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This paper describes some geometric processes giving rise to patterns that may be 
useful for image modelling. Some properties of these processes are described. Several 
statistics are suggested for modelling purposes. Examples of t,ho patterns that can be 
generated in this way are provided. 

1. INTRODUCTION 

This paper deals with a new class of image models called mosaic models that 
view an image as a random pattern and model it by an appropriate planar 
process. There are several different kinds of image models in use. Mandelbrot, 
[l] models irregular and fragmentary natural patterns by Brownian surfaces 
(Fig. 1). Wong [2], H assner [3], and others model images by two-dimensional 
random fields. Matheron [4] and a number of other French mathematicians de- 
scribe random spatial patterns in terms of regionalized random variables. 
McCormick and Jayaramamurthy [5] and others use time series analysis to 
model the row-scan of the image. 

In this paper we provide an overview of a variety of mosaic models. Subsequent’ 
papers will discuss their specific properties and their applications to images. 

We describe a number of models for spatial point patterns in Section 2. The 
‘<most random” of these, the Poisson point process, will be used in the construc- 
tion of most of the succeeding patterns. 

In Section 3, we will model piecewise contiguous patterns by random mosaics. 
The use of mosaics to depict patterns is ancient. The Chaldeans were skilled 
mosaicists by 2500 BCE. The Greeks further developed the art and were thought 
to have used pattern books for standard motifs. The pieces of a mosaic were 

* The authors wish to thank Azriel Rosenfeld and Durga Panda for many helpful discussions. 
The support of the U.S. Air Force Office of Scientific Research under Grant AFOSR-77-3271 is 
gratefully acknowledged. 

95 

0146-664X/79/060095-20$02.00/0 
Copyright Ol979by Academic Press,Inc. 

All rights of reproduction in any form reserved. 



96 SCHACHTER AND AHUJA 

FIG. 1. Brownian surface text,uro [l]. 

known to the Romans as tesserae or tessellae. A mosaic having a simple geometric 
design was known as opus tesselatum-giving rise to the current term “tessel- 
lation.” One of the mosaic models, the Poisson line model, has interesting 
Markovian properties. Another, the occupancy model, mimics natural cell growth 
processes. 

We will discuss bombing models in Section 4. The bombs are geometric figures 
that, are dropped onto a plane. These figures in union are the foreground of a 
pattern, with the uncovered portion of the plane forming the background. Many 
natural two-color patterns are formed by bombing processes or at least can be 
modeled by them; e.g., bubble holes on the surface of cement, leaves on the 
ground, pebbles on a beach, small stones on the surface of asphalt, etc. 

Some statistical properties of our models will be not,ed in Section 5. Finally, in 
Section 6, we will suggest projects for future research. We also show computer- 
generated examples of patterns produced by all the primary models covered in 
Sections 2 through 4. 

2. POINT PROCESSES 

Each realization of a two-dimensional point process is a countable set of points 
in the plane R2. The important random variables characterizing the process are 
the Z(A), which count the number of points within each Bore1 set A C R2. If A 
is bounded, then Z(A) must be finite. We will assume that E[Z(A)2] is also finite. 

The simplest parameter of this process is its inOensit#y X = E[Z(A)]. The 
second-order statistics of the process may be reduced to a function K E (0, a). 
Ripley [S] gives the following intuitive definitions of K. 

(i) h2K(t) is the expected number of ordered pairs of distinct points less than t 
apart, with the first point’ within a given region of unit area. 



(ii) M(1) is the expected number of furt,her point’s within t of an arbitraq 
point of the process. 

(iii) Under additional assumptions g(t) = (Az/2&)(dK/dt) is a joint density 
for the occurrence of two points distance 1 apart,. 

We will give several examples of two-dimensional point processes. Only the 
first of these will be used in the generat#ion of the patt,erns discussed in the remain- 
ing sections of this paper. 

( 1) Two-dimensional Poisson Point Process 

This process is completely characterized by the properties that the expect,ed 
number of points within a region of area A is XA, irrespective of the shape or 
orientation of the region ; and that the numbers of pointIs in any two disjoint 
regions are independent. For this model K(t) = d2. On a grid the Poisson process 
becomes a binomial process [24). Each grid point has a probability 1 - e-x of 
being dropped by the process (Fig. 2). These points can be thought of as dropped 
onto the square, like raindrops falling on a puddle, or meteorites striking the moon. 

