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A b s t r a c t .  This paper is concerned with surface shape estimation by a 
method in which an empirically determined associative model relating 
appearance to surface shape is used. Significantly, the estimated model 
is more accurate than the algorithm that generates the examples. The 
method presented here is a generalization of shape from shading methods 
that does not rely upon idealized models of the image formation process. 
As a relative of shape from shading, this method more accurately recov- 
ers small surface detail than is possible with methods such as stereo and 
motion. The present approach is a continuous analogue of pattern recog- 
nition and is closely related to methods of joint space learning used in 
robotics. Experiments on real scenes are used to illustrate the concepts 
involved. 

1 Introduction 

This paper  describes a method of surface shape estimation tha t  involves auto- 
matic  generation of an associative model that  relates surface shape to appear-  
ance. It  is shown that  through a scale change and the use of a smoothness 
requirement, the est imated model can be made to be more accurate than  the 
algorithm tha t  produced the examples. The performance increase is key to the 
utility of this method and sets it apar t  from the approach of Lehky and Se- 
jnowski [7] 

Associative modelling techniques are considered by the authors to be impor-  
tant  because of the generality and precision made possible by such techniques. 
The shape estimation procedure described below is a generalization of physics 
based methods and embodies many of the advantages of such methods with few 
of the disadvantages. Physics based methods generally rely heavily on idealized 
models of the image formation process which do not capture the complexity of 
real scenes [2, 3, 4]. In addition, such models often contain hard to est imate 
parameters  [3, 4]. However, shading information, in particular, is useful for re- 
covering small surface detail. 

* This research was supported by the Advanced Research Projects Agency and the 
National Science Foundation under grant IRI-89-02728 and by the Army Advance 
Construction Technology Center under grant DAAL 03-87-K-0006. 
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Fig. 1. A stereo module pro- 
duces coarse shape estimates. A 
learning module produces an as- 
sociative model of the relation- 
ship of shape to appearance. The 
shape module estimates the sur- 
face shape of novel objects. 

In comparison, methods that 
rely upon the coincidence or 
correlation of features in two 
or more images, such as stereo 
and motion based methods, 
cannot be used to recover 
small surface detail due to 
the sparseness of discrim- 
inable image features [5] and 
the fact that the accuracy of 

such techniques drops with the square of depth [5]. In addition, such_methods are 
only reliable in highly textured regions or in the presence of well defined image 
features. However, such methods are based on relatively weak assumptions and 
are therefore useful for recovering coarse or sparse depth estimates. 

Recent papers by Leclerc and Bobick [6] and Hougen and Ahuja [3, 4] discuss 
integrated methods which combine the strengths of the above methods while 
avoiding many of the limitations. However, despite the increase in generality, 
such methods are still dependent upon highly restrictive idealized models of the 
image formation process. 

In order to escape such restrictions, it should be noted that the relation- 
ship between local appearance and corresponding surface shape can always be 
captured in the form of a probability density function. The density estimation 
problem encountered here is the continuous analogue of the pattern recognition 
problem [1] and is closely related to function learning problems encountered in 
robotics [8]. Indeed, in the presence of nonlocal, contextual information, it may 
be possible to simplify the problem and treat the local relationship of shape 
to appearance as a functional relationship. This approach is explored in the 
following sections. 

2 Algorithm Overview 

The three major components of the local shape-from-appearance estimation pro- 
cedure are illustrated in figure 1 including, (1) generation of coarse surface shape 
estimates for statistical modelling, (2) estimation of the associative model gov- 
erning the statistical relationship of shape to appearance, and (3) surface shape 
estimation through application of the statistical model to the desired image. 
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Fig. 2. Associative mapping. The 
image, I ,  is represented through r 
by a set of features f and the surface 
z is represented through r by the 
shape function s. The learning mod- 
ule estimates an associative map- 
ping g from f to s. The shape mod- 
ule finds the shape function, s, as- 
sociated with a novel image and in- 
verts r to produce the correspond- 
ing surface height function, z. 

Generation of the coarse surface shape estimates involves the use of a stan- 
dard vision algorithm such as a stereo or motion algorithm. Such algorithms 
are capable of producing coarse yet reasonable estimates under a wide range of 
conditions. 

