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Automated Visual Inspection of Railroad Tracks
Esther Resendiz, Member, IEEE, John M. Hart, and Narendra Ahuja, Fellow, IEEE

Abstract—Thousands of miles of railroad track must be in-
spected twice weekly by a human inspector to maintain safety
standards. A computer vision system, consisting of field-acquired
video and subsequent analysis, could improve the efficiency of the
current methods. Such a system is prototyped, and the following
challenges are addressed: the detection, segmentation, and defect
assessment of track components whose appearance vary across
different tracks and the identification and inspection of special
track areas such as track turnouts. An algorithm that utilizes the
periodic manner in which track components repeat in an inspec-
tion video is developed. Spectral estimation and signal-processing
methods are used to provide robust detection of the periodically
occurring track components. Results are demonstrated on field-
acquired images and video.

Index Terms—Railroad track inspection, spectral estimation.

I. INTRODUCTION

COMPUTER vision has recently been applied to sev-
eral railroad applications due to its potential to improve

the efficiency, objectivity, and accuracy when analyzing large
databases of acquired video footage and images. Algorithms
can potentially provide a more objective assessment of track
conditions than human inspectors. However, it is difficult to cre-
ate an algorithm that is robust to numerous unforeseen condi-
tions. Spatial templates and other application-specific detection
methods can be developed to accomplish specific inspection
tasks [1]–[8]. However, there is great value in creating a gen-
eral method to inspect components without prior knowledge
of component appearance. By detecting periodic components
without prior knowledge of spatial appearance, a computer
vision system may one day perform track inspection over
thousands of miles of track with minimal human involvement.

Periodically occurring components are often encountered
in infrastructure inspection. For example, a railroad track is
composed of many individual ties, and a train is composed
of individual railcars. Most repeating components are similar
to each other but not identical due to various manufacturing
differences and environmental conditions. Railroads are vital to
the infrastructure of most countries, but many inspection tasks
are performed manually by a human inspector. Computer vision
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Fig. 1. Track cart.

Fig. 2. (a) Lateral view of the track. (b) Over-the-rail view of the track.

algorithms are useful in several railroad tasks, including track
inspection [1]–[8], ballast inspection [9], rail profile measure-
ment [10], safety appliance inspection [11], and monitoring
intermodal transport [12]–[14]. Other problems involving in-
frastructure inspection could also benefit from computer vision.

A. Track Inspection

The Federal Railroad Administration (FRA) requires track
to be inspected for physical defects at specified time intervals,
which may be as often as twice per week [3], [4]. Computer
vision could potentially supplement the current manual in-
spection process due to its ability to objectively process large
amounts of video and image data. Recently, a track cart has
been developed to acquire track inspection video. This track
cart, shown in Fig. 1, captures video of a railroad track with off-
the-shelf cameras, and records these data to a laptop. Railroad
track inspection algorithms are developed to inspect the image
and video data for defective track components.

Fig. 2 shows the two camera viewpoints used for track
inspection. Fig. 2(a) shows the lateral viewpoint, where the
side of the track is visible. Fig. 2(b) shows the over-the-rail
viewpoint, where both sides of the track are visible.

B. Components

Track components are shown in Fig. 3. Fig. 3(a) delineates
the largest components. The rail is in the top half of the image.
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Fig. 3. (a) Localization of rail, ballast, tie, and tie plate. (b) Localization of
spikes, tie plate holes, and anchor.

Fig. 4. Turnout components. (a) Switch rod and its bolts. (b) Switch heel and
joint bar bolts.

The rail is the part of the track along which the train wheels
move. The wooden tie is delineated with a white trapezoid, and
the ties are oriented perpendicularly to the rail. The steel tie
plate is delineated with a gray trapezoid. Tie plates are placed
between the tie and the rail where they intersect and hold the
rail to the tie. The ballast, which is labeled on the left and right
sides of the tie, is composed of small rocks.

The following objects are localized in Fig. 3(b): one spike
(shown here in an ellipse), two tie plate holes (shown in the
squares), and two anchors (shown in the rectangles). Spikes
are hammered into the tie plate to keep the rail in place and
at the proper gauge. Rail anchors secure the rail from moving
perpendicular to the tie. The components shown in Fig. 3 are
commonly inspected for compliance with FRA regulations.
Spatial templates were used to detect these components in
[1]–[4], and edge-based methods were used to detect track
components in [5]–[8].