Not all point patterns are so random, i.e., a point’s nearest neighbors may be 
closer or farther than predicted under a Poisson model. Models which produce 
clustered point patterns will have K(t) > at2, whereas models yielding inhibitory 
point patt,erns will have K(t) < rt2. 

(2) Clu,stering Model (Center-Satellite Process) 

Particles are parents (or nuclei) of families of children (satellites). The parents 
may be dispersed in a Poisson manner with their children congregating about, 
them. 

One example is the Neyman&cott process. The daught,er process is a random 
number N of independently distributed points. The parent process is Poisson of 
int,ensity (Y. Here X = otE’[N]. The probability densit,y of t,he distribution of the 
distance between two arhit,rary points of t,he dughter process is given by f(t), 
yielding [S] 

g(t) = x2 + czE{N(N - l))f(t)/2nt. 

FIG. 2. A realizahn of a two-dimensional Poisson point process. 



(3) Inhibitory Model 

Particles appear to repel their neighbors, as if t>hey were animals defending 
their territory. One example of an inhibitory model is given by Matern [7]. We 
examine a two-dimensional Poisson point process of intensity ac and delet’e any 
point that is within distance 2d of another point. For this process 

X = exp( -4rad’) ; 9(t) = 0; t 5 %d 

= X2 exp(-d(f)); t > 2d, 

where U(t) is the area covered by two circles each of radius d, centered at distance 
t apart. 

(4) Other Models 

Many other categories of two-dimensional point, processes are discussed in t,he 
statistics literature. For example, we may vary a process’s intensity temporally 
t,o produce a space-time point process. Other classes have been proposed which 
are mixtures of simpler models. The most notable of these are the mixed Poisson 
and doubly stochastic [S] Poisson models. Other models, such as Markov and 
diffusion processes, have also been used to describe certain point patterns. For a 
good overview of the subject see Ripley [S, 91 and Bartlett [lo]. 

3. CELL STRUCTURE MODELS 

Random mosaics are constructed in two steps : 

(1) Tessellate a planar region into cells. We will only consider tessellations 
composed of bounded convex polygons. 

(2) Independently assign one of m colors to each cell according to a fixed set 
of probabilities 

Pb * * ., p,; fJ pi = 1.’ 
i=l 

By this process, we partition region A into subregions A 1, . . . , A, ; lJrnjzlA4j 
= A, where Ai is defined to be the union of all cells of color j. The partitioning of 
A is the realization of a random process with the following stationary and transi- 
tion probabilities : 

(1) For all s E A, Pr (S E Ai) = pi for i = 1, 2, . . ., m. 
(2) For all (s, s’) E A, with distance d = 1s - s’/ between them, 

Pr (s’ E Ails E AJ = Pij(d) = pi(l - W(d)) + &W(d) 

for i, j = 1, 2, . . ., m. W(d) is the probability that any two points that are 
distance d apart are both in the same cell, and 13~~ is the Iironecker delta. 

Cell structure models form a family whose members differ only in the manner 
in which the plane is t,essellated. We will describe some important members of 

1 Other random coloring schemes are possible. Examples: (i) Each cell has a constant color 
throughout, where the constants are independently chosen from a single normal distribution. (ii) 
All cell borders arc given a thickness and one color, and all cell interiors are given a second color. 
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this family, starting with the most random members and progressing toward 
more regular examples. 

The first model we will consider is a Gaussian random process. It is a degenerate 
form of a cell structure model, in that each point of an image constitutes an entire 
cell. 

Nondegenerate cell structure models are constructed by two types of processes : 
(1) line processes and (2) cell growth processes. The first type of process uses 
straight lines to partition a region into cells. The positions and orientations of 
these lines can range from randomly distributed (Poisson line model) to regularly 
arranged (checkerboard model). The second type of process uses a spatial point 
process to generate the nuclei of growing cells. If the nuclei are randomly posi- 
tioned an occupancy model is produced. 

3.1. Gaussian Random Process 

A real random vector process ( Ysi 1 si E A ) is a Gaussian random process if for 
every finite set of points (si} E A, the corresponding random vectors Y,, are 
jointly Gaussian random vectors. A (stationary) Gaussian random vector process 
is completely defined (statistically) by its mean p = E( YsJ and auto-covariance 
matrix Z(b), where Z(b) = E[( Ysi+b - p) (Yai - p)“]. The process reduces to 
one of white noise if 2((b) = Z(O) *A(b), where A(b) = 1 when b = 0, and A(b) = 0 
otherwise. 

