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Abstract

We propose a novel multivariate uniformity criterion
for testing uniformity of point density in an arbitrary
dimensional point pattern . An unsupervised, nonpara-
metric data clustering algorithm, using this criterion, is
also presented. The algorithm relies on a relatively gen-
eral notion of cluster so that it is applicable to clusters
of relatively unrestricted shapes, densities and sizes. We
define a cluster as a set of contiguous interior points
surrounded by border points. We use our uniformity
test to differentiate between interior and border points.
We group interior points to form cluster cores, and then
identify cluster borders as formed by the border points
neighboring the cluster cores. The algorithm is effective
in resolving clusters of different shapes, sizes and den-
sities. It is relatively insensitive to outliers. We present
results for experiments performed on artificial and real
data sets.

1 Introduction

This paper is about detecting clusters defined by uni-
formly distributed points in a D-dimensional space. A
cluster may have the dimensionality D of the parent
space, or it may occupy a lower, d-dimensional sub-
space. The volume occupied by the cluster may have
an arbitrary shape, but the points within it have an un-
known, uniform density. We achieve this by determin-
ing whether the neighborhood of a point is character-
ized by a uniformly dense point placement, in any d-
dimensional, linear subspace, d ≤ D. If so, we group
sets of contiguous points, with the same density and
within the same subspace, into clusters. The main con-
tributions of this algorithm and their advantages over
most existing ones are as follows. First, we present a
new criterion to test the uniformity of point placement
in a given neighborhood. Second, unlike our approach,
most existing algorithms are sensitive to the shapes of

the clusters to be detected. Third, most existing algo-
rithms require the user to specify certain input param-
eters whose values are critical to the performance but
require familiarity with the data being analyzed. The
clustering performance of the algorithm we present is
stable with respect to the few input parameters the user
needs to provide.
Our approach to clustering is based on the following
notion of a cluster: (1) A cluster as a set of contiguous
points having similar local structures, defined by the rel-
ative spatial distribution of points, which is in contrast
with the distributions in its immediate surround. In this
paper, we limit the definition of the local distribution to
local spatial density of points. (2) A cluster is composed
of two kinds of points. Interior points are character-
ized by the property that local neighborhoods centered
on them have uniform point density. Border points are
themselves members of such uniform neighborhoods,
but the part of the neighborhood centered on a border
point outside the cluster does not contain points from
the cluster; it may contain points from zero or more,
other, nearby clusters. Thus, the distribution of points
in the neighborhood is characterized by a piecewise uni-
form density. (3) The difference in densities across a
border point is referred to as the density contrast at that
border point. For a cluster to be perceived, the density
contrast across its border points must be greater than its
internal density variation.
Overview of Algorithm: There are two major parts
to the proposed clustering algorithm. First, we deter-
mine the dimensionality of the point distribution in the
vicinity of a given point. This determines whether in
the vicinity of a point the cluster is confined to a linear
subspace of the multidimensional parent space of the
data. Second, we develop a uniformity test for whether
the spatial distribution in the neighborhood of a given
point, is uniform in its (sub)space (sec 3), and use this
test to differentiate between interior and border points.
We group contiguous interior points to identify cores
of the clusters (sec 4). The cluster membership of bor-
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der points is determined by determining the cluster core
they are adjacent to. To this end, we let each interior
point identify each border point it finds by the label of
its core cluster. The border points then accumulate bor-
der votes, one from each interior point whose neighbor-
hood they belong to along with the core cluster label
of the voting interior point.Since border points mostly
clearly belong to one cluster, the vote label counts de-
cisively to support one cluster to which they are then
assigned. These steps are independet of cluster shape,
making our algorithm invariant to it. In section 5 we
present results of our algorithm on artificial datasets,
with outliers, as well as demonstrate its performance
on one application area, that of image segmentation by
clustering of pixels in a feature space.