1) Turnouts: At certain locations in a track, there is con-
vergence as tracks join each other and divergence as one track
forks into two. These areas of the track are known as turnouts
or switch areas, and defects in the switch area will frequently
result in an accident [1]. Fig. 4 shows some of the components
in turnout inspection. These are the switch rod and its bolts [see
Fig. 4(a)], and the switch heel and joint bar bolts [see Fig. 4(b)].

C. Related Work in Spectral Estimation

This paper combines Gabor filters with spectral estimation
to detect periodically occurring objects. The Gabor filters
transform an image into directionally filtered versions [15],
and Gabor-filtered images can be used to discriminate various
textures, such as those found in outdoor scene classification
[16]. In this paper, the filtered images are combined into 1-D
signals, and spectral estimation is used. Specifically, the mul-
tiple signal classification (MUSIC) algorithm is used for its

Fig. 5. Algorithm overview.

ability to detect multiple periodicities in the presence of noise.
Similar spectral estimation techniques have recently been ap-
plied to vehicular congestion classification [17] by analyzing
acoustic signals and to symmetry detection in images [18] by
analyzing angular correlation. In both [17] and [18], spectral
estimation algorithms were effective at detecting signals in
noisy data (such as busy traffic scenes and various images).

This paper is organized as follows. Section II presents an
overview for all three algorithms for automated inspection of
railroad components. MUSIC is also introduced. Section III de-
scribes the first of the algorithms, i.e., component detection for
railroad track. In Section IV, turnout area detection is demon-
strated. Section V describes tie detection in inspection video
using custom filters based on Gabor textures. In Section VI,
experiments are conducted on a data set collected from the track
cart for all three algorithms. Section VII concludes and provides
future directions for this paper.

II. OVERVIEW

This paper presents three algorithms: one for compo-
nent detection in railroad track (see Section III), one for
turnout detection (see Section IV), and one for tie detection
(see Section V). These algorithms all follow the three steps
outlined in Fig. 5.

The specific image-to-signal conversion and the final period-
icity detection or classification varies for each algorithm. I(x)
is the input image or video to the image-to-signal conversion,
y(m) is the 1-D signal that will be used for MUSIC, and
J(ω) is the power spectrum of periodicities detected, where
the peaks correspond to strong evidence of periodicity at that
frequency ω (where ω = 2π/T for a period T ). In the final step
of periodicity detection or classification, the algorithms will do
one or more of the following: Detect that periodicity occurs
based on the strength of J(ω) (as in Sections III and IV), or
use the periodicity estimate T to spatially localize components
(as in Sections III and V).

A. MUSIC

The MUSIC algorithm is used to detect periodicity in a 1-D
signal. In MUSIC, a received signal y is

y = As+ v (1)

where A is the signal subspace, s is the vector of signal
amplitudes with respect to that subspace, and v is a noise vector.
First, the covariance matrix Ry is computed

Ry = E{yyH} = YYH = ARsA
H + σ2I (2)
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Fig. 6. Rail track inspection panorama.

where Y is a rectangular Toeplitz matrix such that YYH is a
biased estimate of the autocorrelation matrix for signal y [20].
Matrix Y is defined as

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(h+ 1) · · · y(1)
...

. . .
...

y(M − h) · · · y(h+ 1)
...

. . .
...

y(M) · · · y(M − h)
y∗(1) · · · y∗(h+ 1)

...
. . .

...
y∗(h+ 1) · · · y∗(M − h)

...
. . .

...
y∗(M − h) · · · y∗(M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

where M is the length of the signal y, y∗(M) is the complex
conjugate of y(M), and h is an index 1 ≤ h ≤ M .

B. Gabor-Transformed Image

The panoramic image is transformed into several Gabor
representations, producing different versions of the image, each
transformed by one particular Gabor filter. This is done in a
blockwise manner [21] and then analyzed in a rowwise manner.
Each Gabor dimension d is used to create a signal for each
row r so that yd = Gd(Ir(x)), where Ir(x) is the image at
row r. Each signal yd can produce an estimate of periodicity
using the MUSIC algorithm.

