~o) + 

( u~, vi) "r, gi( k*))  is positive or negative. 
Stop. 

Simulation Results. The experiments needed to verify the above algorithm 
should tell us: (1) what is the minimum number of points in order to compute 
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T A B L E  1 

The  Noise less  Case  

True  
d i rec t ion  of  
t rans la t ion  

Es t imated  
di rect ion of 
t rans la t ion  

True 
rota t ion 

Est imated  
ro ta t ion  x y u v 

0.74 
0.58 

- 0.34 

0.74 
0.58 

- 0.34 

- 1 . 5 9  
1.34 

- 4.41 

- 1 . 5 9  
1.34 

- 4.41 

0.38e + 00 
- 0.77e - 01 
- 0 . 1 2 e  + 01 
- 0 . 2 7 e  + 01 
- 0 . 6 4 e  + 00 
- 0 . 4 1 e  + 00 
- 0 . 5 4 e  + 00 
- 0 . 2 6 e  + 01 

- 0 . 9 0 e  + 00 - 0 . 2 3 e  + 02 - 0 . 5 7 e  + 01 
- 0 . 1 9 e  + 00 - 0 . 6 1 e  + 01 - 0 . 2 8 e  + 01 

0.42e + 00 - 0 . 3 1 e  + 01 - 0 . 5 4 e  + 01 
- 0 . 2 7 e  + 01 0.23e + 02 0.56e + 02 
- 0 . 5 0 e  + 00 - 0 . 7 9 e  + 01 - 0 . 1 1 e  + 01 

0.20e + 01 - 0 . 1 3 e  + 02 - 0 . 3 8 e  + 02 
- 0 . 7 5 e  + 00 - 0 . 8 7 e  + 01 0.91e + 00 

0.51e + 00 0.20e + 02 - 0 . 3 8 e  + 02 

0.74 
0.58 

- 0 . 3 4  

0.74 
0.58 

- 0 . 3 4  

- 1 . 5 9  
1.34 

- 4.41 

- 1 . 5 9  
1.34 

- 4.41 

0.32e + 00 
0.30e + 00 

- 0 . 7 2 e  + 00 
- 0 . 6 7 e  - 01 
- 0 . 1 7 e  + 01 
- 0 . 7 0 e  +-00  

0.50e + 00 
- 0 . 1 0 e  + 00 

- 0 . 4 5 e  + 00 - 0 . 6 5 e  + 01 - 0 . 8 1 e  + 01 
- 0 . 2 4 e  + 00 - 0 . 5 3 e  + 01 - 0 . 3 0 e  + 01 
- 0 . 6 9 e  + 00 - 0 . 5 1 e  + 01 0.28e + 01 

0.40e + 00 - 0 . 3 5 e  + 01 - 0 . 4 4 e  + 01 
- 0 . 6 1 e  + 00 0.77e - 01 0.25e + 01 
- 0 . 6 2 e  + 00 - 0 . 7 7 e  + 01 0.27e + 00 

0.53e + 00 - 0 . 2 6 e  + 01 - 0 . 5 6 e  + 01 
- 0 . 6 5 e  + 01 0 .12e + 03 0.28e + 03 