3.2. Random Line and Cell Growth Processes 

(a) Poisson Line Model: 2(X, pl, . . ., p,-1, ~1, . . ., pm, 21, . . ., 2,). Consider 
a system of intersecting lines in the plane with random positions and orientations. 
Such a system when derived by the following Poisson process possesses funda- 
mental properties of homogeneity and isotropy. A Poisson process of intensity X 
chooses points (0, p) in the infinite rectangular strip [0 5 0 < P, - TV < p < 00 1. 
Each of these points can be used to construct a line in the plane of the form 
x cos 0 + y sin 0 - p = 0, where p is the distance to an arbitrarily chosen origin. 
One can use this process to tessellate any finite region A into cells (Fig. 3a). It 
can be seen that there are almost certainly four cells converging at each vertex. 
These cells are then colored in the manner previously described. 

The sequence of colors obtained by sampling an m-color Poisson line mosaic at 
equal intervals is an m-st’ate discrete Markov chain with transition matrix P(d) 
given by 

A1 A2 a.. A, 

where d is the sampling interval. A matrix of the above form is a necessary but 
not sufficient condition for randomness. The additional requirement for the ran- 
dom mingling of the color cells places a further restriction on P(d) ; namely 
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(h) (iI (k) (1) 
FIG. 3. Cell structure models. (a) Poisson line tessellation, (b) C (16, (.33, .33, .34), (15, 30, 45j, 

(25, 25, 25)) (c) 2b mean filtered over a 3-by-3 neighborhood, (d) Occupancy model tessellation, 
(e) (3 (40, (.33, .33, .34), (15, 30, 45), (25, 25, 25)), (f) 2e mean filtered over a 3-by-3 neighborhood, 
(g) Botated checkerboard tessellation, (h) e(10/127, (.33, .33, .34), (15, 30, 50), (25, 25, 25)), 
(i) 2h mean filtered over a 3-by-3 neighborhood, (j) Rotated hexagonal tessellation, (k) X(40, 
(.33, .33, .34), (15, 30, 45), (25, 25, 25)), (1) 2.k mean filtered over a 3-by-3 neighborhood. 

Pi, = PI0 for all 01, p # j. A Rlarkov transition matrix having this form possesses 
the following properties [ll, la]: 

(1) Reversibility-The probability that color region Ai follows iii in the 
sampling sequence is the same as the probabilit’y that Aj follows Ai. This condi- 
tion can be expressed in terms of the stationary and transition probabilit’ies of the 
process 

I.ljPij(d) = piPji(47 where Pij(d) = p,(l - W(d)) + s,W(d) 
and W(d) = e-2Xd. (1) 



There are many situations when a texture does not possess this property. For 
example, consider an aerial photograph of a field where the distribution of plant 
species is controlled by the prevailing winds or predominant direction of sunlight. 

(2) Lumpability-The chain resulting from any regrouping or renaming of the 
c&r states is still Markov. 

(3) Specifiability-A random m-color Poisson line mosaic is completely 
specified by 3m parameter&. To specify the area covered by each of the colors we 
need to provide any m - 1 independent terms of the stationary probability 
vector (PI, p2, . . . , p,). To specify t’he transition matrix we need Pij for all i 
and ,J’. However, t’he form of Eq. (1) indicates that the entire matrix can be 
specified by the stationary probability vector and only one other parameter. 
That parameter is X, the intensity of the driving point process. 

An additional 2m parameters are needed for the means and covariances of the 
112 colors. 

(4) The chain is irreducible, aperiodic, and all it,s states are recurrent st,ates, 
since 0 < P;j(d) < 1 for all i and j. These properties are defined as follows. The 
period of state LY of a Markov chian is the greatest common divisor of all integers 
IL 2 1 for which the probability of returning to state a, starting from state o(, in 
n steps is nonzero. A R’Iarkov chain is aperiodic if its period is 1. A IIarkov chain 
is irreducible if all its states are accessible from each other. A state of a Markov 
chain is recurrent if when we start from the st,ate we will eventually return to it. 