2 Background

Clustering Algorithms: Clustering algorithms are
extremely diverse in their definition of clusters and ap-
proaches to finding them. Recent surveys of cluster-
ing algorithms are present in papers by Jain et al. [5]
and Xu and Wunsch [9]. Popular clustering algorithms
such as those based on the Expectation Maximization
framework[1] and K-Means are plagued with problems
such as a tendency to converge to suboptimal solutions,
sensitivity to outliers and a bias towards hyperellip-
soidal shapes [2, 5, 9].
Our approach to clustering is philosophically similar to
density based techniques[9]. Density based techniques
such as DBSCAN [3] and DENCLUE [4] are based
on approximation of the local density. In DBSCAN,
the user defines an ε-neighborhood and the minimum
number of points(minpts) that should be present in that
neighborhood. Points that satisfy this criterion are la-
beled interior and others are labeled boundary. Clusters
are found as sets of density-connected points [3]. The
output of the algorithm is sensitive to the neighborhood
size and minpts. DENCLUE [4] involves estimating the
underlying probability density of the data by superim-
posing kernels. Clusters are identified by associating
points with the nearest mode. This algorithm suffers
from the lack of a principled method of determining
kernel parameters. While these algorithms explicitly
model the densities present in the data to differentiate
cluster interior and border, we utilize more general cues
that are independent of density and, as discussed ear-
lier, reflect the piecewise uniformity of density in the
nighborhoods of the border points vs. the complete uni-
formity characteristics of interior points.
Multivariate Uniformity Testing: Tests such as the
Kolmogorov-Smirnov (KS) test, Cramer von Mises test
and Watson’s U2 test are used to test uniformity in one-

dimensional data sets [8]. However, a limited amount of
work has been done on tests for multivariate uniformity.
Liang et al. in [7] present a multivariate uniformity test
for [0, 1]d, a d-dimensional unit hypercube, based on
asymptotic number theoretic properties, called discrep-
ancies, of uniformly distributed points. Jain et al.[6]
propose a test based on minimum spanning tree that
relies on resampling to calculate a test statistic. The
power of this test was found to degrade with increas-
ing dimensionality. More recently, Petrie and Wille-
main [8] proposed a test for uniformity based on the
method of snakes. A snake is essentially a Hamiltonian
path through a set of points. The method represents the
edge lengths of the snake as a time series and models
this as a low order autoregressive process. This test is
known to be weaker than the test based on discrepan-
cies. However, it is less restrictive as it also applies to
non-convex neighborhoods. In our work we use the 1-d
KS test in higher dimensions by obtaining 1-d distribu-
tions of local point patterns. This is done by estimating
the principal axes of the (sub)space associated with a
neighborhood point distribution, and projecting all the
points in the neighborhood on these axes. The empiri-
cal 1-d axial distributions are then compared to the the-
oretically predicted distributions discussed in the next
section.

3 Uniformity Criterion

Consider a d-dimensional hyperspherical neighbor-
hood, centered at the origin, and any one of its diamet-
rical chords. Assuming points in this neighborhood are
distributed uniformly, we analyze the cumulative distri-
bution function (cdf) of the projections of all points in
this neighborhood on the chord. If the x-axis is assumed
to be aligned with the (e.g., horizontal) chord, with the
origin at one (e.g., the left) end, then the value of the
cdf Faxial(x) (equations 1-2) at a point x on the chord
is equal to the ratio of the volume of the hyperspherical
cap covering the chord from position 0 through xi, to
the total volume of the hypersphere.

Faxial(x) =
1√
π

Γ(n2 + 1)
Γ(n+1

2 )

∫ φ

0

sinn θdθ (1)

φ = cos−1 x

r
,−r ≤ x ≤ r (2)

Here Γ is the Gamma function and r is the radius of the
neighborhood. This distribution of projections is a nec-
essary condition for uniformity. This property is true for
any diametrical chord of a points neighborhood as long
as the neighborhood is contained inside a uniform clus-
ter. For clusters in a lower dimensional (d) subspace of
the D-dimensional parent space, this cdf holds only for



the linear subspace containing the cluster. In particular,
it holds true for chords coaligned with the d-principal
components that span the cluster subspace within this
local neighborhood. Therefore, the test for multidimen-
sional uniformity is as follows:
(1) Determine intrinsic dimensionality (d) of the neigh-
borhood by performing PCA on the local covariance
matrix. Scale eigenvalues (λi) by dividing them by the
largest eigenvalue. Take d to be the number of eigenval-
ues greater than an input threshold ( λi

λmax
≥ teig).

(2) Select the top d-eigenvectors corresponding to the d
largest eigenvalues as the diametrical chords.
(3) Project the neighborhood points on each of the d-
eigenvectors.
(4) Compare the distribution of projections with the
known distributions (from equations 1-2) using the 1D
Kolmogorov-Smirnov (KS) 1-sample test to verify if
they satisfy this property of uniformity at some given
significance level α.
(5) The neighborhood is uniform if all d distributions
return a positive on the KS test.