0.74 
0.58 

- 0.34 

0.74 
0.58 

- 0 . 3 4  

- 1 . 5 9  
1.34 

- 4.41 

- 1 . 5 9  
1.34 

- 4.41 

- 0 . 1 9 e  
- 0 . 1 0 e  

0.32e 
0.14e 

- 0 . 1 2 e  
- 0 . 2 3 e  

0.69 
0.58e 

+ 00 
+ 0 0  
+ 0 0  
+ 01 
+ 0 0  
+ 0 0  
+ 0 0  
+ 0 0  

- 0 . 3 5 e  + O0 - 0 . 5 9 e  + O1 
0.42e + O0 - 0 . 1 5 e  + O1 

- 0 . 3 4 e  + O0 - 0 . 1 1 e  + 02 
- O . 1 9 e  + O1 - 0 . 4 3 e  + 02 

0.75e - O1 - 0 . 2 9 e  + O1 
- 0 . 5 6 e  + O0 - 0 . 7 9 e  + O1 

0.64e + O0 - 0 . 9 8 e  + O1 
- 0 . 4 4 e  + O0 - 0 . 2 0 e  + 02 

- 0 . 1 3 e  + 01 
- 0 . 2 5 e  + 01 
- 0 . 5 7 e  + 01 
- 0 . 4 4 e  - 01 

0.25e + 01 
0.27e + 00 

- 0 . 5 6 e  + 02 
0.28e + 02 

0.74 
0.58 

- 0 . 3 4  

0.74 
0.58 

- 0.34 

0.74 
0.58 

- 0 . 3 4  

0.74 
0.58 

- 0.34 

- 1 . 5 9  
1.34 

- 4.41 

- 1 . 5 9  
1.34 

- 4.41 

- 1 . 5 9  
1.34 

- 4 . 4 1  

- 1 . 5 9  

1,34 
- 4A1 

- 0 . 8 5 e  + 00 0.18e + 01 - 0 . 3 8 e  + 02 - 0 . 1 1 e  + 03 
- 0 . 2 6 e  + 00 0.36e + 00 - 0 . 6 6 e  + 01 - 0 . 7 4 e  + 01 

0.35e + 00 0.51e + 00 - 0 . 1 9 e  + 01 - 0 . 4 5 e  + 01 
- 0 . 8 2 e  + 00 - 0 . 5 9 e -  01 - 0 . 4 2 e  + 01 - 0 . 2 4 e  + 01 
- 0 . 2 0 e  + 01 0.26e + 01 0.83e + 01 - 0 . 3 7 e  + 02 

0.31e + 00 0.40e + 00 - 0 . 3 1 e  + 01 - 0 . 4 9 e  + 01 
0.11e + 00 0.83e + 00 - 0 . 1 4 e  + 02 - 0 . 1 9 e  + 02 
0.77e + 00 - 0 . 2 0 e  + 00 - 0 . 1 4 e  + 02 - 0 . 9 7 e  + 01 

0.12e + 01 
- 0 . 2 7 e  + 00 
- 0 . 5 1 e  + 00 
- 0 . 6 8 e  + 00 

0.13e + 01 
- 0 . 8 9 e  - 01 

0.10e + 01 
0.89e + 00 

0.46e + 00 - 0 . 1 2 e  + 02 
0.45e + 00 - 0 . 2 4 e  + 01 
0.95e + 00 - 0 . 2 2 e  + 01 

- 0 . 8 4 e  + 00 - 0 . 6 2 e  + 01 
- 0 . 3 4 e  + 00 - 0 . 4 5 e  + 02 

0.53e + 00 - 0 . 1 3 e  + 01 
0.16e + 01 - 0 . 2 3 e  + 02 

- 0 . 1 2 e  + 00 - 0 . 1 2 e  + 02 

- 0 . 1 4 e  + 02 
- 0 . 3 4 e  + O1 
- 0 . 7 0 e  + 01 

0.33e + 01 
- 0 . 2 3 e  + 02 
- 0 . 2 9 e  + 01 
- 0 . 3 3 e  + 02 
- 0 , 9 6 e  + O1 
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T A B L E  2 

T h e  N o i s e  Case:  lu - fil + I v - ~l -< 0.2, W h e r e  ( u ,  v) Is T rue  O p t i c  F l o w  Veloc i ty  
a n d  (fi,  ~) Is E r r o n e o u s  O p t i c  F l o w  Veloc i ty  

341 

True  
d i rec t ion  of  
t r ans la t ion  

Est imated  
direct ion of True Est imated 
t rans la t ion  rotat ion ro ta t ion  x y u 