Est imat ion of the associative model governing the relationship of shape to 
appearance  is accomplished by associating examples of est imated surfaces with 
corresponding examples from images as illustrated in figure 2. Each example of 
surface shape and appearance is represented by one or more mathemat ica l  fea- 
tures which are designed to capture important  information about  the examples. 
The relationship between corresponding examples is represented by a statistical 
model and serves as a substi tute for the derivation of an idealized model. 

Physics based methods are generally based upon restrictive assumptions. The 
present method requires only that  the conditional density of shape given appear-  
ance be sufficiently informative. If the relationship is particularly simple, it may 
be possible to replace estimation of the probabili ty density with estimation of a 
mapping  function. In this case the model is referred to as an associative map. 
More detail appears  in the following sections. 

Surface shape estimation is accomplished through application of the previ- 
ously est imated associative model to the desired image. The features calculated 
at a particular image location serve as input vectors to the associative model, 
allowing the statistically expected shape parameters  to be computed at  tha t  
location. A more recognizable surface description is obtained by inverting the 
feature calculation process as described in section 5. 

3 A s s o c i a t i v e  M o d e l l i n g  

Let z : A --+ ~ -  be a surface height function and I : A --+ [0,/max] be an image 
brightness function defined on A C ~2. The functions z and I may be viewed as 
members  of the ensembles Z and E respectively where Z is the set of all viewable 
height functions and Z is the set of all images of the height functions in Z.  

For a single surface height function, variable lighting conditions and surface 
marking pat terns  make possible a wide variety of possible images. Conversely, a 
single image may correspond to more than one surface height function. However, 
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some height functions are more likely than others to have produced a given 
image. The problem considered here is to find the surface most likely to have 
produced a given image. 

3.1 Choos ing  Features 

Important criteria for choosing a surface representation are simplicity, symmetry, 
completeness, and learnability. An operator, r that at least partially satisfies 
these criteria is the Laplacian of a Gaussian smoothing filter. It is simple, sym- 
metric, and complete; z can be reconstructed from s(x, y; a) = V2G(a) �9 z. It 
is also more apparent locally, and therefore more learnable, than, for example, 
surface height or slope. 

The most important criterion for choosing an image representation is that 
it be locally informative. The image irradiance at a point is uninformative but 
higher order functions of the local image irradiance are statistically related to 
surface shape and therefore useful. In general, the image, I, is represented by an 
image feature vector, f (a) ,  where f j(a) = Cj(a)I, j = 1, . . .  ,k. Here, polyno- 
mial coefficients are used. 

3.2 Condi t ional  Dens i ty  

At a point, (x,y), the conditional density of shape given appearance in the 
local neighborhood of (x, y) is written PA(~)(S(X, y; a)[f(x,  y; a)) and is scale 
dependent. If the image feature vector is given on A C ~2 and the surface 
feature vector at a particular point depends only on the image feature vector at 
that point then the maximum log-likelihood solution for surface shape given the 
information about appearance is given by 

z(x, y) = max f f log(pA(~)(s(x, y; a)l f (x ,  y; a)))dxdy z(=,y) J J A  

where the maximization is over all functions z : A ~ ~ - .  
The above formulation can be simplified by using the marginal probability 

density in which the dependency upon a is removed. This is a reasonable simpli- 
fication given the fact that most objects that appear in the world are observed at 
many ranges and therefore at many scales making the conditional density nearly 
independent of scale. More formally, it is assumed that, PA(a) "~ PA. 

3.3 Scaling to  Increase Performance  

The fact that a surface curve or bend or marking has previously been seen up 
close, allowing its shape to be accurately determined, means that the shape 
can be accurately determined later when the surface is far away. The statistical 
association between surface shape and appearance determined at a coarse scale is 
stored in the form of a conditional probability density and used later to estimate 
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the surface shape at a finer scale. If the probability density is scale independent, 
it is not necessary to know the change in scale to reconstruct the surface. 

As a preliminary, it should be noted that  scaling to increase power can only 
work if the new shape estimation procedure has higher performance than the 
example generator. As an example, the resolution and accuracy are higher for 
shape from shading methods than for stereo, motion, or focus methods [5]. The 
present method is a relative of shape from shading and has similar performance 
characteristics, making possible an increase in performance. 

Although the precise increase in performance is the subject of ongoing re- 
search, the following considerations are relevant. The probability density, PA, 
should be estimated using examples given at a scale a~ that  is chosen to obtain 
the maximum performance from the example producing algorithm. If the resul- 
tant  surface is estimated at scale a ar that  is chosen optimally or suboptimally 
with ar > hop t.  Then, if a~ < ae the resolution and hence the performance is 
increased by a factor related to a~/a~. 