4 Algorithm

We specify a point neighborhood by K, the num-
ber of nearest neighbors it must contain, making the
algorithm independent of scale. Given a data set
X={x1, ...,xN}, the algorithm requires as user inputs:
the level of significance to be used for the 1-d unifor-
mity test α, K, and teig , the parameter to determine the
dimensionality of a local neighborhood. Our clustering
algorithm then proceeds as follows:
1. Determination of local coordinate system: For
each point xi, we use its K-nearest neighbors to de-
termine the dimensionality d and the d principal eigen-
vectors that best span this d-dimensional subspace. The
d-eigenvectors are used to determine the uniformity of
this local K neighborhood. Empirically, we found K
between 50-100 points to be sufficient for a good ap-
proximation of the empirical axial projection cdf.
2. Classification of interior and border points: Given
the K neighborhood of a point we now apply the multi-
dimensional uniformity test (sec 3) on the axial projec-
tions of the points in this neighborhood after the chord
length (neighborhood diameter) is normalized to unity
(0≤ x ≤ 1). These tests are conducted at a significance
level α. Points which pass the test are labeled interior
and points that fail are labeled border.
3. Agglomeration of interior points into clusters: We
next pool the interior points into cluster cores and as-
sign each core a distinct cluster label. To this end, we
associate with each interior point a core neighborhood.
The core neighborhood of an interior point is defined as

the largest neighborhood that can be grown around an
interior point without encountering any border points.
An interior point transfers its cluster label to all interior
points present in its core neighborhood. Clustering pro-
ceeds by including overlapping core neighborhoods into
the same cluster, in a way similar to connected compo-
nent labeling in binary images by propagating compo-
nent labels across adjacent 1s. The output of this stage
is a set of labeled cluster cores.
4. Assignment of border points to clusters: The la-
bels of the border points of each cluster are the same as
the label of the cluster cores they are adjacent to. Ev-
ery interior point that finds a specific border point in its
K-neighborhood casts a vote for the label of the cluster
to which it belongs. Border points are assigned to the
cluster with the largest vote.
The output of the algorithm is a (K,α,teig) clustering of
the data.

5 Results

We present results on artificial data and real im-
ages from the Berkeley dataset. We generated 1-3 di-
mensional point patterns and embedded them in a 10-d
space. The output of the clustering (projected into 3-d
space) for one such point pattern (fig 1(a)) is shown in
figure 1(b). Additionally, we tested the algorithm’s per-
formance on clusters of upto 15 dimensions. We also
tested its sensitivity to inter-cluster separation and over-
lap (fig 1(d)). The latter case is interesting because both
model based methods (e.g. k-Means) and density based
methods (DBSCAN) fail under these conditions. This is
because a purely density based definition of interior and
border points as used by DBSCAN makes it difficult to
choose fixed density parameters that resolve clusters of
arbitrary density and overlap. Our definition of interior
and border points is independent of the exact value of
cluster density. Our experiments demonstrate the algo-
rithm’s ability to differentiate between clusters of many
dimensionalities, shapes and densities in the presence
of noise and outliers.
Next, we used our clustering algorithm to segment color
images from the Berkeley segmentation data set. We
treat each pixel in the image as a point in 5D feature
space (x,y,L,a,b). We obtain a segmentation for user
defined input of α. The input images and their corre-
sponding segmentations are shown in figures 1(e)-1(f).
Our goal here is to test the clustering algorithm while
the segmentation quality depends on the choice of fea-
tures and other details. The clustering appears to qual-
itatively work as, based on the intensity and color fea-
tures alone, the algorithm produces segmentations of re-
gions with constant or gradually varying intensity. In all



(a) Input data (b) α =0.05,K=50 (c) k Means with k=5

(d) α =0.01,K=50 (e) α =0.01,K=50 (f)
α =0.01,K=50

Figure 1. Clustering results for (a) artificial data with noise (light blue),(b) output of our algo-
rithm, (c) output for k-Means with k=5. (d) Output of our algorithm for overlapping clusters of
different densities. (f) Color image segmentation using our clustering method. Region bound-
aries are shown in bold.

our experiments, K was fixed at 50 and teig at 0.2. The
results did not vary to any significant degree if we var-
ied K between 50 and 100 and teig in the range 0.1 and
0.3. For α, we also found that values between 0.01-0.05
gave nearly the same clustering results.

6 Conclusions

We have presented a novel unsupervised, nonpara-
metric clustering algorithm based on a multivariate uni-
formity test which we have also described. Our algo-
rithm can identify clusters of varying density, shape,
size and intrinsic dimensionality. Our main contribu-
tion is the novel uniformity criterion to identify interior
and border points, and its use to define a clustering al-
gorithm whose performance is not very sensitive to the
input parameters. This obviates the need to explicitly
model the underlying density. Furthermore, the cluster-
ing is robust to noise and outliers. In future work, we
plan to identify more cues for interior and border point
identification and extend this framework for identifica-
tion of clusters with modes (e.g. Gaussian distributed
data).
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