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Shape from Texture: Integrating Texture-Element 
Extraction and Surface Estimation 

Abstract-A perspective view of a slanted textured surface shows 
systematic changes in the density, area, and aspect-ratio of texture ele- 
ments. These apparent changes in texture element properties can be 
analyzed to recover information about the physical layout of the scene. 
However, in practice it is difficult to identify texture elements, espe- 
cially in images where the texture elements are partially occluded or 
are themselves textured at a finer scale. To solve this problem, it is 
necessary to integrate the extraction of texture elements with the rec- 
ognition of scene layout. We present a method for identifying texture 
elements while simultaneously recovering the orientation of textured 
surfaces. A multiscale region detector, based on measurements in a 
V2G (Laplacian-of-Gaussian) scale-space, is used to construct a set of 
candidate texture elements. True texture elements are selected from 
the set of candidate texture elements by finding the planar surface that 
best predicts the observed areas of the candidate texture elements. Re- 
sults are shown for a variety of natural textures, including waves, flow- 
ers, rocks, clouds, and dirt clods. 

Zndex Terns-Integration, multiscale structure, natural textures, 
perspective view, region detection, shape from texture, surface orien- 
tation, texture elements, texture gradients, texture homogeneity, three- 
dimensional vision. 

I. INTRODUCTION 
EXTURE variation due to projective distortion pro- T vides important cues for recovering the three-dimen- 

sional structure of the surfaces visible in an image [ 1 I].  
A uniformly-textured surface undergoes two types of pro- 
jective distortions during the imaging process. Firstly, an 
increase in the distance from the surface to the viewer 
causes a uniform compression of increasingly large areas 
of surface onto a fixed area of image. Secondly, fore- 
shortening (due to the angle between the surface and the 
image plane) causes an anisotropic compression of the 
texture. These texture variations provide information 
about the relative distances and orientations of the tex- 
tured surfaces in an image. 

A primary goal of the work reported in this paper is to 
demonstrate the feasibility of extracting useful measures 
of texture gradients from images of natural scenes. A ma- 
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jor challenge in texture analysis is to identify texture scale 
consistently. Natural surfaces exhibit a rich hierarchy of 
textures and subtextures. All texture measurements are 
prone to distortion due to the presence of subtexture, since 
the imaging process captures more subtexture details for 
close texture samples than for distant ones. As discussed 
in Section 11-A- I ,  existing shape-from-texture algorithms 
do not address the problem of scale. The algorithms pre- 
sented here provide good surface-orientation estimates 
even in the face of significant sub- and supertexture. 

A. Texels and Texture Gradients 
The term texel, short for texture element, denotes the 

repetitive unit of which a texture is composed. "Texel" 
refers to the physical texture element in the real world as 
well as to the appearance of the texture element in the 
image. In cases where the distinction must be made, we 
use the phrases physical texel versus image texel. Dis- 
tance and foreshortening changes alter the image texel, 
but not the physical texel. 

Projective distortion affects many texture features, and 
hence gives rise to a variety of texture gradients. Consider 
first the idealized texture of Fig. l(a): a planar surface 
covered with nonoverlapping circular disks of constant 
size. The disks project as ellipses in the image. The major 
axis of each ellipse is perpendicular to the tilt,' whereas 
the minor axis is parallel with the tilt. Scanning the image 
from bottom to top (in the direction of tilt), the apparent 
size of the major axes decreases linearly, due to increas- 
ing distance from the viewer (the perspective gradient). 
However, the apparent size of the minor axes decreases 
quadratically: in addition to the distance scaling, the mi- 
nor axes are foreshortened. Thus the eccentricity of the 
ellipses increases in the tilt direction (the aspect-ratio 
gradient). Similarly, the area of the ellipses decreases 
fastest in the direction of tilt (the urea gradient). This is 
accompanied by an increase in the density of the ellipses 
(the density gradient). In this idealized texture, the uni- 
formity in the size, shape and placement of the texture 
elements leads to pronounced texture gradients. 

'We express surface orientation in terms of two angles, slant and rilt 
[23]. Slant, ranging from 0" to 90", is the angle between the surface and 
the image plane. Tilt, ranging from 0" to 360", is the direction in which 
the surface normal projects in the image; a tilt of 0" indicates that distance 
to the viewed surface increases fastest toward the right side of the image. 
The synthetic textures shown in Fig. l (a)  illustrate the definition of slant 
and tilt. 
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(C) (d) 
Fig. 1. Synthetic textures illustrating various slants and tilts. Slant is the 

angle between the textured surface and the image plane. Tilt is the di- 
rection in which the surface normal projects in the image. (a) Slant 60", 
tilt 90". (b) Slant 50",  tilt 90". (c) Slant 60", tilt 45". (d) Slant 45", tilt 
270". 

Natural textures are much less regular than the ideal- 
ized texture of Fig. l(a); therefore the texture gradients 
are not as easily observed. Natural textures display con- 
siderable variability of texel size, shape, coloration and 
density. Physical texels are typically three-dimensional, 
unlike the disks portrayed in Fig. l(a). Highlights, shad- 
ows, and occlusions between texels result. Also, physical 
texels have a complex structure. In contrast to a uniform 
synthetic disk, a physical texel changes in appearance as 
the distance to the camera decreases: more subtexture is 
visible for the nearby texels than for the distant texels. 
Supertexture regions arise when small image texels, cor- 
responding to distant physical texels, blur into larger re- 
gions of relatively uniform gray level. These factors make 
it difficult to identify texture elements and extract texture 
gradients from real images. 

The importance of various texture gradients has been 
studied extensively in the psychology literature (see, for 
example, [7], [19], [21], [22]). Vickers [24] was among 
the first to advocate an approach involving accumulation 
of evidence from multiple texture gradients. Cutting and 
Millard [9] attempt to quantify the relative importance of 
various texture gradients. They test human subjects on 
synthetically generated textures, which are designed to 
contain only a subset of the normally-occurring texture 
gradients. Experimental results show that for slant judge- 
ments of flat surfaces the perspective and density gra- 
dients are more important than the aspect-ratio gradient, 

whereas in the perception of curved surfaces the aspect- 
ratio gradient is dominant, with perspective and density 
gradients having little impact. 

11. THE INFERENCE OF SURFACE SHAPE FROM TEXTURE 
GRADIENTS 

We now turn to a discussion of the basic requirements 
for a system that infers surface-shape from texture gra- 
dients. In Section 11-A we argue that correct measurement 
of texture gradients requires explicit identification of im- 
age texels, especially when textures show three-dimen- 
sional relief, when texels exhibit significant subtexture, 
or when it is unknown a priori which texture gradients 
carry surface-shape information. In Section 11-B we ad- 
dress the problem of texel identification. Texture ele- 
ments cannot be identified in isolated image areas since 
texels are defined only by the repetitive nature of the tex- 
ture as a whole. Therefore, the identification of texture 
elements is best done in parallel with the estimation of the 
shape of the textured surface. 

A.  The Importance of Texel Identijication 
The extraction of texels is an essential step in measur- 

ing texture gradients, because it permits correct analysis 
of textures containing subtexture. Explicit texel identifi- 
cation also provides the basis for a unified treatment of 
the various texture gradients (area gradient, density gra- 
dient, aspect-ratio gradient) that may be present in an im- 
age. Previous researchers have avoided texel identifica- 
tion because it is quite difficult to do in real images.2 
Instead, indirect methods are used to estimate texel fea- 
tures. We give below several examples of such methods, 
and indicate why these methods may give erroneous re- 
sults. 