To produce a cumulative estimate of periodicity for a par-
ticular row, rather than combining all estimates for each signal
yd, all signals yd are combined, and MUSIC is applied to the
cumulative sum. To accomplish this, matrices from each of the
dimensions Yd are accumulated as follows:

Y =
∑
d

Yd. (4)

The number of periodically repeating components in each
row is estimated initially as L, and Ry is decomposed into D
eigenvectors, which are denoted as ej , where j ∈ {1, . . . , D}.
The eigenvectors ej , where j ∈ {(L+ 1), . . . , D}, span the
noise subspace. This is used to find the maximum values of the
following function:

J(ω) = 20 log10

(
1∑D

j=L+1 |aH(ω)ej |2

)
. (5)

By using a signal space aH(ω) of Fourier transform basis
functions, J(ω) can be computed as a sum of the fast Fourier
transform (FFT) of all noise eigenvectors ej , where j ∈ {(L+
1), . . . , D}. Intuitively, the eigenvectors in the noise subspace
are orthogonal to the eigenvectors in the signal subspace. The
eigenvectors in the signal subspace will contain a signal at the
periodicity that is dominant; therefore, this same periodicity
will be absent from the noise subspace. Therefore, the FFT of
the noise eigenvectors for that frequency ω will have a close-to-
zero value, producing a high value for J(ω). From this, up to L
periodicities that are present along Ir(x) can be detected (since
the noise subspace will be orthogonal to L periodicities), and
these correspond to L peaks in J(ω).

III. DETECTING AND SEGMENTING PERIODICALLY

OCCURRING COMPONENTS

In railroad inspection, periodically occurring components are
often encountered. An example track panorama is shown in
Fig. 6, where each wooden tie occurs at four approximately
equidistant locations. MUSIC detects both dominant and less-
dominant periodicities, which is useful since many large com-
ponents are themselves made of smaller periodically repeating
components.

For simplicity, the algorithm is applied only to images with
repeating components in the horizontal direction, but it could
also be applied along other orientations. Each image I(x) is
decomposed in a blockwise manner. Each blockwise row is
referred to as r, and there are R such rows.

This algorithm, which is shown in Fig. 7, builds off of the
basic structure in Fig. 5. An additional fourth step of component
localization has been added once a strong periodicity is detected
in each of the panorama rows. The entire algorithm is shown in
Fig. 8, where the part that stems in Fig. 5 is located on the left
and the part that is unique to the component localization of this
algorithm is on the right.

In the initial step (see top of Fig. 8), the image row Ir(x)
is decomposed into M blocks [b0(x)b1(x), . . . , bM (x)]. Gabor
features are extracted for each block Gd(bm(x)), where d is the
dimension of the Gabor feature and G() is the transform. The
Gabor features from [21] were used for their discriminative
abilities. The application of the dth dimension of the Gabor
transform to all blocks in the image row Ir(x) is represented
as Gd(Ir(x)).

The output of the MUSIC algorithm provides an estimate for
dominant periodicity of each image row Tr but no component
localization. The phase offset of the repeating component υr
is defined with respect to the leftmost coordinate, which is at
x = 0 (the leftmost position of Ir(x)).
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Fig. 7. Component localization algorithm as it relates to the main algorithm in Fig. 5.

Fig. 8. Component localization algorithm.

The value υr is computed for each row, and this is accom-
plished by identifying which of the m blocks in a particular
row Ir(x) repeats with periodicity Tr. Each m block has a
d-dimensional Gabor response defined as �αm = ‖G(bm(x))‖.
These Gabor responses are used to create a weighted version of
(4), where each matrix Yd is weighted with the Gabor response
of that dimension d. This is shown in (6) for one particular
candidate block m. Separate MUSIC equations are solved for
each m, and the SNR of each of these M equations’ resulting
Tr is examined

Ym =
∑
d

αm,dYd. (6)

This is demonstrated in Fig. 8, and the resulting SNR for the
dominant peak is plotted in Fig. 8. This produces a sinusoidal
SNR, with respect to m, with a period of Tr. A high SNR for
block m indicates that there is a repeating object in that block.
The SNR signal, which is a function of m, is thresholded to
produce a binary mask V (on the right side of Fig. 8).