4 A s s o c i a t i v e  M a p p i n g  

In many instances considered in computer vision, the probability density may be 
simple enough to be well approximated by a sum of normal variates. The corre- 
spondence of a smooth surface to a smoothly varying image or of a long narrow 
specularity to a surface with a convex or concave bend are examples of unimodal 
or bimodal distributions. If the mode is assumed known, the maximization of 
the log-likelihood reduces to the solution of a least squares problem. This is not 
unreasonable in cases in which a single choice is required for an entire region as 
is the case that  the surface curvature has constant sign in a region of interest. 

Let g : s z -~ f2 z be a function from the image feature space, g?I, into 
the surface feature space, g?z such that  s(x,y; a) = g ( f ( x , y ;  a)) + e where e 
is zero mean Gaussian white noise. If the conditional density, PA, is Gaussian 
white noise with mean, s(x ,y;a) ,  then g is guaranteed to exist and is given 
by g( f (a ) )  = (s(a)l f(a)} where (.} denotes expectation. Thus, estimation of g 
is a regression problem. Note that the mapping function, g, is assumed to be 
independent of the the scale factor a. If the mapping is scale dependent, then 
g( f (a) )  may be written g(f(a);  a). 

Let ( f i (a~) ,  si(ae)), i = 1 , . . . ,  N ,  be pairs of image feature vectors and cor- 
responding surface shape estimates generated by the stereo program. In order 
to obtain the least squares estimate of g a criterion function Q is defined by 

N 

1 - o ) )  2 Q(o)  = 

i : l  

where g is parameterized by 0 -- (01 , . . . ,  0m). 
If g is modelled by a linear sum of basis functions, (B1 , . . . ,  Bin), with coeffi- 

m cients (01 , . . . ,  0m). Then ~0 may be written, [7(fi(ae)) = ~ j = l  OjBj(fi(~re))" In 
this case, the regression reduces to an ordinary linear least squares problem. 
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Figure 2 illustrates the relationships between I, r f (a), z, r s(a) and 
g. The feature operators, r and r transform the functions I(x,y) and 
z(x, y) into f(x, y; a) and s(x, y; a) respectively. The function g maps each point 
of f(x,  y; a) to a point in the surface feature space that differs from s(x, y; a) by 
an amount c. 

5 S u r f a c e  E s t i m a t i o n  

In the preceding analysis, g was treated as a random variable with mean s(ac). 
For purposes of surface estimation, s(a~) is identified as a random variable 
with mean g. If s(ar)tf(a~ ) has a normal distribution with mean g(f(a~)) and 
variance p2 then log(pA(s(ar)lf(ar))) = (S(ar) --g(f(ar)))2/(2p 2) --~ where 
a = �89 log(21rp 2) is a constant. Therefore, the maximum likelihood estimate of 
the surface is found by maximizing the criterion function 

D(z) =//A(S(X, y; ar) -- g(f(x, y; ar)))2dxdy 

over all surfaces z : A ~ ~ ' .  
Let Z, g(ar ) ,  S(ar) and ~(ar) be the Fourier transforms of z, g(f(ar)),  S(ar) 

and r respectively. Then, by Parseval's theorem, 

/ / I S (w1 ,  w2; at) - H(wl, w2; ar)12dwldw D(z) 

The minimum integrated squared error is achieved by the function that mini- 
mizes the error at each point of the domain. Since S(ar) = ~(ar)Z, that min- 
imum is achieved by setting, 2 = H(ar)/~(ar). The solution surface, 2, is the 
inverse transform of 2. 

Although 2 is the maximum likelihood estimate in the absence of noise, a 
better estimate in the presence of noise is found by Wiener filtering. The resulting 
optimal estimate is found by setting 

2 -  H(ar)~(a~) 
~2(a~) + K 2 

where K 2 (wl, w2) = (72 (wl, w2)/Z 2 (wl, w2) ) is the variance of the noise divided 
by the expected power spectrum of the surface. Under the assumption of white 
noise, the noise term reduces to a constant. If the surface is assumed to be fractal 
Brownian, the final value of K 2 is given by K 2 = ~2(w~ + w~) 2. 