1 )  Previous Work: Most previous shape-from-texture 
algorithms use indirect methods to estimate texel features, 
by making some assumptions about the nature of texture 
elements. For example, texel density may be estimated 
by measuring edge density, under the assumption that all 
detected edges correspond to the borders of texture ele- 
ments [ l I3 ,  [2], [ 141, [20]. Alternatively, texture ele- 
ments may be assumed to have uniform edge direction 
histograms; surface orientation can then be estimated from 
any deviations from isotropy observed in the distribution 
of edge directions [lo], [13], [26]. However, the direc- 
tional-isotropy assumption is very restrictive; for exam- 
ple, it does not hold true in images containing elongated 
texels such as waves. Texture coarseness and direction- 
ality may be characterized using Fourier domain mea- 
surements [3], ignoring the effect of super- and subtex- 
tures. Various researchers [ 121, [ 151, [ 161 have developed 

'Ohta er al. [18] use the observed areas of pairs of texels to obtain van- 
ishing points. However, the method has been tested only on synthetic tex- 
ture images. The problem of extracting texels from natural images is not 
addressed. 

3The theoretical analysis in this paper is based on texel area. In appli- 
cation to real images, edge-density is used instead, under the assumption 
that the edge detector finds texel boundaries. 
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algorithms to analyze textures containing parallel and per- 
pendicular lines. Most natural textures are too irregular to 
be analyzed in this way. 

All of these methods may encounter problems when ap- 
plied to complex natural textures seen under natural light- 
ing conditions. Since texels are not identified and explic- 
itly dealt with, it becomes difficult to distinguish between 
responses due to texels and those due to other image fea- 
tures, such as subtexture. It appears to be necessary to 
recognize the texture elements before the various mea- 
sures can be computed as intended. 

Consider, for example, methods based on measuring 
edge density. If these algorithms are applied to edges pro- 
duced by an edge-detector, the measurements are made 
inaccurate by contributions from subtexture and supertex- 
ture edges. Fig. 2(a)-(c), which shows the response of an 
edge detector to several texture  image^,^ illustrates that it 
would be incorrect to interpret all of the detected edges 
as boundaries of texture-elements. Additional edges result 
from subtexture; these edges are not artifacts of this par- 
ticular edge detector, since they are clearly present in the 
original images. Many natural textures have a hierarchical 
physical structure that causes observed edge density to be 
nearly constant throughout the image: edges from subtex- 
ture and subsubtexture are observed to whatever detail the 
camera resolution permits. 

In order to measure edge-density as intended by [2] and 
[14], it is necessary to eliminate subtexture edges. This 
cannot simply be done by applying a global threshold, 
since the contrast of texels far from the camera is com- 
parable to the contrast of subtexture features in the fore- 
ground. Aloimonos [2] distinguishes between a “strong 
segmentation” (finding texels) and a “weak segmenta- 
tion” (finding edges, where the edges are supposed to be 
texel boundaries), and states that weak segmentation is 
easy to obtain (apply any general-purpose edge detector). 
We argue that correct weak segmentation is not possible 
without simultaneously performing a strong segmenta- 
tion: in order to eliminate all edges except those that arise 
from texel boundaries, one has to in effect identify the 
texels. 

2) Multiple Texture Gradients: Explicit texel identifi- 
cation offers an additional advantage: texels provide a 
unifying framework for examination of the various tex- 
ture gradients (such as gradients of apparent texel area, 
aspect ratio, density etc.) that may be present in an image. 
A given image may exhibit a combination of texture gra- 
dients. In general, the accuracy of the surface information 
obtainable from these gradients varies from image to im- 
age.5 Since it is not known in advance which texture gra- 

4We use an edge operator described by Nevatia and Babu [ 171. Six 5-by-5 
edge masks at different orientations are used; the mask giving the highest 
output at each pixel is recorded. The edges are thinned by suppressing non- 
maxima perpendicular to the edge directions. 

’This may be illustrated by the following examples. It is common for 
physical texels to be fairly uniform in size and shape, but for the gaps 
between the texels to be much less uniform [Figs. 7(a), 19(a), 23(a), and 
25(a)]. In these images, it is more accurate to infer a three-dimensional 

dients are useful for determining the three-dimensional 
orientation of surfaces, a shape-from-texture system 
should evaluate the information content of different types 
of gradients in a given image, and use an appropriate mix 
of these gradients for surface estimation. 

B. Integration of Texel IdentGcation and Surface-Shape 
Estimation 

Texel identification is difficult because texels have tre- 
mendously varied shapes, sizes and gray-level character- 
istics. A texel cannot be identified in isolation, since tex- 
els are only defined by the repetitive nature of the texture 
as a whole. In order to determine if an image region is a 
texel, it is necessary to test if the region has properties 
consistent with the properties of many other image texels, 
i.e. whether the image region is part of a textureJield. 

We use the term texture field (or field of texels) to de- 
note a collection of image texels that exhibit one or more 
consistent texture gradients. Consistency is defined with 
respect to a perspective view of a given surface. It is not 
uncommon for a single image to contain several texture 
fields. First, many images are composed of closely asso- 
ciated bright and dark texture fields which arise from 
lighting effects. For example, the aerial view of houses in 
Fig. 5(a) contains a field of bright texels composed of the 
houses and a field of dark texels composed of the shadows 
cast by the houses. Second, it is possible for physically 
separated textured surfaces to be spatially interleaved in 
an image. This is strikingly illustrated by the birds-over- 
water image shown in Fig. 7(a). Finally, the same phys- 
ical surface may contain different texture fields: an aerial 
view of a residential neighborhood shows one texture field 
consisting of houses and another texture field consisting 
of trees. 

Texels can only be identified in the context of a texture 
field, where consistent texture gradients must exist across 
the whole field. The consistency of a texture gradient can 
only be evaluated for a particular surface shape and ori- 
entation. Thus, texel identification must be combined with 
surface estimation. 

C. Overview 
Motivated by the above discussion, we now summarize 

the requirements for an ideal shape-from-texture algo- 
rithm, and the extent to which our work meets these re- 
quirements. hllany open problems remain. 

surface from the ;area and aspect-ratio gradients than from the density gra- 
dient or the gradient of spacings between texels. As a second example, the 
potential accuracy of the aspect-ratio gradient is higher in textures where 
the physical texels are separated by gaps than in textures where the physical 
texels overlap and occlude one another [the lily pads in Fig. 25(a) show a 
much better aspect-ratio gradient than do the rocks in Fig. 3(a)]. Thirdly, 
for the water hyacinths of Fig. 29(a), the random three-dimensional ar- 
rangement of the leaves makes the aspect-ratio gradient very weak, while 
the area gradient is still quite significant. Finally, in images with partial 
occlusions [Figs. 13(a) and 15(a)], the perspective gradient (length of the 
unforeshortened texel dimension) is more accurate than the area gradient: 
if only part of a texel is occluded, the apparent texel area is decreased, 
whereas the complete unforeshortened dimension may remain in view. 
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(C) 
Fig. 2.  Edges extracted from three texture images. Only a subset of the 

detected edges are boundaries of texture elements. If edge density is to 
be effective in capturing the texture gradient, all edges that do not cor- 
respond to texel boundaries must be removed. Such edge removal cannot 
be accomplished without, in effect, performing an identification of tex- 
ture elements. (a) Edges from the rock-pile image shown in Fig. 3(a). 
(b) Edges from the image of birds flying over water, shown in Fig. 7(a). 
( c )  Edges from the water hyacinths image shown in Fig. 29(a). 

Texel ZdentiJicution: As discussed in Section 11-A, texel repetitive patterns of arbitrary gray-level configuration. In 
identification is important for correct shape-from-texture our implementation, we restrict image texels to be regions 
analysis. In general, physical texels can give rise to corn- that have small gray-level variation relative to a neigh- 
plex gray-level patterns. However, it is difficult to test for borhood of their size. Under this restriction, a physical 
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texel can give rise to several image texels: often the phys- 
ical repetitive unit of a texture contains both bright and 
dark regions [for example, the sunflowers in Fig. 15(a)]. 
We treat the bright and dark image texels as two texture 
fields, which we analyze separately. 