The computed Tr is then used to create candidate binary
masks Wυ (on the left side of Fig. 8). Each of the Tr binary
candidate masks consist of repeating blocks with a duty cycle
of Tr/2 and a phase offset of υ = {1, . . . , Tr}. The candidate
mask that has the maximum overlap with V is determined, and
this determines the phase offset υr. After υr is determined, all
components that occur at every Tr pixels, beginning at location
υr, are segmented. A duty cycle of 50% is assumed; therefore,
each component is Tr/2 pixels wide.

A. Nondominant Periodicity Detection

The MUSIC algorithm detects multiple periodicities. In this
application, the dominant frequency will produce two peaks in
J(ω) since input y is real. The methodology in Section II can
be performed on nondominant frequencies by setting L > 2 and
detecting a third peak in J(ω). After isolating the component
with primary periodicity (with L = 2), the algorithm is rerun to
detect the less-dominant periodicities. Section III-B contains an
example with multiple periodicities.
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Fig. 9. Periodicity detection of the track panorama in Fig. 6. Each row is labeled using the detected period Tr and phase shift υr .

Fig. 10. Detected primary components. (a) Object 8A. (b) Object 8A. (c) Object 7A. (d) Object 10B.

Fig. 11. Ir(x) with strongest secondary periodicities (r = 6, 7, and 10).

B. Component Detection Example

Components are detected in panoramic images, which are
formed from video data that were acquired from the hand-
pushed cart in Section I. Panoramic images were created by
stitching the video frames together using the computed dis-
placement. The resulting panoramas were Ny = 360 pixels in
height and between Nx = 1000 and Nx = 2000 pixels wide.
The image was decomposed into overlapping blocks of size
Nb = 64 in each dimension, and these blocks were then Gabor
transformed. The blocks overlap with their neighboring blocks
by (N/2) pixels; therefore, for every row, M = Nx/(Nb/2).

Periodic components are detected in the panorama in Fig. 6.
In this panorama, certain rows contain both primary and sec-
ondary periodicities. The primary periodicities are noted as Tr.
Tr and υr are computed according to the algorithm in Fig. 8.
The detected components’ Tr and υr are shown in Fig. 9.

Detected components are shown in Fig. 10. The tie plates
are located and labeled Object 8A in Fig. 10(a). Note that, in
the original image (see Fig. 6), the anchors are missing from
the rightmost tie. The algorithm worked well despite this, and
in components such as 6B and 7A [see Fig. 10(b) and (c)], it
is evident that the missing anchor causes the components to
not look identical. Object 10B is shown in Fig. 10(d). Ballast
texture is successfully separated from tie texture, despite the
presence of unknown granular material on the tie.

The panorama in Fig. 6 is then processed to detect secondary
periodicities. The MUSIC algorithm is used, as described in
Section III-A. The results are shown in Fig. 11, where Rows 6,
7, and 10 all contain strong secondary periodicities. Note that
Row 7, which contained a lower frequency tie plate compo-
nent in Fig. 10(c), now produces a high-frequency component
corresponding to the anchor in Fig. 12(a). A lower frequency
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Fig. 12. Detected secondary components. (a) Object 7 B. (b) Object 10 B.

Fig. 13. Turnout detection as it relates to the main algorithm in Fig. 5.

is detected in Fig. 12(b), which contains both the tie and the
neighboring ballast as one unit.

The component localization capabilities of the algorithm has
been shown here. There is no ground truth for a correctly
localized component since the algorithm may detect a part of
an object that is not a complete object [e.g., the side of the tie
plate in Fig. 12(a)]. For this reason, only Tr was used in the
experiments conducted on 71 panoramas, which is detailed in
Section VI-A.

IV. TURNOUT INSPECTION

Turnout detection is done according to Fig. 13, which is a
modified version of Fig. 5. The input signal is the rail web or
the middle part of the rail when viewed from a lateral viewpoint.
y(m) is the blockwise Gabor transform of the rail web (shown
in Fig. 13 as a 1-D signal). The output is a threshold detector
for J(ω).

To inspect a turnout, one must first verify that certain frames
of an inspection video contain a turnout. A signal processing-
based method is introduced for detecting periodic components
indicative of turnouts, such as frog bolts or joint bar bolts
[see Fig. 14(a)], and estimating that period T . The lateral
viewpoint inspection video is converted along the rail web into
a panoramic mosaic [see Fig. 14(a)]. The periodicity of the
components in the panoramic mosaic is then estimated and
the components subsequently localized. A blockwise Gabor
transform is again utilized, where the web area that is analyzed
in Fig. 14(b) is Nb = 64 pixels in height.