Two or more contiguous cells of the same color are said to form a patch. We 
would next like to derive the ratio of patch width to cell width. Consider the 
dist,ribution of length 1, of color (Y along a transect,. It can be shown [11] t,hat the 
sizes of neighboring cells are independent for a Poisson line tessellation. The 
points of intersection of an arbitrary line with a Poisson line tessellation con- 
stitute a Poisson line process with intfensity 2X. This means that the expectSed 
number k of lines crossing a transect of unit length is 2X. Thus I, is the sum of j 
independent values of l/lz. Let q(b, j j) d enot,e the conditional pdf of I, given j. 
Then 

(‘>X)j~,j-le-C!A) 
cJ(la 1 j) = --- 

(,j- l)! ’ 

A run of j cells of color cy will occur if the succeeding j - 1 cells are of color (Y 
and a cell of another color follows to terminate the run. The probability that this 
will happen is p, +I(1 - pO). The conditional pdf of I, when j is allowed to vary 
is therefore 

Thus the expected width of a patch of color 01 is l/(1 - pm) times the expected 
cell width. 
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Showing that a text>ure fits a Poisson line model requires the proof of a very 
complicated hypothesis. We must show that (i) the pattern is not directionally 
dependent, (ii) cells of all colors are randomly mingled, and (iii) the pattern of 
each color when t’aken against, a background of the remaining colors forms a 
Z-color Poisson line mosaic. 

(0) Occupancy Model: (3 (X, pl, . . . , pm--l, p, . . . , Pm, 21, . ..) 2,). The occupancy 
model is defined as follows. A Yoisson process with int,ensity X drops points onto 
the plane. Each of these points spreads outj to occupy a “Dirichlet cell” consisting 
of all points on the plane that, are nearer to it than to any of the other Poisson 
points. These cells are convex Voronoi polygons having, on the average, six sides 
(Fig. 3d). (It can be shown that nearest neighbors can be determined in (3(X log A) 
time.) These cells are then independendly assigned colors as usual. 

Mahern [7] has derived W(d) for the occupancy model as a very complex 
double integral having no elementary solution. 

Two models that are related to the occupancy model will be briefly noted. A 
random triangular tessellation can be constructed from Delaunay triangles [13] 
that have as their vertices the t’hree nuclei that are equidistant from a vertex of a 
Voronoi polygon. Thus the int’ersections of Dhe borders of Voronoi polygons are 
the circumcent,ers of the Delaunay triangles (see Fig. 4). 

The Johnson-Mehl model [14] is oft’en used to describe metallurgical surfaces. 
This model differs from t’he occupancy model only in that’ points are dropped onto 
the plane as a function of time; i.e., A = X(T). These points start expanding 
circularly as soon as they hit the plane. A point on the plane is assigned to the 
cell whose expanding border first reaches it. Cells formed by this process do not 
have straight line edges and are notfl necessarily convex (Fig. 5). Irregular con- 
figurations occur when late arriving points fall near t*he int’erface of t,wo large 
cells. 

The occupancy model simulat’es natural growth processes in the plane. In 
cont,rast, Poisson line mosaics are surely less common. The cells of most natural 
textures do not have the sharp corners of a Poisson line cell (two exceptions are 
blades of grass and the leaves of a palm tree). 

FIG. 4. Cells generated by occupancy model. Delaunay triangks shown as dashed lines. 



RANDOM PATTERN Gl~:NERATION PROCXSSES 103 

FIG. 5. Cells gencrated by the Johnson-Mehl rnodcl 1141. 

Despite its ‘Lunnatural” appearence, t’he Poisson line model may be suggested 
as a texture standard because of its randomness. For example, it is the only 
texture which meets the requirements for Markovianity in the plane; the sizes 
of its adjacent cells are independent [ll], and its correlation function has an 
exponential form [12]. The occupancy model does not satisfy either of these 
conditions. 

3.3. Regular Line and Cell Growth Processes 

(a) Rotated Checkerboard Model: C(b, pl, . . ., pm-l, ~1, . . ., pm, El, . . ., 2,). 
This is an example of a cell structure model where the cells have a uniform di- 
ameter. A checkerboard model can be formed by the following procedure. First 
choose the origin of an X-Y coordinate system on the plane wit#h uniform prob- 
ability density. Then tessellate the plane into square cells of side length 6. Next, 
this “checkerboard” is rotated by an angle chosen with uniform probability from 
the interval (0, 2~). The cells are now independently assigned one of the m tile 
types as before (Fig. 3h). The solution for W(d) for this model is discussed in the 
statistics Uerature as an extension of Buffon’s needle problem : 

W(d) = 1 - 4d/& + dz/?rb2 Cd 5 6) 

= 1 - 2,‘7r - (4/s) c~s-~ (b/d) - d*/?rb” + (4/a) (d2/b2 - 1): 
(6 < d 5 2%) 

= 0 (d > 2%). 