Texture Gradients: A shape-from-texture system 
should test each image for the presence of various texture 
gradients (area gradient, aspect-ratio gradient, density 
gradient), and combine these various sources of infor- 
mation to produce a surface estimation. In our current im- 
plementation, the only texture gradient we test for is a 
gradient in texel area.6 However, we do independent anal- 
yses of the area-gradients in positive-contrast and nega- 
tive-contrast image regions; these two types of regions 
may correspond to foreground and background, or to dif- 
ferent portions of the physical texels. Some images con- 
tain bright texels on dark backgrounds, other images con- 
tain dark texels on bright backgrounds, and yet other 
images have no visible ‘‘background” region because 
texels are densely placed. Measurements of foreground 
regions are often more accurate than measurements of 
background regions, since texel area tends to be less vari- 
able than texel spacing. 

Surface Estimation: Ideally, a system tests for texture 
gradients produced by a variety of surface shapes (planar, 
cylindrical, spherical etc.), and is able to locate discon- 
tinuities in depth and surface orientation. Much work re- 
mains to be done in this area. We restrict ourselves to 
fitting a single planar surface to the entire image. This is 
a common restriction in current implementations of shape- 
from-texture algorithms, although a theoretical treatment 
of the nonplanar case has been performed by [ l ] ,  and has 
been tested on synthetic images. 

Three-Dimensional Texel Effects: For accurate image 
analysis, it is necessary to model the effects of three-di- 
mensional relief on observed texture gradients. We do not 
address this problem in our current implementation: the 
equations we use for expected area-gradients are derived 
under the assumption that texels do not have three-dimen- 
sional relief, i.e., that they are “painted” on the textured 
surface. For textures with relief, this assumption results 
in a redefinition of texels: ideally, only those parts of 
physical texels that are parallel to the underlying surface 
are recognized as defining a texture field. The detected 
consistency is reduced if the texels have parts that are not 
parallel to the surface. If the texel relief is regular (so that 
the texels are mutually parallel), the detected gradient may 
still be significant and nearly correct recovery of surface 
orientation may be possible. For example, we obtain sat- 
isfactory results on the sunflower image of Fig. 15, where 
the texels are not parallel to the surface. 

Although some theoretical treatment of the foreshorten- 
ing of textures with relief exists (e.g., [15]), no one has 

addressed how in-plane texels could be distinguished from 
out-of-plane texels in real images. 

Multiple Textures: A general shape-from-texture sys- 
tem must be able to handle images containing multiple 
textures; the system must perform texture segmentation 
as well as shape-from-texture estimation. To solve this 
problem it is necessary to separate texture variations due 
to distance and foreshortening effects from texture varia- 
tions due to a boundary between different physical tex- 
tures. Our current implementation does not address this 
problem: each of our images contains only a single tex- 
ture. Ongoing research is aimed at extending the method 
to apply to images containing multiple textures. 

The rest of the paper describes our two-step algorithm 
for texel identification and surface estimation. In the first 
step, we use a multiscale region detector to construct a set 
of candidate texels (Section 111). In the second step we 
use surface-fitting to identify the true texels from among 
the candidates, while simultaneously constructing an ap- 
proximation to the shape of the textured surface (Section 
IV). The second step thus enforces perspective viewing 
constraints to select texels. Section V presents results for 
a variety of images of textured natural scenes. 

111. IDENTIFYING CANDIDATE TEXELS: MULTISCALE 
REGION DETECTION 

We now turn to a description of the multiscale region 
detector used to construct the set of candidate texels. The 
set of candidate texels includes all image regions that have 
small gray-level variation relative to a neighborhood of 
their size. These image regions may be of any shape and 
size, and they may be nested, since there is no a priori 
way to distinguish texture regions from subtexture and 
super-texture regions. 

To simplify the problem of extracting regions of arbi- 
trary shapes and sizes, we assume that each region can be 
represented as a union of overlapping circular disks. Large 
disks define the rough shape of a region, with overlapping 
smaller disks capturing finer shape details such as protru- 
sions and concavities. In Section 111-A we derive a method 
of extracting all circular image regions of relatively uni- 
form gray level. Section 111-B discusses how sets of over- 
lapping disks are used to form candidate texels. 

The region detector is based on the image response to 
convolution with V2G filters over a range of scales. Re- 
lated work includes [27] (a scale-space representation of 
V2Gzero-crossings) and [8] (a representation of V2Gpeaks 
and ridges over a range of scales7). We find circular image 
regions of uniform gray level by convolving the image 
with V2G masks over a range of scales, and comparing 
the convolution output to that expected for an ideal cir- 
cular disk of constant gray level. Here we present a brief 
summary of the region detection algorithm; a more de- 
tailed discussion may be found in [6]. 

6 0 u r  extraction of texel shape is not accurate enough to permit useful 
measures of aspect-ratio. We also cannot measure texel density accurately 
because we do not extract all of the texels. Ongoing research into improved 
texel-extraction will permit the analysis of several texture gradients. 

’Crowley and Parker use a difference-of-Gaussian operator, which is a 
discrete approximation to ( a / a u )  G and hence to V’G. By the diffusion 
equation, V2G = ( I / o ) ( a / a o ) G .  
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A .  A Closed Form Expression for the V2G Response of 
a Disk 

The algorithm for uniform-region extraction is based on 
calculations of the V2G and ( a / a a ) V 2 G  responses of a 
disk image. Given a function I ( x ,  y )  which specifies the 
intensity of an image, the V2G response of this image at 
( x ,  y )  is given by the following convolution: 

V2G(X, Y )  * Y )  
+ W  

- W  

* Z ( X  - U ,  y - U )  du du. ( 1 )  
Mathematical analysis of the response of the V2G filter to 
most images is difficult because the convolution integrals 
of ( 1 )  do not have closed form solutions. However, a 
closed-form solution can be derived for the center point 
of a circular disk of constant intensity. We analyze the 
V2G response at the center of an ideal circular disk in the 
continuous domain; to generate the V 'G convolution of 
digitized images, we sample the V2G filter values and 
perform a discrete convolution. The image of a disk of 
diameter D and contrast C is defined by 

C i f x 2  + y 2  5 D 2 / 4  
( 2 )  i 0 elsewhere. 

Using this definition of I ( x ,  y )  in ( l ) ,  and setting x and y 
to zero, we find [6] that at the disk center 

disk image: I ( x ,  y)  = 

rCD2 
V2G response = - 

2a2 (3) 

T$ (E: :3) e - D 2 / 8 a 2  . (4) 
a 
au 
- V2G response = - - - - 

Dividing these expressions, we solve for the diameter D 
and contrast C of the disk: 

D = 2a U - V 2 G * I  ( V 2 G * I )  + 2 i (:a >I 
where the convolutions are evaluated at the center of the 
disk. 

B.  Extracting Candidate Texels in Real Images 
We construct an approximation of image texels by first 

fitting disks to uniform image regions, and then forming 
unions of connected disks. (An alternative approach is 
presented by [25 ] .  They extract texture elements by con- 
volving the image with a V2G filter and then selecting 
components of above-threshold pixels that have suitable 
geometrical properties, such as compactness.) For the first 
step, we use ( 5 )  to estimate disk diameter and disk con- 
trast from the V2G * I and ( a / a a ) V 2 G  * I values at the 

center of a region. Disks are fit at the extrema of the V2G 
* I images. The disks fit to local maxima have positive 
contrast (regions brighter than the surround), whereas the 
disks fit to local minima have negative contrast (regions 
darker than the surround). 