The image is transformed in a blockwise manner into the
Gabor frequency domain [see Fig. 14(c)]. Each block’s height is
identical to the height of the rail web area shown in Fig. 14(a),
and each block’s response is computed using an overlapping

window with respect to each block’s right neighbor. This
window overlaps by half of the block’s width. This block-
wise Gabor response is then processed as a 1-D signal [see
Fig. 15(a)]. The MUSIC algorithm is subsequently applied to
find periodic components [see Fig. 15(b)].

The MUSIC algorithm outputs a frequency analysis, in which
the input signal’s frequency response J(ω) is computed, as
shown in Fig. 15(b). The output of Fig. 15(b) shows the power
at each radial frequency ω. Each radial frequency relates to
period T by the formula ω = 2π/T . Hence, the peak at ω =
0.14π represents a component that repeats every T = 14.3
blocks.

Further experiments are run on a set of 43 panoramas, and
details are given in Section VI-B.

A. Turnout Component Inspection

Once the turnout area has been isolated in the inspection
video, the components from Section I-B1 are identified. The
heel of the switch has a strong gradient that is perpendicular
to the rail and is easily detected with spatial templates. The
switch point is found using spatial templates on frames that are
obtained from both the over-the-rail and lateral viewpoints. The
frames are aligned by synchronizing the videos and maintaining
an accurate tie count, which is possible using the algorithm in
Section V.

V. TIE DETECTION

Tie detection is done according to Fig. 16, which is a modi-
fied version of Fig. 5. The input signal is the video (either lateral
or over-the-rail). y(m) is a 1-D signal formed after filtering
each Gabor-transformed video frame with a binary tie detection
mask. The ties are detected as the peaks of the 1-D signal, and
for this algorithm, the detected T is just used to constrain the
search window for peak amplitudes.

The 1-D signal y(m) is obtained by performing texture clas-
sification on individual video frames, followed by spatial fil-
tering with a user-created binary filter. For example, Fig. 17(a)
contains a tie. A binary mask is created by dividing the image
into blocks and classifying each block as ballast and nonballast,
as shown in Fig. 17(b). To do this, each image block is Gabor
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Fig. 14. Turnout bolts used in recognition. (a) Original panoramic image. (b) Rail web area. (c) Blockwise Gabor image.

Fig. 15. Turnout detection. (a) G(Ir(x)). (b) J(ω) of G(Ir(x)).

Fig. 16. Tie detection as it relates to the main algorithm in Fig. 5.

Fig. 17. (a) Original lateral image. (b) Binary texture classification mask for
lateral image, where black is “nonballast” and white is “ballast.” (c) Original
over-the-rail image. (d) Binary texture classification mask for over-the-rail
image.

transformed using the same Gabor filters, as in Section II-B, and
the resulting d-dimensional signal for each block is used to clas-
sify the block using a d-dimensional support vector machine
(SVM) [23]. Two manually labeled images from a different

Fig. 18. (a) Lower half of the binary texture classification mask for the lateral
viewpoint. (b) Template that the lateral mask is compared against. (c) Lower
half of the binary texture classification mask for the over-the-rail viewpoint.
(d) Template that the over-the-rail mask is compared against.

Fig. 19. Response of binary classification mask to template as a function of
(a) frame number and (b) pixel-based distance.

railroad track were used to train the SVM. The over-the-rail
viewpoint in Fig. 17(c) is similarly decomposed into blocks and
classified, and the resulting mask is shown in Fig. 17(d).

Only the lower half of the lateral and over-the-rail masks
are examined, as indicated in Fig. 18(a) and (c). These are
subtracted with the tie detection masks for lateral and over-the-
rail [see Fig. 18(b) and (d), respectively]. From this, the 1-D
signal is formed.

This results in a signal that is sinusoidal with respect to time
when the inspection video is acquired at a constant speed, as
shown in Fig. 19(a). To avoid the requirement of constant speed,
the signal can also be recorded as a function of interframe
displacement [see Fig. 19(b)].