(0) Rotated Hexagon Model [15]: H(& pl, . . ., pm+ ~1, . . ., pin, 21, . . ., Z&J. 
This model is analogous to the checkerboard model, except that hexagons are 
used in place of squares. Another way of viewing t’hese models is as follows: 
Consider a system of particles on the vertices of a regular lattice (Figs. 6 and 7a). 
Let these particles be the nuclei of growing cells. Cells will grow unimpeded in a 
circular fashion until they reach the tightly packed state shown in Figs. 6 and 7b. 
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a b c 

FIG. 6. Square growth process. 

At this moment each circle had four or six points of contact wit’h its neighbors, 
depending on the nature of the lattice. As the cells continue to grow these points 
of contact will be extended into lines, and the equal circles shown in Figs. 6: and 
7b will be converted into the equal hexagons or squares shown in Figs. ci and 7~. 
For hexagons of side length a, W(d) can be derived from equations given by 
Santa16 [lli] and Ma-tern [7] 

for fl 5 a 

= 0 for d > 33. 

(c) Rotated Triangular Model: T(6, pl, . . ., P,-.~, ~1, . . ., I.L~, 21, . . .! S,,). An 
equilateral triangular tessellation can be formed by connecting t,he growth centers 
of neighboring cells in a hexagonal tessellation (Fig. S). For triangles of side 
length 6, W(d) can be derived from equations given by Santa16 [lS] and Mat’ern 
c71 

W(d) = W,(d) + W,(d), 

. . . * . 

. . . 

. . . . 

. 1 . . . 

a b c 

Fro. 7. Hexagonal growth pm~~. 
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where 

= 0 othErwis>, 

= 0 othcrwk. 

4. BOMBING MODELS 

Random two-color patterns can be formed by bombing processes. The bombs 
are geometric figures that are dropped onto the plane. The sizes and shapes of 
these figures are fixed, but their positions and orientations are random. The loca- 
tion of a figure is determined by its center point (x0, 71~) (i.e., center of gravity), 
and the orientration 0 of it,s principal axis. By Ohis process a fixed region A is 
randomly partitioned into A1 and A2 = (A - Al), where A1 consists of that 
part’ of A t,hat is covered by t>he dropped figures. We shall refer to the figures 
comprising A 1 as isotropically distributed. 

We are assuming translation invariance. Hence the number of center points 
falling on any subregion of the plane depends only upon t,he area of the sub- 
region-not on its shape or orientation. The number of center points falling on 
any subregion A has a Poisson distribut,ion with mean XA, where x is the expect,ed 
number of center points falling on any unit, area of the plane. 
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To complete the specification of our model, we will color regions A 1 and ‘4, in a 
Gaussian fashion, with distributions N(pL1, .X1) and N(P~, zl,), respectively. We 
will now consider three coverage theorems for bombing processes. 

Let K be a randomly positioned convex figure with fixed orientation 0. Let, KO 
be another convex region. Let cr(Ko, K, 0) denote t,he area in which the center 
point of K can be placed so that, K int,ersects K,. The area a(Ko, K, 0) has as its 
border the locus of points where the center point, of K might fall so that the region 
K with orientat,ion 0 just touches the borders of Ko (Fig. 9). 

The measure of all cent’er point’s of the figure K where it intersects K. is 

m(K,,, K) = a (Ko, K, 0) dF4 

where P(0) is the distribution funct’ion of the orient’ation paramet’er 8. 

THEOREM I (Dufour [17]). C onsider an injinite collection of congruent conuex 
jigures K independently, identically, and homogeneously distributed over the plane. 
The number of figures K intersecting another convex figure K. has a Poisson distribu- 
tion with mean Am(Ko, K). 

THEOREM II (Dufour [17]). C onsider an infinite collection of congruent convex 
figures of area a and perimeter L distributed isotropically, independently, and 
homogeneously throughout the plane. The number of such figures intersecting another 
convex figure of area a0 and perimeter Lo has a Poisson distribution with mean 
i(a0 + a + L0LPa). 