We use a range of filter sizes. For a region R in image 
I ,  local extrema in V2G * I occur at the center of R when 
the V 'G filter size approximately matches the region-di- 
ameter. Thus, to fit disks as accurately as possible, we 
accept a disk only if the computed diameter D is close to 
the V2G filter size used to detect the disk. 

Parts (b) of Figs. 3-30 illustrate the result of this disk- 
fitting for the positive-contrast and negative-contrast re- 
gions of each image. Implementation details for the disk- 
fitting are as follows. 

1)  Compute the convolutions V2G * Iand ( a /au )V2G 
* I for the following six U values: h, 2 h, 3 h, 4 h, 
5 h, and 6 h .  (The center lobes of the six V2G filters 
have diameters of 4 ,  8,  12, 16, 20, and 24 pixels, respec- 
tively.) To compute V2G * I for a particular U value, the 
image is convolved with a mask whose coefficients are 
taken from 

2a2 - r2  
u4 

To compute ( a / a a )  V2G * I for a particular U value, the 
image is convolved with a mask whose coefficients are 
taken from 

6r2a2 - r4 - 4a4 e - r 2 l 2 n 2  

U' 

2 )  Mark the locations where disks will be fit. To ana- 
lyze the positive-contrast regions of the original image, 
mark all local maxima in the V2G * I images. To analyze 
the negative-contrast regions of the original image, mark 
all local minima in the V2G * I images. Local maxima 
and minima are computed relative to a 3 X 3 neighbor- 
hood. 

3) At each marked location, use the measured V2G * I 
and ( a / a a ) V 2 G  * I values in ( 5 )  to compute a disk di- 
ameter and disk contrast. Accept the disk only if w - 2 
I D I w + 2 ,  where w = 2&u is the diameter of the 
center lobe of the V2G filter. Form a single set of disks 
by taking the union of the disks detected at the various 
filter sizes. 

After the disk-fitting is completed, we form unions of 
overlapping disks to construct candidate texels. Overlap- 
ping disks form concavities. There is no a priori way to 
tell whether a set of disks should be split at a concavity 
or not: some concavities arise at the border between two 
neighboring texels; at other times the concavities are part 
of the shape of an individual texel. Thus both possibilities 
are included in the list of candidate texels. The imple- 
mentation details are as follows: 

To form the list of candidate texels, extract all sub- 
sets of disks that are spatially connected and contain 
no concavities greater than 90". If a concavity is in 
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Fig. 3 .  (a) A rock pile. (b) Disks corresponding to positive-contrast re- 
gions of relatively uniform gray level. Disks are shown with a darkness 
proportional to the contrast of the region. (c) Extracted texels. These are 
all regions (sets of overlapping disks) having area within a factor of two 
of the area expected by the best planar fit ( A ,  = 40, slant 62.5",  tilt 
6 5 " ) .  The texels that fit the plane most closely are printed darkest. (d) 
The texels superimposed on a dark reproduction of the original. (e) Syn- 
thetic image to illustrate the planar fit A, = 40, slant 62.5",  tilt 65" .  ( f )  
and (g) Rating of various possible planar fits. In (f)  slant and tilt are 
varied while A, is constant at 40. In (g) A, is varied while slant and tilt 
are constant at 62.5" and 6 5 " ,  respectively. 
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Fig. 4.  (a) A rock pile. (b) Disks corresponding to negative-contrast re- 
gions of relatively uniform gray level. Disks are shown with a darkness 
proportional to the contrast of the region. (c) Extracted texels. These are 
all regions (sets of overlapping disks) having area within a factor of two 
of the area expected by the best planar fit ( A ,  = 40. slant 6 0 " ,  tilt 7 5 " ) .  
The texels that fit the plane most closely are printed darkest. (d) The 
texels superimposed on a bright reproduction of the original. (e) Syn- 
thetic image to illustrate the planar fit A ,  = 40, slant 6 0 " ,  tilt 7 5 " .  ( f )  
and (g) Rating of various possible planar fits. In ( f )  slant and tilt are 
varied while A, is constant at 40. In (g) A ,  is varied while slant and tilt 
are constant at 60" and 7 5 " ,  respectively. 
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(b) (c) 

Fig. 5 .  Aerial view of Levittown. PA: positive contrast texture. ( a )  Orig- 
inal image. (b) regions detected. (c) texels extracted. and id)  synthetic 
display of recovered orientation. 

(b)  ( C )  

Fig. 6 .  Aerial view of Levlitown. PA: negative contrast texture. ( a )  Orig- 
inal image. (b )  regions detected, (c) texels extracted. and (d )  sqnthetic 
display of recovered orientation. 

(b) (c) (d) 

Fig, 7 .  Snow geese over Back Bay: positive contrast texture. ( a )  Original 
image. ib) regions detected. (c) texels extracted. and (d) synthetic dis- 
plaq of recovered orientation. 

. . . .  :. . . . . . . .  

(b) (c) 

Fig. 8 .  Snow geese over Back Bay. negative contrast texture. (a) Original 
Image. ( b )  regions detected. ( c )  texels extracted. and ( d )  \ynthetlc dis- 
play of  rem\  ered orientation. 
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(b) (c) 

Fig. 9. Prayer at a mosque: poaitive contrast texture. (a) Original image. 
(b) regions detected. (c) texels extracted, and (d) synthetic display of 
recovered orientation. 

ib) ic) 
Fig. 10. Prayer at a mosque: negative contrast texture. (a) Original image. 

(b) regions detected. (c) texels extracted. and (d) synthetic display of 
recovered orientation. 

(b) ( C )  

Fig. 1 I .  Fleecy clouds: positive contrast texture. (a )  Original image. (b )  
regions detected, (c )  texels extracted. and (d) synthetic diapla) of re- 
covered orientation. 

(b) (C )  

Fig. 12. Fleecj clouds: negative contrast texture. (a )  Original image. ( b )  
regions detected. (c)  texels extracted. and ( d )  sjnthetic displa) of rc- 
covered orientation. 
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(b) (C) 

Fig. 13. Audience at a 3-D movie: positive contrast texture. (a)  Original 
image, (b) regions detected, (c) texels extracted. and (d) synthetic dis- 
play of recovered orientation. 
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Fig. 14. Audience at a 3-D movie: negative contrast texture. (a) Original 
image, (b) regions detected. (c) texels extracted, and (d) synthetic dis- 
play of recovered orientation. 

(b) (C) 

Fig. 15. Sunflowers: positive contrast texture. (a) Original image. (b) re- 
gions detected, (c) texels extracted, and (d) synthetic display of re- 
covered orientation. 

(b) (C) 

Fig. 16. Sunflowers: negative contrast texture. (a) Original image, (b) re- 
gions detected, (c) texels extracted, and (d) synthetic displaq of re- 
covered orientation. 
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(b)  (C) 

Fig. 17. Tree trunk: positlve contrast texture. (a) Original image. (b)  re- 
gions detected, (c) texels extracted. and (d) synthetic display of re- 
covered orientation. 

Fig. 18. Tree trunk: negative contrast texture. (a) Original image. (b) re- 
gions detected, (c) texels extracted, and (d) synthetic display of re- 
covered orientation. 

(b) (C) 

Fig. 19. Bathers on the Ganges: positive contrast texture. (a) Original im- 
age. (b) regions detected, (c) texels extracted. and (d) synthetic display 
of recovered orientation. 

(b) (c) 
Fig. 20. Bathers on the Ganges: negative contrast texture. (a) Original im- 

age. (b) regions detected. (c) texels extracted. and (d) synthetic display 
of recovered orientation. 
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(b) (C) 

Fig. 21. A plowed field: positive contrast texture. (a) Original image, (b) 
regions detected, (c) texels extracted, and (d) synthetic display of re- 
covered orientation. 