Video frames that contain a tie are located at the maximum
amplitude of the signal in Fig. 19(a). If velocity is nonconstant,
the video frames that contain a tie are computed by determining
which frame corresponds to the pixel-based distance at the
maximum amplitude in Fig. 19(b).
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Fig. 20. Pixel error in the periodicity estimation of ties in panoramas.

TABLE I
TURNOUTS

The experimental results are shown in Section VI-C.

VI. EXPERIMENTS

A. Component Detection on Panoramas

Further experiments were conducted on 71 panoramas of the
track. The goal of this experiment was to detect the dominant
periodicity, in pixels, in the lower half of the panorama. The
estimate for T was obtained, and then, error was computed
from the ground-truth estimate of the tie periodicity within that
panorama. The periodicity prediction error (in pixels) for all
panoramas is shown in Fig. 20. Note that 87% of the panoramas
had their tie periodicity correctly predicted within 80 pixels.

The prediction errors of 80 pixels or more are attributed to
one of the following: occlusion, oversaturation, and anomalous
lighting. Mild occlusion is acceptable, as was shown in the
previous experiments on the panorama in Fig. 6. Occlusion
that completely covers two or more of the ties, however, is
detrimental. Oversaturation that causes the ballast to appear
white and without edges is also detrimental as the ballast will
lose its characteristic textures, and the Gabor filtering will be
ineffective. Anomalous lighting is also a problem since a bright
concentrated light from either a natural or unnatural source can
alter the texture properties.

B. Turnout Detection

Our goal is to identify turnout images from a collection
of panoramic images of the lateral viewpoint. We selected 43
panoramas, 26 of which contained turnout components and 17
of which did not contain turnout components (see Table I).
A true-positive (tp) is a turnout that is indeed a turnout, a
true-negative (tn) is a nonturnout that is indeed a nonturnout,
a false-positive (fp) is a detected turnout in a nonturnout
panorama, and a false-negative (fn) is a turnout that was not
detected. Precision is tp/tp+ fp, and recall is tp/tp+ fn [22].

Precision is lower than recall, thus indicating a slight bias
toward overidentifying panoramas as turnout panoramas. The
periodic detection used for turnout detection occurs along the

TABLE II
TIE DETECTION

rail, and the assumption is that nonturnout panoramas have a
smooth rail area, whereas turnout panoramas have some com-
ponent repeating. Since there are a variety of bolt configurations
on the turnout area, the detection of a turnout is not determined
by the exact spacing of the repeating object but, rather, by the
PSNR of a detected object using the MUSIC algorithm. Hence,
several approximately periodic rail irregularities, particularly
in the form of dirt, shadows, and reflections, can cause the
algorithm to falsely detect a turnout.

C. Tie Detection

Table II evaluates the method presented here for the lateral
and over-the-rail viewpoints. We defined a true-positive (tp) as
detected ties that are indeed ties, true-negative (tn) as ballast
between ties that was correctly identified as being not a tie (for
our purposes, we count only the area to the right of the tie),
false-positive (fp) as a detected tie where there was none, and
a false-negative (fn) as a tie that was not detected.

Precision is slightly lower than recall for both lateral and
over-the-rail viewpoints; hence, when an error occurs, it is more
likely due to false prediction of a tie rather than not identifying
a tie. Because the algorithm incorporates global information by
treating the detection as a signal [see Fig. 21(a) and (b)], it is
robust to sources of noise on individual ties, including noise
from occlusion, worn parts, and lighting inconsistencies.

VII. CONCLUSION

Computer vision can be used to create railroad track inspec-
tion algorithms that are objective and provide a reliable as-
sessment of track conditions. Video containing track inspection
data will inherently contain periodically recurring components.
MUSIC is a valuable signal processing technique that extracts
periodic signals from a 1-D signal, and its robustness to noise
allows it to effectively estimate periodicity in real-world inspec-
tion video and images.
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Fig. 21. Tie detection within turnout area for (a) lateral viewpoint and
(b) over-the-rail viewpoint.

Future railroad track inspection technology should incor-
porate automatic detection and segmentation of periodically
occurring objects to achieve a more robust system. This could
lead to an autonomous system that could inspect thousands
of miles of track without human supervision by automatically
adjusting spatial detection filters as the track cart travels on
previously uninspected track.
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