Consider a circular bombing process of intensity X. For a circle of radius r, the 
probability p2 that a point chosen at random on the plane is isolated is equal to 
the probability that there is no circle within a radius r around the point as its 
center. Thus p2 = exp (- nA) = exp (- Xa), where (Y is the area of a circle. The 
proportion pl of the plane covered by circles is the probability that a point is not 
isolated: pl = 1 - p2 = 1 - exp( - k). Notice that if we drop two circles of 
area $a every time we previously dropped a single circle, the area covered will be 
unchanged. The fact that two small circles cannot, possibly combine to produce 
the same shape as a single larger circle suggests that the area covered is inde- 
pendent of the shape of the dropped figures. 

THEOREM III. If an infinite collection of congruent convex jigures, each of area a, 
are isotropically, independently, and homogeneously distributed throughout the plane, 
then the proportion pl of the plane covered by the figures is 1 - exp ( - XCY). 

Z’roof. This follows directly from Theorem I. Let Ko be a point on the plane. 
The number N of randomly dropped figures K irnersecting the point Ko has a 
Poisson distribution with mean hoc, where cy is the area of K. Therefore 

f(N) = i, (Xa)-ITecX”. 



The prohabilit#y p, that a point is isolated is the probabilit,y that, N = 0 

p2 = Pr (N = 0) = f(0) = ecX*. 

The probability pl that a point is not isolated is therefore 1 - eexa. 
Theorem III relat,es the number of dropped figures to the proportion of t,he 

plane covered 

-1 1 
X = __ In (1 - 71~) = - -In p2. 

CY a 

This is a useful equation for estimating the number of particles on a microscope 
slide, parts on a conveyor belt, trees in a field, etc. 

Examples of Bombing Processes 

(a) Random Line Segment Processes: d: ( T, I). Line segments each of length 1 are 
distributed isotropically over the plane. The orientabion of a line segment is 
specified by the angle e between the x-axis and the perpendicular to the line 
segment. The midpoint (x0, ~0) of the line segment specifies its position. 

Assume that we are given two line segments centered at randomly selected 
points P and Q, with an angle 0 between them. They will intersect if P falls 
wit,hin a rhombus of side length 1 centered at Q. 

The area of the rhombus is P sin 8, so that we have 

a = 12 212 
m (Ko, K) = 2 J $1” sin edFe = 2 I - sin ede = - . 

0 0 27r 7i- 

Thus from Theorem I, the number N of randomly distributed line segment’s of 
length 1 intersecting a fixed line segment of length I has a Poisson distribution 
with mean 2X12/7r, 
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The probabilit,y po t,hat, a line segment is isolated is the probability that, N is zero. 

p, = l’r (N = 0) = .t’(O) = f?XlJ(-2X/2/~). 

(6) Elliptical Bombing Process. &(A, cl, ~2, ~1, 2‘1, bz, YZ). Ellipses having major 
axis 2~ and minor axis 20 are distributed randomly over t’he plane. The orienta- 
t’ion of an ellipse is specified by t)hc angle 6 betwten the r-axis and the perpendicu- 
lar to the ma,jor asis of t,hc cllipsc. The midpoint of the ellipse specifies its position. 

‘. 
Q 

cp. /Cl ’ 
I 

t’s 

The parametric equations for the ellipse are 

x - cc0 = cl cos a! cos 0 - cq sin (Y sin 0, 

y - y. = clcoscrsinB + cZsinacoat9; 

where (Y is between 0 and 2n. Thus 

(x - no) cos e + ” - 90) __- sin 0 = cos a, 
Cl Cl 

- (:c - 20) (Y - ilo) 
sin e + ---- cos 0 = sin o(. 

CZ c2 

The equation for the interior of t,he ellipse is 

[ -(a - n-0) (!I - Y(l) 2 

+- 
__- sin e + ----- cos e 1 i < 1 . 

C% c2 

The area of the ellipse is ac = aclcZ, and the perimet)er is I; = 4clE = [(cl2 + cZ2)/ 
2]*27r, using elliptical integral tables for E. 

From Theorem II, the number N of randomly dist,ributed ellipses intersect,ing 
a fixed ellipse has a Poisson distribution wit.h mean 

The probability that’ an ellipse is isolated is 

p. = Pr (N = 0) = f(O) = exp[--?rX[eI + czlz]. 