(b) (C) 

Fig. 22. A plowed field: negative contrast texture. (a) Original image. (b)  
regions detected, (c) texels extracted, and (d) synthetic display of re- 
covered orientation. 

(b) (C) 

Fig. 23. A field of flowers: positive contrast texture. (a) Original image, 
(b) regions detected, (c) texels extracted, and (d) synthetic display of 
recovered orientation. 

(b) (C) 

Fig. 24. A field of flowers: negative contrast texture. (a) Original image, 
(b) regions detected, (c) texels extracted, and (d) synthetic display of 
recovered orientation. 
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(b) (C) 

Fig. 25. Water lilies: positive contrast texture. (a) Original image, (b) re- 
gions detected. (c) texels extracted, and (d) synthetic display of re- 
covered orientation. 

(b) (C) 

Fig. 26 .  Water lilies: negative contrast texture. (a) Original image, (b) 
regions detected, (c) texels extracted, and (d) synthetic display of re- 
covered orientation. 

(b) (C) 

Fig. 27. Ripple marks in a shallow sea: positive contrast texture. (a) Orig- 
inal image. (b) regions detected. (c) texels extracted, and (d) synthetic 
display of recovered orientation. 

the range 50°-900, use the disks to form three can- 
didate texels*: one large region consisting of all the 
disks, and two smaller regions resulting from split- 
ting the large region at the concavity.' Mark mutual 
exclusion between candidate texels that share a disk: 
at most one of them can contribute support to a 
planar fit and be chosen as a true texture element. 

'The particular values 50" and 90" are not critical: we have found that 
the range 50"-90" is large enough to capture the regions of interest and 
yet small enough to prevent a combinatorial explosion in the number of 
candidate texels generated. 

9Region splitting is implemented as follows. We begin with a set P of 
overlapping disks, which together cover an image region R. The largest 
concavity in R is found by computing the angles formed by every pair of 
neighboring disks on the border of R. Suppose that X and Yare two neigh- 
boring disks on the border of R ,  and that they form a concavity that causes 
a split into smaller, more convex regions. The concavity is split by I )  re- 
moving X from P and repeating the above process. and then 2) removing 
Y from P and repeating the above process. 

IV . SURFACE ESTIMATION AND TEXEL IDENTIFICATION 
Our goal in analyzing image texture is to find a spatial 

layout of homogeneously-textured surfaces that could re- 
sult in the given image texture. We do this by testing many 
spatial layouts and choosing the one that is the most con- 
sistent with a maximal subset of the candidate texels. The 
surface parameters are determined at the same time that 
the true texels are chosen from among the candidates. 

A .  The Expected Distribution of Texel Areas for a 
Planar Surface 

The current implementation is restricted to fitting a sin- 
gle planar surface to the image, based on the observed 
areas of the candidate texels. In order to find a planar fit 
to the candidate texels, we need to know the distribution 
of texel areas that occurs in an image of an idealized tex- 
tured plane. To derive this relationship, we assume a 
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Fig. 28. Ripple marks in a shallow sea: negative contrast texture. (a) Orig- 
inal image, (b) regions detected, (c) texels extracted, and (d) synthetic 
display of recovered orientation. 

(b) (C) 

Fig. 29. Water hyacinths: positive contrast texture. (a) Original image, (b) 
regions detected, (c) texels extracted, and (d) synthetic display of re- 
covered orientation. 

(b) (C) 

Fig. 30. Water hyacinths: negative contrast texture. (a) Original image. 
(b) regions detected, (c) texels extracted, and (d) synthetic display of 
recovered orientation. 

planar textured surface covered with identical texels, 
where the texels show no three-dimensional relief (the 
texels are “painted” on the surface). Natural textures are 
typically more complicated: they are composed of highly 
variable texels that show three-dimensional relief. Our 
experiments show that the equations derived from consid- 
eration of idealized textures are useful for analyzing a va- 
riety of natural textures as well (Section V). 

We derive two expressions to describe the size of image 
texels. The first expression characterizes the foreshort- 
ened image-texel dimension F;; this is the texel dimension 

parallel to the tilt (Fig. 31). The second expression char- 
acterizes the unforeshortened image-texel dimension Ui; 
this is the texel dimension perpendicular to the tilt. Com- 
bining these we obtain an expression for Ai, the expected 
image-texel area. 

As illustrated in Fig. 31, an image location is specified 
by ( X ,  Y ) ,  in a normalized coordinate system which does 
not depend on the number of pixels in the image: X and 
Y are zero at the image center, and are -1 or 1 at the 
image border. (For notational simplicity, we are assuming 
square images.) 
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Image Border 
Image Coordinates (X. U) 

Fig. 31. Image and tilt coordinate systems. 

The camera parameters we use are the focal length f and 
the physical width of the film r .  The final expressions use 
only the ratio r / f ,  which is a measure of the field-of-view 
of the camera lens. Telephoto lenses have a low value of 
r / f ,  whereas fish-eye lenses have a high value of r / f .  

The slant and tilt of the textured plane are denoted by 
S and T,  respectively. Simple derivations may be obtained 
by defining a tilt coordinate system, (xTr yT, z T ) ,  with or- 
igin at the focal point, the zT axis perpendicular to the 
image plane, and the xT axis in the tilt direction. The view 
direction is along the positive z axis; thus this is a left- 
handed coordinate system. A point (X, Y )  in image co- 
ordinates is transformed to tilt coordinates by 

X T  = X COS T + Y sin T 

yT = X sin T + Y cos T 

ZT = f. 

Shown in Fig. 32 is the xT-zT plane, which is perpen- 
dicular to both the image plane and the textured plane. 
The angle 0 = tan-' (xT( r / f  ) )  for an image location with 
tilt coordinates (xT, yn f ); given raw image coordinates 
(X, Y), 

6' = tan-' ((Xcos T + Ysin T ) ( r / f ) ) .  (6) 

From the geometry in Fig. 32 we derive that [4] 

f F, = F~ - cos ~ ( 1  - tan e tan s)'. 
g 

The only approximation made is that 8 does not change 
significantly across the texel. To eliminate the depen- 
dence on the surface-depth g, we calculate F, in terms of 
F,, the foreshortened dimension of a texel at the image 
center: 

F, = F, ( I  - tan e tan SI'. (7) 
Similarly, we derive that U,, the unforeshortened image- 
texel dimension, is related to U,, the unforeshortened di- 
mension of a texel at the image center by 

U, = U,(l  - tan 0 tan S ) .  (8)  

pm,ecLian of focal p t n t  Tilt w h m  

..... ...... . .J  ongl" at fd point 

image  exe el. length Fl 

' ,lac yT axe into paper J- image plane 

Fig. 32. The xr - z r  plane. Since y r  is constant, both the image plane and 
the textured plane are perpendicular to the drawing. 

(For example, if the physical texel is a circle, the image 
texel is an ellipse with Ai = (7r/4) F, U,; if the physical 
texel is a rectangle, the image texel is a parallelogram 
with A, = Fi Ui. ) Thus, A,  = kFi Ui, where k is a constant 
of proportionality which depends upon the texel shape. 
Therefore A, ,  the area of a texel at location (X, Y )  in the 
image" is related to A,, the area of a texel at the image 
center by 

A ,  = A , ( I  - tan e tan s ) ~ .  (9) 

Substituting 8 from (6) into (9), we see that the following 
values are needed to predict the texel area anywhere in 
the image: 

A,, the area that would be measured for a texel lo- 
cated at the center of the image. 

S and T,  the slant and tilt of the textured plane. 
The ratio r/f, which is related to the field-of-view of 

the camera lens. 
In our work we assume that the field-of-view is known. 

