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Abstract

We propose an activity recognition algorithm that
utilizes a uni�ed spatial-frequency model of motion to
recognize large-scale differences in action using global
statistics, and subsequently distinguishes between mo-
tions with similar global statistics by spatially localiz-
ing the moving objects. We model the Fourier trans-
forms of translating rigid objects in a video, since
the Fourier domain inherently groups regions of the
video with similar motion in high energy concentrations
within its domain to make global motion detectable.
Frequency-domain statistics can be used to isolate the
frames that both adhere to our model and contain sim-
ilar global motion, thus we can separate activities into
broader classes based on their global motion. A least-
squares solution is then solved to isolate the spatially
discriminative object con�gurations that produce simi-
lar global motion statistics. This model provides a uni-
�ed framework to form concise globally-optimal spatial
and motion descriptors necessary for discriminating ac-
tivities. Experimental results are demonstrated on a hu-
man activity dataset.

1. Introduction

Activity recognition is vital to many applications in-
cluding surveillance and video indexing. We propose a
video model that uses a parameterized approach where
one assumes that a video contains moving objects, and
then attempts to extract both the motion and appearance
of these objects. This is useful to a variety of applica-
tions where the domain knowledge is limited and one
wishes to create a concise set of intuitive features that
describe how motions vary and how their spatial con�g-
urations vary. We create a frequency-domain model that
allows us to discover global motion differences between
extremely different activity classes (which we refer to
as meta-classes), and to localize areas where discrimi-

native spatial con�gurations occur and solve for these
local features. Human activity meta-classes could be:
humans walking versus humans staying in place while
performing some action. In surveillance, global pre-
processing methods that isolate video frames containing
locally interesting activity are useful.

The main contributions of this paper are: (1) a
uni�ed spatial-frequency domain model for analyzing
moving objects in a video. (2) Using the same model,
we demonstrate global discrimination of meta-classes
and spatial isolation of regions that produce similar
global motion but have differing local properties. Fi-
nally, (3) we create a generative description for activ-
ities where spatial regions which discriminate motion
classes are isolated. This paper presents background,
the model, and experiments to verify this approach.

2. Background

Activity recognition is a well-studied problem.
Most work either derives global features from spatio-
temporal gradients [8], or analyzes spatio-temporal cu-
bic interest points detected using space-time gradients
[6, 5]. Additionally, domain-speci�c algorithms have
been developed that incorporate prior knowledge of the
activity being performed [4]. The work of [8] provides
global recognition of motion at a lower recognition rate
than the state of the art using statistical operations of
histograms, but are non-parametric and amenable to a
variety of motion scenarios. Works such as [5] and
[6] use spatio-temporal cubes and attempt to �nd cubes
which are representative of a particular activity.

Although all methods achieve high levels of success
on activity recognition databases, none provide a con-
gruent method that, using one modeling framework, in-
corporates both global motion classi�cation and spa-
tial localization of moving components. Also, no other
method can examine a video in its entirety and deter-
mine which frames are more immune to noise. Our
work has similar advantages to many of the previous
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methods. We have a global scope of video motion so our
features and templates are chosen with global knowl-
edge, since energy is concentrated in the Fourier do-
main along the trajectory of dominant moving objects.

3. Frequency-Domain Signal Extraction

Our model for moving objects in video uses the fre-
quency domain, since it is widely known to have a
global scope. Recent work has shown that spatial lo-
calization can be computed if motion adheres to this
model [2]. We obtain the spatial Fourier transform of
each video frame at time t, It(ω̄), and model it as

It(ω̄) =
L∑

l=1

Sl(ω̄)ejω̄tv̄l(t) + Vnoise(ω̄)− Vback(ω̄)

(1)
where there are L objects, each with spatial Fourier
transform Sl(ω̄), and each with velocity v̄l(t) (with re-
spect to its position at t = 0). Vback(ω̄) is occluded
background and Vnoise(ω̄) is noise. Each frame is
N × N pixels. This was described in [2]. Equation
1 models rigid objects, since Sl(ω̄) is time invariant.