A realization of an elliptical bombing process is shown in Fig. 10a. 



FIG. 10. Itcnlizations of bombing (a) 6(25, 10/127, 5/127, 20, proresscs. 10, 50, lo), (b) C(L5, 
7/127, 20, 10, 50, lo), (c) ~(40, l/127, 13, 10, 53, IO), (d) R(30, 15/127, 7/127, 20, 25, 40, 25), 
(P) S(30, 7/127, 20, 10, 50, lo), (f) m(30, 10/127, l/127, 20, 10, 50, 10). 

(c) Circular Bombing Process [lS]: (?[A, c, ~1, Z1, ~2, 22). A circular lx)mbing 
process is a special case of the elliptical bombing process, where cl = ~2 = c 
(Fig. 1%). 

Any two circles in the plane will overlap if t’he distance bebveen their centers 
is less than t>heir diameter. The probabilit’y ~0 that a circle is isolat,ed is equal t’o 
the probability that there is no circle center wit,hin radius 2r of a center point, 
placed randomly on t,he plane. That is, p, = e-4irr2X. 

The transit,ion probabilit’ieti for t,his process are given hy Switzcr [19] 

pJ’11(rl) = (2p1 - 1) + (1 - PI)“‘““) 

H(d/r) = 1 + (;)[I - ($)I’ + (I) sin+ (ii) for cl < 213 

Yz 2 for d > 3, 

P12(4 = (Pl/p2)P2l(d), 

P,,(d) = 1 - I’,,(d), 

1’21(tZ) = 1 - P,,(Ci). 

A special case of the circular bombing process occurs when each of the circles 
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covers only one pixel. The process then becomes one of randomly thrown Gaussian 
noise (Fig. 10~). 

(d) Rectangular Bombing Process. a(X, cl, c2, pl, zl, p2, 2,). Rectangles of major 
axis 2~1 and minor axis 2~2 are randomly dropped onto the plane. The orientation 
of a rectangle is specified by the angle 0 between the x-axis and the perpendicular 
to the major axis of the rectangle. The midpoint of a rectangle specifies it,s position. 

A realization of a rectangular bombing process is shown in Fig. 10d. 
The equations for a rectangle are 

1(x-x0)cosf3+ (y--&sin01 =cl, 

1 - (x - x0) sin 0 + (y - yO) cos e 1 = c2. 

The interior of the rectangle is specified by 

il 
(’ - ‘O) cos 0 + (’ - ‘O) sin e ( 1; __- 

Cl Cl 

- (x - x0) sine + (Y - Yo) 
-- cos e < 1 . 

c2 c2 I I 

From Theorem II, the number N of randomly distributed rectangles intersecting 
a fixed rectangle has a Poisson distribution with mean 8~ (c1c2 + (l/r) (cl + c~)~). 
The probability that a rectangle is isolated is: 

PO = Pr (N = 0) = f(0) = exp(-88X(clc2 + l/?r(cl + CZ)~)), 

Rectangles of one pixel thickness can be used to approximate Poisson line seg- 
ments (Fig. 10f). 

5. STATISTICS 

The statistical properties of our models can be obtained directly from the 
stationary and transition probabilities. We will assume that each region Ai is 
colored by a Gaussian random vector process having parameters p( and &. Let 

1 
j(z, fii, Xi> = 

(2,)4’2jZjf 
exp[ - 4 (x - p) W-1 (x - p) 1. 

(a) Histogram. Let H(c) denote the probability that a point on an image has 
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color c, where c is a q-element vector. For example, for visual color 

I 

red content of point 5 = cl 
H(c) = Pr green content of point s = c2 

blue content of point s = c:7 1 . 

(b) Co-occurrence. Drop a Buffon needle of length d onto a picture. The end- 

points of the needle are denoted by s and s’. Pr 
0 

E: denotes the probability that s 

lands on color ck and s’ lands on color cl. Then 

ck 
Pr 0 = ? 2 Pr (s E Ai, s’ E A,) Pr [color(s) = CA and color(s’) 

Cl j=l +j 

= CL/S E Ai, s’ E A,], 

where Pr (s E Ai, s’ E Aj) = pip,?(d), and 

Pr [COlOr(s) = ck, color(s’) = ells E Ai, s’ E Ai] = f K)4;:b4 

If there is no correlation across region boundaries, we have 

ck 
Pr 0 cz 

where 

q C C Pr (s E Ai, s’ E Ajl 
ifi 

X Pr [color(s) = ck, color (s’) = cz 1 s E Ai, S’ E Aj] 