The other three quantities ( A , ,  S ,  T )  form the parameter 
space we search to find the best planar fit for a given tex- 
ture image. 

B. Fitting a Planar Surface to the Candidate Texels 

Having extracted candidate texels from an image of a 
textured surface, we find the orientation of the textured 
plane that best agrees with the observed areas of the can- 
didate texels. A planar surface is characterized by the tri- 
ple (A, ,  S ,  T ) ,  where A,  is the texel area expected in the 
image center, S is the slant, and T is the tilt. In order to 
find the best planar fit for the image texture, we discretize 
the possible values of A,, S ,  and T,  and evaluate each 
possible planar fit. For each choice of (A , ,  S ,  T ) ,  (9) gives 
the expected texel area at each image location. These ex- 
pected areas are compared to the region areas actually oc- 
curring in the image, and a fit-rating is computed for the 
plane. The plane that receives the highest fit-rating is se- 
lected as the estimate of the textured surface. The candi- 
date texels that support the best planar fit are interpreted 
as true image texels. 

"As pointed out by a reviewer, this result can also be derived from 
equations (2-1) and (3-2) in [18]; they also use the approximation that 0 is If the image texel has a 'Ompact shape, the area A, Of the 

image texel is proportional to the product of F, and Vi. constant across the texel. 



~ 

1248 IEEE TRANSACTIONS ON PATTERN ANALYSIS A N D  MACHINE INTELLIGENCE, VOL. I I ,  NO. 12. DECEMBER 1989 

The rating of a planar fit is computed by summing con- 
tributions from all the candidate texels. If a texel at lo- 
cation (X, Y )  has an area which is close to the ideal area 
in (9), then the texel provides a large amount of support 
for the planar fit. As the actual texel area deviates from 
the ideal area, the support for the planar fit decreases; we 
use an exponentially-decreasing weighting function. The 
rating of a planar fit is computed as 

fit rating = C (region area) 
all regions 

I region contrast 1 e - ( ~ i o n - f i t ) * / '  

max (expected area, actual area) 
min (expected area, actual area) * 

where region-fit = 

( 10) 
The region-fit is 2.0 for a candidate texel that is either 
half as big or twice as big as the size predicted by the 
planar fit. 

We begin with a coarse fit, in which the (A,, S ,  T )  
space is searched at sparse locations: A, (in units of pix- 
els) takes on the values { 10,20,40, 80, 160, 320, 640 }, 
Stakesonthevalues {0', 5 ' ,  lo', * , 70', 75', SO'}, 
and T takes on the values { O', 20', 40', - * , 300', 
320', 340' }.  To refine the planar fit, a more detailed 
search of the (Ac ,  S, 7') space is done in the neighborhood 
of the best plane from the coarse fit: S is changed in in- 
crements of 2.5 ', T in increments of 5 ', and A ,  in incre- 
ments of less than 25 percent. As illustrated in parts (e) 
of Figs. 3 and 4 the fit-rating values change smoothly as 
a function of A,, slant, and tilt. The plane that receives 
the highest fit-rating is selected as the best estimate of the 
textured surface. True image texels are those regions that 
have an area close to the area expected by the best planar 
fit. 

V .  APPLICATION OF THE ALGORITHM TO REAL IMAGES 
We have conducted experiments with a variety of im- 

ages of natural textures, having different mixes of texel 
shapes, number of fields, types of gradients, tilt direc- 
tions, and three-dimensional texel effects. The results of 
the performance of the algorithm on a large variety of tex- 
tures should help in judging the strengths, weaknesses, 
and generality of the algorithm and its current implemen- 
tation. Part (a) of Figs. 3-30 show 14 of the images we 
have used in our experiments. A few of the images are 
photographs of outdoor scenes taken by one of the authors 
in Urbana, Illinois. The rest are illustrations in books (see 
[4] for references), which we have rephotographed. All 
of these images are digitized off of the photographic neg- 
atives using a drum scanner. The images are 512 by 512 
pixels; the image sizes in the figures vary because image 
borders have been trimmed. All of the images are pro- 
cessed the same way; the method has no parameters that 
need to be tuned to particular images. As was described 
in Sections I11 and IV, the processing of an image is di- 
vided into three main phases: fit disks to the uniform im- 

age regions, construct candidate texels from the disks, and 
fit a planar surface to the candidate texels. 

The results of each phase are illustrated for one texture, 
a rock pile, in Figs. 3 and 4.  Fig. 3 shows the results 
obtained for the positive contrast (bright) texture over dark 
background, and Fig. 4 shows the results for the negative 
contrast (dark) texture over bright background. The orig- 
inal image is shown in part (a) of each figure. Part (b) of 
each figure shows the extracted disks that model the re- 
gions of uniform gray level in the original image. Over- 
lapping sets of these disks are used to make the list of 
candidate texels. It is impossible to display all the disks 
in a single image, since many disks are spatially con- 
tained in larger disks. This spatial containment typically 
means that either 1) the large disk is part of a texture ele- 
ment and the small disks are subtexture, or 2) the small 
disks are texels and the large disk is supertexture. In case 
1) the large disk usually has higher contrast than the 
smaller disks, whereas in case 2) the smaller disks usually 
have higher contrast than the large disk. Wherever disks 
overlap, our figures shows the disk of higher contrast. 
Therefore most subtexture disks in part (b) are not visible: 
they are covered by a larger, higher-contrast disk corre- 
sponding to part of a texture element. 

The parameters of the best planar fit are illustrated by 
the synthetic texture images in part (e) of the figures. The 
detected texels are shown in parts (c) and (d): these are 
all candidate texels having area within a factor of two of 
the area expected by the best planar fit. 

Parts (f) and (g) illustrate the change of fit-rating as a 
function of A,, slant, and tilt. The height fields in part (f) 
of each figure show fit-rating as a function of slant and 
tilt, with A, fixed at the value that produces the best planar 
fit for the texture in question." The height fields flatten 
out near the back because tilt becomes less important as 
slant decreases; tilt is irrelevant when the slant is zero. 
The graphs in part (g) of each figure show fit-rating as a 
function of A,, with slant and tilt fixed at the values that 
produce the best planar fit for the texture in question. 

Figs. 5-30 illustrate selected results for 13 additional 
images of natural textures. The results obtained for each 
image are illustrated in two successive figures. The first 
figure shows the results for the positive-contrast texture, 
and the second figure shows the results for the negative- 
contrast texture. Parts (a), (b), and (c) of Figs. 5-30 are 
analogous to the corresponding parts of Figs. 3 and 4, 
whereas part (d) of Figs. 5-30 is analogous to part (e) of 
Figs. 3 and 4. For brevity, the details shown in parts (d), 
(f) ,  and (g) of Figs. 3 and 4 are not repeated for the tex- 
tures in Figs. 5-30. 