Based on a technique called mu-propagation [3],
setting ω̄ = (µ1, µ2), a signal zµ1,µ2(t) is introduced
such that zµ1,µ2(t) = It(µ1, µ2), so that

zµ1,µ2(t) =
L∑

l=1

Sl(µ1, µ2)ej(µ1tvl,x(t)+µ2tvl,y(t))

+ Vnoise(µ1, µ2)− Vback(µ1, µ2) (2)

where the x and y velocity of each object l is repre-
sented as vl,x(t) and vl,y(t) respectively. Since µ1 and
µ2 can also be expressed as µ1 = 2πm1

N and µ2 =
2πm2

N , where (m1,m2) refers to a spatial frequency bin
if It(ω̄) is implemented discretely.

We implement an M -length discrete short-time
Fourier transform (STFT) Zµ1,µ2(p, t) for the signal
zµ1,µ2(t), and now examine each STFT frequency bin
−M

2 ≤ p ≤ M
2 at time t. The frequency bin p is pro-

duced by the demodulator ωp = 2πp
M , such that

|Zµ1,µ2(p, t)| = |
H−1∑

h=0

zµ1,µ2(t + h)w(h)e−jωph| (3)

where w(h) is a windowing function and H is the length
of that window [7]. The signal Zµ1,µ2(p, t) is the de-
modulation of zµ1,µ2(t) by the frequency ωp. There-
fore, if v̄l(t) = V̄l (constant-valued), then due to ob-
ject l, |Zµ̄(ωp, t)| ∝ |Sl(µ̄)| in the frequency bin p that

matches the modulating velocity V̄l. This occurs when
µ̄V̄l = ωp, which will create a peak value at frequency
bin p = m̄M

N V̄l. Thus, if an object l0 travels with ~Vl

during the time t+1 to t+h, then Equation 3 becomes

|Zµ̄(p, t)| = |
H−1∑

h=0

Sl0(~µ)w(h)

+
H−1∑

h=0

(
L∑

l=1

Sl(~µ)
t+h∏

k=t+1

ej(~µ~vl(k))

)
w(h)e−jωph|

≈ |Sl0(~µ)
H−1∑

h=0

w(h)| (4)

where the second term in Equation 4 is negligible if
there are no other objects with velocity ~Vl. It becomes
evident that in real world applications, noise is intro-
duced from other objects with velocities close to ~Vl,
from a time-variant Sl0(µ̄), and from the noise terms
in Equation 1. Figure 1 shows the STFT for the spatial
bin (m1,m2) = (0, 10) over time for the `galloping'
sequence of the Weizmann database [1], resized with
N = 100. Note that the periodicity in the motion, due
to the vertical oscillation of the person while galloping.
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Figure 1. STFT of z(0,0.628)(t).

To use the STFT to both perform classi�cation
and identify consecutive frames that adhere to our
model from Equation 1, we use statistics that concisely
summarize the shape and the constancy of the STFT.

Spectral Centroid: The spectral centroid is a well-
known function that measures the center of mass of the
frequency bins as a point in time.

C(t) =
M∑

p=1

p|Zµ̄(p, t)|∑M
p=1 |Zµ̄(p, t)|

(5)



Entropy: We compute the entropy across the frequency
bins at each time t and create the signal

H(t) = −
M∑

p=1

|Zµ̄(p, t)|∑M
p=1 |Zµ̄(p, t)|

log2(
|Zµ̄(p, t)|∑M

p=1 |Zµ̄(p, t)|
)

(6)
We then detect consecutive frames with d

dtH(t) = 0.
A rigid object undergoing translational motion results
in a constant entropy as an object with constant en-
ergy travels on a trajectory, as shown for the majority
of frames in Figure 1. Alternately, one can look for
Zµ̄(p, t) to be independent of time to detect consecutive
frames with a constant velocity. With entropy, �nding
frames with | d

dtH(t)| À 0 is indicative of an event be-
yond the scope of our model (e.g. sudden appearance or
disappearance of object) because a large change in en-
tropy is indicative of a discontinuity in the phase mod-
ulation from Equation 1.

3.1 Meta-classes

The mean value as well as the amplitude of the sig-
nals C(t) and H(t) are used as features to differentiate
global motions. One can also use periodicity, as de-
scribed in [3]. We combine classes into meta-classes
so that we achieve minimal error in a linear support vec-
tor machine (SVM) which uses these statistical features.
This can be replaced with a domain-speci�c scheme.