- 0.69 - 0.68 0.42 0.43 
- 0 . 5 3  - 0 . 5 4  - 1 . 1 5  - 1 . 1 6  

0.49 0.49 0.22 0.17 

- 0.69 - 0.69 0.42 0.42 
- 0 . 5 3  - 0 . 5 4  - 1 . 1 5  - 1 . 1 5  

0.49 0.48 0.22 0.22 

- 0.69 - 0.67 0.42 0.43 
- 0 . 5 3  - 0 . 5 5  - 1 . 1 5  - 1 . 1 6  

0.49 0.49 0.22 0.16 

- 0.69 - 0.68 0.42 0.41 
- 0 . 5 3  - 0 . 5 4  - 1 . 1 5  - 1 . 1 4  

0.49 0.49 0.22 0.26 

- 0.69 - 0.67 0.42 0.43 
- 0 . 5 3  - 0 . 5 3  - 1 . 1 5  - 1 . 1 6  

0.49 0.50 0.22 0.17 

0.43e - 01 - 0 . 3 0 e  - 01 0.95e + 01 0.74e + 01 
0 .13e  + 01 0.55e + O0 0.24e + 02 0.16e + 02 

- 0 . 1 3 e  + 01 0.82e + O0 - 0 . 1 9 e  + O1 0.20e + 02 
- 0 . 1 9 e  + O0 - 0 . 1 3 e  + O1 0.14e + 02 - 0 . 4 0 e  + 01 

0.24e + O0 - 0 . 3 7 e  + O0 0.51e + O1 0.23e + O1 
- 0 . 3 2 e  + O0 0.30e + O0 0.43e + O1 0.68e + O1 
- 0 . 9 6 e  - O1 - 0 . 3 8 e  - O1 0.35e + O1 0.33e + O1 
- 0 . 2 5 e  + O0 - 0 . 4 9 e  + O0 O.18e + 02 0.93e + O1 

0.64e + O0 0.45e + O0 0.91e + 01 0.76e + 01 
0.10e + O0 - 0 . 4 4 e  + O0 0.12e + 02 0.52e + 01 

- 0 . 3 3 e  + O0 0.31e + O0 0.29e + 01 0.50e + O1 
0.45e + O0 0.44e + O0 0.70e + O1 0.64e + O1 
0.54e + O0 0.87e + O0 0.19e + 02 0.20e + 02 

- 0 . 2 1 e  + 02 0.20e + 02 - 0 . 2 1 e  + 05 0.86e + 04 
-O .17e  + 02 - O . 1 6 e  + 02 - 0 . 3 9 e  + 04 - 0 . 3 6 e  + 04 

0.68e + O0 - 0 . 6 5 e  + O0 O.11e + 02 0.26e + O1 

- 0 . 1 1 e  + 01 - 0 . 1 1 e  + O0 0.96e - 01 0.66e + 01 
0.10e + O0 - 0 . 1 2 e  + 01 0.16e + 02 - 0 . 2 1 e  + 01 
O.lOe + O0 0.36e - 01 - 0 . 6 9 e  + O1 0.56e + O1 

- 0 . 3 0 e  + O0 0.54e + O0 0.81e + O1 0.13e + 02 
- 0 . 2 5 e  + O0 0.21e + O1 O.18e + 02 0.51e + 02 

0.25e + 01 - 0 . 2 0 e  + O1 0.68e + 02 - 0 . 1 2 e  + 02 
0.31e + 01 - 0 . 2 8 e  + O1 0.34e + 03 - 0 . 1 2 e  + 03 
O.16e + O0 O.17e + 01 0.44e + 02 0.80e + 02 

0.11e + 01 0.11e + O0 0.16e + 02 0.87e + 01 
0.12e + O0 - 0 . 4 7 e  + O0 0.43e + 01 0.18e + 01 

- 0 . 5 0 e  + O0 0.30e + O0 0.28e + 01 0.61e + O1 
- 0 . 5 8 e  + O0 - 0 . 5 8 e  + O0 0.20e + O1 0.12e + O1 
- 0 . 2 1 e  + 02 - 0 . 8 0 e  + O1 - 0 . 5 1 e  + 04 - O . 1 8 e  + 04 
- 0 . 8 2 e  + O0 - O , 2 1 e  + O1 0.93e + O1 - 0 . 2 4 e  + 02 

0.50e + O0 0.55e + O0 0.63e + 01 0.61e + 01 
- 0 . 2 1 e  + O0 0.54e + O0 0 ,42e  + O1 0.70e + O1 