The shape of the fit-rating peak is related to the prop- 
erties of the image texture. A sharp fit-rating peak indi- 
cates that the texels have small size variance. This obser- 
vation is supported by the fit-rating plots for the aerial 
view of houses (Figs. 5 and 6) and by the field of sun- 

"In these height fields, the fit-rating values have been squared for dis- 
play purposes. 
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Descnpuon Figures Fit lo positive- 
conmt regions 

a, slant U11 

3, 4 40 62.5' 65' A rock pile 
Aedv iew ofhouses 5 . 6  35 62.5' 95" 
Bidsflymgoverwater 7 . 8  35 45' 80" 
Rayer  ata mosque 9. IO 160 27.5" 50' 

11, 12 IM) 55" 275" Fleecy clouds 
3 0  movie audience 13, 14 280 45' 105' 
SvnRowen 15. 16 160 70' 95" 
AlI.Xtrunlr 17, 18 70 65' 345' 
Batherson the Ganges 19, 20 100 45' 80" 
A plowed field 21.22 80 42.5' 40" 
Afield of Rowen 23.24 50 70" 90" 
Water lilies 25.26 120 75" 90" 
Ripples 27, 28 50 52.5' 105' 
Water Hyacinths 29, 30 100 37.5" 80" 

flowers (Figs. 15 and 16), although, for brevity, these 
plots are not shown in the figures. If the texel sizes have 
larger variance, as for the clouds (Figs. 11 and 12) and 
the rock pile (Figs. 3 and 4), then the peak is much 
broader. (In the rock-pile image, the nonplanarity of the 
original textured surface also contributes to the broadness 
of the fit-rating peak.) The texels shown in part (c) of 
the figures are those candidate texels having area within 
a factor of two of the area expected by the planar fit. Using 
this same factor of two for all images causes incomplete 
extraction of texels in images where texel size is highly 
variable. More complete texel extraction can be achieved 
by adjusting the criteria for choosing texels from the set 
of candidate texels: the criteria should vary as a function 
of the broadness of the fit-rating peak in ( A , ,  S, T )  space. 

The accuracy of the results may be illustrated in two 
ways. First, the reader can compare his perception of the 
textured surfaces (part (a) of Figs. 3-30) with the planar 
surface fitted by the program. Agreement with human per- 
ception is quite good for many of the images. Second, 
since the processing of the positive-contrast and negative- 
contrast regions is performed totally independently, the 
agreement between the slants and tilts obtained by the two 
analyses strengthens the confidence in the results. (Note 
that the A, parameters are not expected to be similar for 
the positive-contrast and negative-contrast regions-the 
positive-contrast and negative-contrast regions may be of 
very different sizes.) However, the two analyses .may not 
always lead to the same estimates of slant and tilt, be- 
cause a texture may not be homogeneous in both texel size 
and texel separation. Thus, an agreement among multiple 
analyses (such as the two discussed here) should not be 
required; instead, a method of automatically assessing the 
accuracies of the results obtained by different analyses, 
and selecting and integrating the pertinent analyses must 
be devised. Work is underway to address this problem. 

Table I summarizes the planar fits obtained for all im- 
ages. These fits use slants that are multiples of 2.5" and 
tilts that are multiples of 5 O . The slant and tilt values com- 
puted from the positive-contrast and negative-contrast re- 
gions are frequently within 15" of each other. For refer- 
ence, a 30" difference in tilt is equal to the angular 
distance between adjacent numbers on a clock face. A 30" 
difference in slant, on the other hand, is a more serious 
error. In many of those images that have a large discrep- 
ancy between the two planar fits, attributes of the original 
texture lead us to expect the fits to differ in accuracy. We 
have identified four reasons for the observed discrepan- 
cies. In the field of flowers (Fig. 23) and the water lilies 
(Fig. 25), the spaces between the texels are less regular 
than are the areas of the texels; therefore the fit to the 
negative-contrast regions is not as accurate as the fit to 
the positive-contrast regions. A second reason the back- 
ground regions produce inaccurate results is because the 
properties of the physical texels are more important than 
the properties of background regions. In images where the 
physical texels are separated by gaps, the intertexel spac- 
ing cames more information than does the shape or area 

Fit lo negave- 
conmt regtons 

n, Slanl Ull 

40 60" 75' 
60 67.5' 110" 
40 57.Y 103" 
120 42.5' 100' 
160 55' 280' 
320 7.5' 330' 
2M) 70" 90' 
80 42.5' 0' 
80 65' 85" 
100 65' 80" 
140 52.5" 20" 
160 52.5" 70' 
120 62.5' 105" 
103 40' 80' 
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Difference 

12.5' 20' 
50' 

22.5' 40' 

m e  
22.5' 20' 

2.5" 

of the background regions. Thus, the results for the neg- 
ative-contrast regions of the movie image (Fig. 14) and 
the lily pad image (Fig. 26) are inaccurate because the 
area of the background regions poorly reflects the inter- 
texel spacing. A third reason for discrepancies between 
the two slant and tilt estimates is a large variability in 
texel area (as occurs in Fig. 9, the image of prayer at a 
mosque). This causes a broad peak in the planar fit space; 
hence the exact peak location is not as accurate for these 
images as for others. A fourth reason for inaccurate re- 
sults is that the current extraction of uniform regions frag- 
ments noncompact regions in an arbitrary way, increasing 
the variabilities of the measured areas. This effect can be 
seen in the background of the movie image (Fig. 14). For 
nearly all of the images, at least one of the two analyses 
produces results that are in good agreement with human 
perception. 

VI. SUMMARY 
We have presented a general discussion of the problem 

of recovering scene-layout information from the texture 
cues present in an image. We argue that extraction of tex- 
els is useful and perhaps even necessary for correct inter- 
pretation of texture gradients in the face of subtexture and 
supertexture. In order to separate texture elements from 
other regions (such as subtexture) it is necessary to per- 
form texel identification and surface fitting simulta- 
neously. 

We have presented an implementation that is based on 
these ideas; the implementation is restricted to the detec- 
tion of gradients of texel area. A multiscale region de- 
tector is developed from the response of an ideal disk to 
convolution with a Laplacian-of-Gaussian ( V *G ) over a 
range of scales. The output of the region detector is used 
to form a list of candidate texels. These candidate texels 
then provide the evidence needed to choose a good planar 
fit to the image texture; at the same time, the best planar 
fit determines which of the candidate texels are true tex- 
els. Results are shown for a variety of natural textures. 

One consequence of the integration approach presented 
in this paper is that all regions whose properties are not 
unified by the gradient of a given property are treated as 
noise. For any given property, the noise regions do not 
contribute significantly to the fit-rating quality by virtue 
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of the exponential function in (10). Such regions could be 
the result of noise in the original image or in the region 
detection process. However, these noise regions could be 
valid texels if the gradient of a different property is con- 
sidered, and they could quite possibly support the same 
surface orientation as the nonnoise regions. As long as 
there is some property whose gradient is supported by re- 
gions occupying a sufficiently large image area, the cor- 
responding regions must be treated as texels. This is why 
the use of multiple texture gradients is necessary. A goal 
of our ongoing research is to estimate surface orientation 
from an integrated analysis of several relevant texture gra- 
dients, including area gradients, aspect-ratio gradients, 
and density gradients. 

Because of the significant variability which is charac- 
teristic of natural textures, texture gradient as a cue of 
surface orientation appears to be more useful to obtain a 
coarse judgment of surface orientation and scene layout 
than as a source of obtaining accurate estimates. Stereo 
and other sources of scene information may be more ap- 
propriate for obtaining greater accuracy, e.g., for extract- 
ing shapes of curved, complex surfaces. In this sense, the 
analysis based on planar surfaces may suffice for most 
natural scenes containing textured surfaces, although 
mathematically (or for use with synthetic textures, where 
texture variability could be controlled), the approach pre- 
sented in this paper could be extended to apply to curved 
surfaces. The extension required would be only in the sur- 
face fitting process. A much more important use of texture 
cues in real scenes is for segmentation of a scene into 
different textured surfaces [25 ] .  With such segmentation 
available, it would be possible to identify image parts to 
which the approach of this paper could be applied mean- 
ingfully. As we stated earlier, we have not addressed the 
problem of texture segmentation in this paper. 

REFERENCES 

[lo] L. Davis, L.  Janos, and S.  Dunn, “Efficient recovery of shape from 
texture,’’ IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-5, 
no. 5,  pp. 485-492, Sept. 1983. 

[ I l l  J .  Gibson, The Perception of the Visual World. Boston, MA: 
Houghton Mifflin, 1950. 