-I- c Pr (s, s’ E AJ Pr [color(s) = ck, color (s’) = cL / s, s’ E Ai] 
I 

i%(d) = 
&i(O) 0 

0 1 zm * 

In the cell structure models discussed in Section 3, where it is assumed that cells 
are independently colored, we have no correlation across cell boundaries, and we 
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obtain 

ck 
Pr 0 Cl 

(c) Dij’erence. Again drop a needle of length cl onto a picture. Let D(A) denote 
the sum over all colors c of the probability that s’ lands on color c + A and s lands 
on color c. Then 

B(A) = c c Pr (S E Ai, s’ E A,) I% [color(s) = c, color(s’) 
i i J c 

= c + A 1 s E & s’ E nj)]. 

The equations under various assumptions are analogous to those for co-occurrence. 
(d) Variogram. Again drop a needle of length d onto a picture. Let V(d) denote 

the mean squared color difference at the endpoints of the needle. Then 

V(d) = E[ (color (s) - color(s’)) I(color (s) - color (a’))]. 

If there is no correlation across region boundaries we get 

V(d) = C C [zii(d) + zjj(d) + (pi - pjlt(pi - kj)IPJ’ij(d) 
1 i 

For the cell structure models, there is no correlation across cell boundaries, 
and we have 

V(d) = C C [ziz(O) + xjj(O> + (pi - pjlt(pj - pj)lPjPij(d) 
i#j 

+ C &L(d)]piW(d) + C [2~ii(O)l~~~Cl - w(d)l. z z 
(e) Autocorrelation. We will use the definition of the autocovariance function 

AC(d) to derive the autocorrelation function p(d) for a gray level mosaic texture 
[20] : 

AC(d) = C pigi(C Pji(d)gj) - g2, 
I i 

where gi denotes the mean gray level of the type-i cell, g = xi pigi is the expected 
gray level of a randomly selected point, and the gray levels within a cell are 
assumed to be uncorrelated. 

The autocorrelation function can be written as 

AC(d) AC(d) 
p(d) =-- =T-. 

AC(O) 
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We can write the autocorrelation in terms of t,he transition probabilities as 

In the above, W(d) = 1 - w(d). 

6. DISCUSSION 

We will list some properties of mosaic models that may be potential advantages 
if they are used in image modeling. A detailed discussion of these properties can 
be found in [20]. 

(1) Mosaic models describe images by specifying geometrical processes that 
may have generated the visual pattern under consideration. Such a constructive 
description, therefore, inherently encompasses the specification of all the informa- 
tion about the pattern. One may extract from the model as much information 
as desired, e.g., autocorrelation properties which may not be unique to the image. 
For example, characterization of a pattern in terms of its autocorrelation proper- 
t,ies ignores any phase information. 

(2) Mosaic models do not simply involve capturing the dependence of a certain 
local feature on a certain neighborhood. There is no assumption about the 
Markovianity of the data. 

(3) The task of modeling a variety of images is divided between the steps of 
model selection and parameter specification. 

(4) The underlying idea of treating the image as an arrangement of regions 
provides a hierarchical character to the mosaic models, which may be useful due 
to the similar nature of many real images. 

(5) Mosaic models seem intuitively meaningful. A pattern corresponding to a 
specified model, and the implications of the variations in parameter values, are 
relatively easy to visualize. 

Several properties of the models that could prove to be useful for model-fitting 
are suggested in [20]. Some of the models have been analyzed with respect to 
several of these properties. References [22, 231 present a general method of 
obtaining the expected number and expected perimeter of the connected com- 
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ponents obtained by randomly coloring points in various lattices, and relates these 
properties of the lattices to the corresponding properties of the connected com- 
ponent,s formed in cell structure mosaics. Reference [24] presents a method of 
obtaining the expected perimeter and the expected covered area in patterns 
formed by general, multicolored bombing models using convex bombs under 
certain orientation constraints. Reference [25] presents a method of estimating 
the expected number of connected components in bombing patterns. A discussion 
of texture measures can be found in [al]. In a forthcoming paper CFS], estimates 
of the autocorrelation properties of the various mosaic models are provided. 
Work is under way to apply the available knowledge about these models to the 
modeling of various classes of images. 
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