- 0 . 0 4 9 e  + O0 0.41e + O0 O.17e + O1 0.47e + O1 
- 0 . 3 8 e  + O0 - O , 2 0 e  + O1 O.14e + 02 - O . 1 6 e  + 02 
- O . 1 6 e  + O0 O,80e + O0 0.71e + 01 0.12e + 02 

0.24e + O1 0.21e + O1 0.60e + 02 0.50e + 02 
0.59e + O0 0,43e + O0 0.72e + 01 0.61e + O1 
0.86e + 02 - O , 1 1 e  + 03 0.61e + 05 - 0 . 7 6 e  + 05 

- 0 . 3 1 e  + 02 - 0 . 3 1 e  + 02 - 0 . 9 1 e  + 0 4  - 0 . 9 3 e  + 04 
0.94e + O0 0.15e + O1 0.29e + 02 0.33e + 02 
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motion and surface structure from accurate or noisy optic flow measurements in 
practice; (2) what is the likelihood we come across a set of optic flow image points 
that violate the rank assumption (i.e., (16)); and (3) what is the accuracy of the 
estimated motion parameters from noisy optic flow measurements. 

One way of testing the validity of the rank assumption is to generate many sets of 
data randomly and to compute the eigenvalues of W. If W has fewer than eight 
(six) nonzero eigenvalues when k 4:0 (=  0), then the rank assumption is violated. 
This method, however, suffers from the defect that, since most eigenvalue computing 
routines return inexact values even with accurate given data, we need a threshold 
around zero below which we would like to say the eigenvalues are zero or nearly 
zero. This obviously is a problem, since the rank assumption is not violated until 
more than one (three) eigenvalues are strictly zero when k 4:0 (=  0). 

The approach used here has therefore been different. We have actually imple- 
mented the algorithm and tested it with many sets of randomly chosen data. 
Implicitly, this tells us the likelihood of the occurrence of sets of optic flow image 
points that violate the rank assumption, since any time we encounter such a set of 
points, the algorithm will break down. It also answers questions 1 and 3. 

Several observations from our experiments are as follows: 
In spite of testing the algorithm with an extremely large number of sets of 

randomly generated points, we have not met a set of points that violate the rank 
assumption. 

For the case where there is no noise in the optic flow measurements, the algorithm 
is extremely accurate. Even when there is noise in the optic flow measurements, the 
algorithm works well except that the mode of motion cannot be determined 
correctly. That is, the case of pure rotation (i.e., k = 0) cannot be recognized. If the 
case of pure rotation is wrongly recognized as the general case (i.e., k ~ 0), a 
relative depth map and a direction of translation will be given by the algorithm. 
Since relative depth and translation direction cannot be determined in the case of 
pure rotation, what the algorithm gives will not cause any conflict to any given 
information. Thus, acceptance of the interpretation extracted by the algorithm could 
never be a disaster as long as the noise is not large. 

For the sake of space, only a few experimental results are tabulated here (see 
Tables 1, 2). 

VI. SUMMARY 

There are a number of interesting problems related to optic flow. How to compute 
optic flow reliably and efficiently is of basic importance (see [2]-[10]). As is known, 
the problem is ill-posed in general. Without further cues, reliable optic flow image 
points can be obtained only at prominent image feature points like corners. How to 
segment the image into areas containing differently moving objects is another 
difficult and crucial problem (see [11]-[12]) which usually involves occlusion analy- 
sis. Finally, how to determine the motion and the surface structure from optic flow, 
is perhaps, a little bit easier in comparison with the previous two problems (see 
[1, 13-23]). This article provides a simplification to the earlier proposed linear optic 
flow-motion algorithm in [1]. 

Similar to the two-view motion algorithms (see [24-26]), optic flow-motion 
algorithms still need a matching process in order to acquire the optic flow image 
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points. However, the matching process in the optic flow case could proceed in each 
small neighborhood. This often makes things easier even though the matching 
remains unsolved in general. 

Some other approaches are possible. For instance, in the planar patch case the 
method of using image intensity derivatives instead of optic flow image points to 
recover motion were reported in [27, 28]. We are currently working on a line-based 
algorithm to recover motion and surface structure. 
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