[12] K. Ikeuchi, “Shape from regular patterns (an example of constraint 
propagation in vision),” MIT A.I. Memo 567, Mar. 1980. 

[I31 K. Kanatani, “Detection of surface orientation and motion from tex- 
ture by a stereological technique,” Arrijicial Intell., vol. 23, pp. 213- 
237, 1984. 

[14] K. Kanatani and T. Chou, “Shape from texture: General principle,” 
in Proc. IEEE Conf. Computer Vision and Pattern Recognition 86, 
Miami, FL, June 1986, pp. 578-583. 

[15] J. Kender, “Shape from texture,” Ph.D. dissertation, Carnegie-Mel- 
lon Univ., Rep. CMU-CS-81-102, Nov. 1980. 

[16] H. Nakatani, S.  Kimura, 0. Saito, and T. Kitahashi, “Extraction of 
vanishing point and its application to scene analysis based on image 
sequence,” in Proc. Int. Con$ Pattern Recognition, 1980, pp. 370- 
372. 

[I71 R. Nevatia and K. R. Babu, “Linear feature extraction and descrip- 
tion,” Comput. Graphics Image Processing, vol. 13, pp. 257-269, 
1980. 

[18] Y.  Ohta, K. Maenobu, and T .  Sakai, “Obtaining surface orientation 
from texels under perspective projection,” in Proc. Int. Joint Conf. 
Artijcial Intelligence, 1981, pp. 746-751. 

[19] R. J. Phillips, “Stationary visual texture and the estimation of slant 
angle,” Quart. J. Psychol., vol. 22, pp. 389-397, 1970. 

[20] A. Rosenfeld, “A note on automatic detection of texture gradients,” 
IEEE Trans. Comput., vol. C-24, pp. 988-991, Oct. 1975. 

[21] R. R. Rosinski, “On the ambiguity of visual stimulation: A reply to 
Eriksson,” Perception Psychophys., vol. 16, no. 2,  pp. 259-263, 
1974. 

[22] R. Rosinski and N. Levine, “Texture gradient effectiveness in the 
perception of surface slant,” J. Exp. Child Psychol., vol. 22, pp. 
261-271, 1976. 

[23] K. A. Stevens, “Slant-tilt: The visual encoding of surface orienta- 
tion,” Biol. Cybern., vol. 46, pp. 183-195, 1983. 

[24] D. Vickers, “Perceptual economy and the impression of visual 
depth,” Perception and Psychophys., vol. 10, no. 1, pp. 23-27, 1971. 

[25] H.  Voorhees and T.  Poggio, “Detecting textons and texture bound- 
aries in natural textures,” in Proc. IEEE First Int. Con$ Computer 
Vision, June 1987, pp. 25-258. 

[26] A. P. Witkin, ‘‘Recovering surface shape and orientation from tex- 
ture,’’ Artijicial Intell., vol. 17, pp. 17-45, 1981. 

[27] -, “Scale space filtering,” in Proc. Eighth Int. Joint Conf. Arti- 
ficial Intelligence, Karlsruhe, West Germany, Aug. 1983, pp. 1019- 
1022. 

[ l ]  J. Aloimonos and M. Swain, “Shape from texture,” in Proc 9th Int. 
Joint Con$ AI, 1985, pp. 926-931. 

[2] J. Aloimonos, “Detection of surface orientation from texture I: The 
case of planes,” in Proc. IEEE Conf. Computer Vision and Pattern 
Recognition, 1986, pp. 584-593. 

[3] R. Bajcsy and L. Lieberman, “Texture gradient as a depth cue,” 
Comput. Graphics Image Processing, vol. 5, pp. 52-67, 1976. 

[4] D. Blostein, “Recovering the orientation of textured surfaces in nat- 
ural scenes,” Ph.D. dissertation, Univ. Illinois, Coordinated Science 
Lab. Rep. UILU-ENG-87-2219, Apr. 1987. 

[5] D. Blostein and N. Ahuja, “Representation and three-dimensional 
interpretation of image texture: An integrated approach,” in Proc. 
IEEE First Int. Con$ Computer Vision, June 1987, pp. 444-449. 

[6] -, “A multi-scale region detector,” Cornput. Vision, Graphics, 
Image Processing, vol. 45, no. 1, pp. 22-41, Jan. 1989. 

[7] M. L. Braunstein and J. W. Payne, “Perspective and form ratio as 
determinants of relative slant judgments,” J. Exp. Psychol., vol. 81, 
no. 3 ,  pp. 584-590, 1969. 

[8] J. Crowley and A. Parker, “A representation for shape based on peaks 
and ridges in the difference of low pass transform,” IEEE Trans. Paf- 
tern Anal. Machine Intell., vol. PAMI-6, no. 2,  pp. 156-170, Mar. 
1984. 

[9] J. E. Cutting and R. T. Millard, “Three gradients and the perception 
of flat and curved surfaces,” J .  Exp. Psychol. ; General, vol. 113, 
no. 2,  pp. 198-216, 1984. 

Dorothea Blostein (S’87-M’88) received the B.S. 
degree in mathematics and computer science from 
the University of Illinois, Urbana-Champaign, in 
1978, the M.S. degree in computer science from 
Carnegie-Mellon University, Pittsburgh, PA, in 
1980, and the Ph.D. degree in computer science 
from the University of Illinois in 1987. 

From 1980 to 1982, she worked at Intel Cor- 
poration. During 1987-1988, she worked at the 
University of Illinois Computer-Based Education 
Research Laboratory. She is currently an Assis- 

tant Professor in the Department of Computing and Information Science at 
Queen’s University in Kingston, Ontario. Her research interests include 
computer vision, pattern recognition, computer music, and user-interface 
design. 



BLOSTEIN A N D  AHUJA: SHAPE FROM TEXTURE 1251 

Narendra Ahuja (S’79-M’79-SM’85) received 
the B.E. degree with honors in electronics engi- 
neenng from the Birla Institute of Technology and 
Science, Pilani, India, in 1972, the M.E. degree 
with distinction in electrical communication en- 
gineenng from the Indian Institute of Science, 
Bangalore, India, in 1974, and the Ph.D degree 
in computer science from the University of Mary- 
land, College Park, in 1979. 

From 1974 to 1975 he was Scientific Officer in 
the Department of Electronics, Government of In- 

dia, New Delhi. From 1975 to 1979 he was at the Computer Vision Lab- 
oratory, University of Maryland, College Park. Since 1979 he has been 
with the University of Illinois at Urbana-Champaign where he is currently 
(198%) a Professor in the Department of Electrical and Computer Engi- 
neering, the Coordinated Science Laboratory, and the Beckman Institute 
His interests are in computer vision, robotics, image processing, and par- 

allel algorithms. He has been involved in teaching, research, consulting, 
and organizing conferences in these areas. His current research emphasizes 
integrated use of multiple image sources of scene information to construct 
three-dimensional descriptions of scenes, the use of the acquired three- 
dimensional information for object manipulation and navigation, and mul- 
tiprocessor architectures for computer vision. 

Dr. Ahuja received the University Scholar Award (1985), Presidential 
Young Investigator Award (1984), National Scholarship (1967-1972), and 
President’s Merit Award (1966). He has coauthored the books Pattern 
Models (Wiley, 1983) with Bruce Schachter, and Motion and Structure 
from Image Sequences (Springer-Verlag, to appear) with Juyang Weng and 
Thomas Huang. He is Associate Editor of the journals IEEE TRANSACTIONS 
ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, and Computer Vision, 
Graphics, and Zmage Processing. He is a member of the American Asso- 
ciation for Artificial Intelligence, the Society of Photo-Optical Instrumen- 
tation Engineers, and the Association for Computing Machinery. 