6 E x p e r i m e n t a l  R e s u l t s  

The algorithm described in section 2 can be thought of as operating in two 
major modes, the model estimation mode and the surface estimation mode. In 
the model estimation mode, the input images are used by the stereo module to 
produce surface shape estimates which serve as examples to be used in estimating 
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the associatiy2 model. In the surface estimation mode, the model is used to 
estimate the shape of a previously unseen surface. The experiments explained in 
this section are designed to illustrate both major operational modes. 

6.1 M o d e l  E s t i m a t i o n  Resul t s  

Figure 3 shows one of four images of an oriented ridge surface with its stereo 
depth map and corresponding level curves. The image is the left image of a stereo 
pair of images taken at a depth of about 10cm with a baseline of about lcm. 
Once the surface estimates have been computed by the stereo program, regions 
from each image and corresponding surface are selected to act as input data for 
the model estimation procedure. 

The original data regions are converted to data points, (f~(ae), s i ( a e ) ) , i  = 
1, . . .  N through the action of the feature operators, r and r For the 
experiments reported here, the image feature operators were defined to be lo- 
cal, second degree polynomial fits and the output features were the polynomial 
coefficients. Figure 4 shows a plot of the surface data projected onto a two- 
dimensional subspace of the image feature space along with two projections of 
the mapping function, 9, which is represented by a low degree polynomial. The 
size of each dot shows its magnitude. The clear trend in the data suggests that 
a low order model should account for a large percentage of the variance. 

6.2 Surface E s t imat ion  Resul t s  

This test is designed to show that the system can recover the shape of a previ- 
ously unseen surface that is very different from the surfaces used in the model 
estimation phase. The shape estimation procedure is conducted using the model 
estimated from the ridge surfaces of the previous section. 

Figures 5 and 6 illustrate the shape recovery process applied to the image 
of a clay face. The first step of the surface recovery procedure is calculation of 
the image feature vector at every image location. The middle image in figure 5 
shows one of six feature arrays produced using the local polynomial fit method 
described above using a scale factor a~. Each feature can be thought of as en- 
coding a particular type of information about the local image structure. Once 
the feature arrays have been computed, the mapping function g is evaluated at 
each point producing a surface map, 8(O ' r )  , shown at the right of figure 5. 

The final step of the surface estimation procedure is deconvolution of the sur- 
face map using the kernel, r to obtain a surface height map, z. The resultant 
depth map, corresponding level curves, and reconstructed image are shown in 
figure 6. Note that the current method does not depend upon stereo during the 
surface estimation procedure and therefore produces a smooth surface. Another 
example is shown in figure 7 which shows a picture of a human subject followed 
by the corresponding depth map, level curves, and shaded depth map. 
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7 Conclusions 

The shape from appearance method is a new method for estimating surface shape 
based on a learned associative model. The model is generated by associating 
examples of local surface shape with corresponding image features. The model 
may be a probability density or an associative map. The associative map is easier 
to use but can only be used in the presence of sufficient contextual information. 

The experiments described in this paper involve the use of a stereo module as 
a source of local shape examples. It has been shown that through a scale change, 
the associative model can be made more accurate than the stereo algorithm. As 
a consequence, it is possible to recover the shape of an unknown surface more 
accurately than is possible with the stereo algorithm. 

In general, the method reported here is more accurate than stereo, motion, or 
focus based methods. Shading based methods are also quite accurate, but they 
are based on strong and often unrealistic assumptions about reflectance, lighting, 
shadowing and other scene characteristics. The method described here is based 
on much weaker assumptions. There is still much theoretical development to be 
done. However, its generality promises to make it useful under a wider range of 
conditions than existing methods. 
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Fig.  3. One of four oriented ridge surface images with stereo depth map and corre- 
sponding level curves. The stereo program extracts a coarse estimate of the surface for 
use as input to the model building program. 

.~ ~ . 
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Fig.  4. Data collected from ridge images and resultant 

I  JJS 
model projected onto a 

two-dimensional subspace of the image feature space. The size of each dot corresponds 
to value of the LOG surface feature. The model is a low order polynomial. 

Fig.  5. Image of clay cherub figure, one of six feature maps, and shaded surface map, 
s(x, y) = g ( f ( x ,  y)). Each feature is one coefficient of second degree polynomial fit to 
the local gray level surface. 
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Fig. 6. Depth map corresponding to cherub image, level curves, and an image produced 
by shading the depth map from (-1,  1, 1)/v~. 

Fig. 7. Image of one author, depth map, level curves, and an image produced by 
shading the depth map from (-1,  1, 1)/v/-3. 