4. Spatial-Domain Template Extraction

Once we isolate frames that adhere to our model and
determine meta-class membership, the spatial domain
regions are solved. Each object's displacement ~bl can
be determined using only the Fourier transform of the
initial video frame I(ω̄) and the Fourier transform of a
subsequent frame I ′(ω̄) [2]

I ′(ω̄)
I(ω̄)

=
∑L

l=1 Sl(ω̄)e−j2πω̄T ~bl

∑L
l=1 Sl(ω̄)

=
L∑

l=1

(
Sl(ω̄)∑L
l=1 Sl(ω̄)

)
e−j2πω̄T ~bl (7)

The values ~bl are then determined by peak detection
after an inverse Fourier transform. The frequency do-
main segmentation for each object, Sl(ω̄), is obtained
using a least-squares (LS) formulation. We construct:

Z =




1 1 . . . 1
1 e−jωT~b1 . . . e−jωT~bM

... . . . ...
...

1 e−j(N−1)ωT~b1 . . . e−j(N−1)ωT~bM




(8)
and the vector Ī = [I1(ω̄) . . . IT (ω̄)]. We solve for
the frequency-based motion segmentation represented
by S̄ = [S1(ω̄) . . . SL(ω̄)] using the LS formulation

S̄ = Z†Ī (9)
for every frequency ω̄. Tikhonov regularization is used
to constrain the energy of S̄ as shown in [2].

From the L frequency-based segmentations, we ob-
tain the N × N spatial segmentation from the inverse
Fourier transform of each Sl(ω̄). From each spatial so-
lution, we determine the boundaries of our object from
the areas of the image with the strongest gradient. To
register the spatial solution with the original image, one
should look for the strongest matching gradients be-
tween I(ω̄) and the LS solution.

5. Experimental Results

We demonstrate the ability of our algorithm to dis-
criminate activity and form a generative description for
activity using the Weizmann database. This database
contains ten actions, each performed by nine differ-
ent subjects. This database contains only one object
that was necessary for activity discrimination. The sig-
nal z(0,0.628)(t) was created according to Equation 2,
and statistics were created from it. C(t) corresponds
to vertical motion (since m1 is set to DC). We found
that the measures |median(C(t))| and (max(C(t)) −
min(C(t))) make the �stationary motions� separable
from the �moving motions� of this dataset (Figure 2).
We de�ne �moving motions� as motions where a per-
son traverses the entire screen, while in �stationary mo-
tions� the person is not traveling.

Next we discriminate the motions within each meta-
class. Figure 3 shows the analysis of two subjects
performing a `galloping' motion as they move from
right to left. We locate the maximum upward motion
(maxC(t)) as in Figures 3(a-b), and then �nd the spa-
tial localization. This produced the results of Figure 3
for the two subjects. We similarly analyze the max-
imum downward motion (minC(t)). Due to human
kinematics, the poses in Figure 3(c-d) are similar in ap-
pearance. The poses obtained during training are stored
as templates, and during testing the correlation is mea-
sured between the test pose and the templates. We ran-
domly separate the dataset into six training and three
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Figure 2. Meta-class classi�cation.

testing sequences. We average the error rates of 25 ex-
perimental runs, each with a different random permuta-
tion of the dataset.
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Figure 3. Galloping results for two
subjects(a)-(b): C(t), (c)-(d):S0(t), (e)-(f):
Spatial location with arrow indicating ~v0(t)

This achieved an average recognition of above 80%
on the database. Though this is below the state of the
art in [6], the work here has several advantages. First,
it forms generative model which describe how spatial

structures differ when global motion statistics are sim-
ilar. This work can be extended to more complex ac-
tivities in the future. Second, the global and local in-
formation that it provides are contained within the same
model so that the local information is found from glob-
ally located frames of interest. Third, it allows us to lo-
cate frames globally by summarizing all of the video's
content using our statistics. Spatial templates are kept
to a minimum by only being formed at both the tempo-
rally and spatially discriminative areas.

6. Conclusion

We have provided a uni�ed model for activity recog-
nition that utilizes the frequency domain's ability to
concentrate the energy of a moving object along the ve-
locity trajectory in the Fourier domain. This allows both
a high-level categorization of motion meta-classes and
a subsequent isolation of frames that discriminate the
lower sub-classes. The supporting spatial regions are
then identi�ed through a least-squares solution.

For future work, we will extend our experiments to
support multiple moving objects in a video. We will
also develop a region-matching scheme for spatial sim-
ilarity and create a similarity measure when multiple
objects are present. Also, we will spatially localize the
motion not just on the maximum values of C(t), but
on other consecutive frame where the shape of C(t) is
correlated across multiple videos within a class.
Acknowledgements This work was supported by the
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